Canad. Math. Bull. Vol. 15 (2), 1972

POSITIVE DEFINITE SEQUENCE OF OPERATORS AND A FIXED POINT THEOREM

BY

A. T. DASH

The purpose of this note is to prove the following:

THEOREM. Let $\{A_n\}$ be a positive definite sequence of operators on a Hilbert space H with $A_0=1$. If $A_1f=f$ for some f in H, then $A_nf=f$ for all n.

Note that a bilateral sequence of operators $\{A_n: n=0, \pm 1, \pm 2, ...\}$ on H is *positive definite* if

$$\sum_{n}\sum_{m}\langle A_{n-m}f_n,f_m\rangle\geq 0$$

for every finitely nonzero sequence $\{f_n\}$ of vectors in H [1].

Proof of theorem. It is well known that there exists a unitary operator U on a larger Hilbert space K containing H such that

 $A_ng = PU^ng$ for all g in H and for all n,

where P is the orthogonal projection of K onto H [1]. If $A_1f=f$, we have $f=A_1f$ =PUf. Hence

$$||f|| = ||PUf|| \le ||Uf|| = ||f||.$$

Thus it readily follows that Uf = f[1]; and hence $f = U^{-1}f$. This implies that

$$A_{-1}f = PU^{-1}f = Pf = f.$$

Moreover,

$$A_2 f = PU^2 f = PU \cdot U f$$

= PUf = f,

and

$$A_{-2}f = PU^{-2}f = PU^{-1} \cdot U^{-1}f$$

= $PU^{-1}f = f$

Thus the proof of the theorem follows inductively so that $A_n f = f$ for all n.

Reference

1. F. Riesz and B. Sz.-Nagy, Appendix to functional analysis, Ungar, New York.

UNIVERSITY OF GUELPH, GUELPH, ONTARIO