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Suborbit Structure of Permutation
p-Groups and an Application to
Cayley Digraph Isomorphism

Brian Alspach and Shaofei Du

Abstract. Let P be a transitive permutation group of order pm, p an odd prime, containing a regular

cyclic subgroup. The main result of this paper is a determination of the suborbits of P. The main result

is used to give a simple proof of a recent result by J. Morris on Cayley digraph isomorphisms.

1 Introduction

Let G be a transitive permutation group on a finite set Ω and let α ∈ Ω. The orbits of

the stabilizer Gα on Ω are called suborbits of G relative to α. The singleton orbit {α}
is said to be trivial. Determining the suborbit structure of a given permutation group

is one of the basic problems in the theory of permutation groups (see [2, 6, 7]). It

also plays a significant role in some other mathematical areas such as graph theory,

combinatorics, finite geometries and so on. During the last twenty years, following

the completion of the classification of finite simple groups, many new methods and

results regarding this problem have appeared. However, most have involved groups

that are not p-groups. We shall use the term permutation p-group for a permutation

group of order pm, p a prime.

In this paper, we shall investigate the suborbit structure of permutation p-groups

containing a regular cyclic subgroup, where p is an odd prime. Our main result is the

following theorem and will be proved in the next section.

Theorem 1.1 Let p be an odd prime, let P be a transitive permutation p-group on the

set Ω, and let Q be a regular cyclic subgroup of P. Then every suborbit ∆ of P must be

one of the orbits of the subgroup of Q of order |∆|.

As an application of Theorem 1.1, we examine the isomorphism problem for Cay-

ley digraphs. Let us first recall some definitions. Let G be a finite group and S a subset

of G−{1}. We define the Cayley digraph X = Cay(G; S) on G with connection set S to

be the digraph with vertex set V (X) = G and arc set A(X) = {(g, sg) | g ∈ G, s ∈ S}.

It is well known that Aut(X) contains the right regular representation R(G) of

G and so X is vertex-transitive. Also, X is connected if and only if G = 〈S〉. Fur-

thermore, if S = S−1, then Cay(G; S) can be considered to be a Cayley graph by

identifying an undirected edge joining g and h with the two arcs (g, h) and (h, g).
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There have been many papers written on a variety of topics dealing with isomor-

phisms of Cayley graphs and digraphs. One such topic is the examination of iso-

morphisms between two Cayley digraphs on different groups. In 1995, A. Joseph [4]

examined the case when the groups are of prime square order. Recently, J. Morris

[5] extended Joseph’s result and determined when a Cayley digraph on an abelian

group R is isomorphic to a Cayley digraph on the cyclic group Zpn , where p is an odd

prime. To do so is equivalent to determining all the regular abelian subgroups of the

automorphism group of a given Cayley digraph on Zpn . Theorem 1.2 below is stated

in a different form than Theorem 1.1 in [5], the main result in [5], but is equivalent

to it. In this paper, as an application of Theorem 1.1, we give a new and simple proof

for Theorem 1.2.

Before stating Theorem 1.2, we need some preliminary definitions. Let X =

Cay(Q; S) be a Cayley digraph on the group Q ∼= Zpn , where p is an odd prime

and n ≥ 2. For 0 ≤ i ≤ n, let Qi denote the unique subgroup of order pi of Q. Let

{i0, i1, i2, . . . , ik−1} be the set of all numbers i such that S − Qi is a union of right

cosets of Qi in Q, where 0 = i0 < i1 < i2 < · · · < ik−1 < n. For convenience,

let ik = n. Then the sequence (i0, i1, . . . , ik) is said to be the wreathed sequence of

X, and is denoted by WS(X). Note that every Cayley digraph on Q has i0 = 0 as a

first term—perhaps the only term—in the wreathed sequence because S is a union of

right cosets of {1}. Given the Cayley digraph X = Cay(Q; S) with wreathed sequence

WS(X) = (i0, i1, . . . , ik), let C(X) be the set of all nonisomorphic abelian groups R

such that R has a series of subgroups, say 1 = R0 ≤ R1 ≤ · · · ≤ Rk = R, such that

for any 1 ≤ ` ≤ k, |R`| = pi` and R`

R`−1
is cyclic. Clearly, Zpn ∈ C(X).

Theorem 1.2 For an odd prime p and n ≥ 2, let X = Cay(Q; S) be a Cayley digraph

on the group Q ∼= Zpn having the wreathed sequence WS(X) = (i0, i1, . . . , ik). Then

Aut(X) contains a regular abelian subgroup R if and only if R ∈ C(X). In other words,

X is isomorphic to a Cayley digraph on an abelian group R if and only if R ∈ C(X).

Using Theorem 1.2, we easily may examine whether or not a Cayley digraph

Cay(R; S ′) on an abelian group R is isomorphic to a Cayley digraph Cay(Q; S) on

the cyclic group Q (see Remark 3.2 for more details).

Unless stated otherwise, the group- and graph-theoretic terminology is standard

and we refer the reader to [1, 3]. Suppose G is a permutation group on Ω. For

any subgroup H of G and any subset Γ of Ω, we use H(Γ) and H{Γ} to denote the

subgroups of H fixing Γ pointwise and setwise, respectively. In particular, if Γ = {x},

then we denote both H(Γ) and H{Γ} by Hx.

2 Proof of Theorem 1.1

Henceforth, let P be a transitive permutation group of order pm on a set Ω of car-

dinality pn, where p is an odd prime. Suppose that P contains a regular cyclic sub-

group Q. As in Section 1, let Qi , 0 ≤ i ≤ n, denote the unique subgroup of order pi

of Q. Then for each i, Q has a unique system of imprimitivity with blocks of length

pi , which we always refer to as a pi-block system. We denote it by Bi and note it is the

set of orbits of Qi . For any x ∈ Ω and 0 ≤ j < i ≤ n, we use Bx,i, j to denote the set of
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all the p j-blocks of Q contained in the pi-block which contains x, in particular, Bx,i,0

will be denoted simply by Bx,i , which is the pi-block containing x. Before proving

Theorem 1.1, we prove three lemmas.

Lemma 2.1 For any i satisfying 0 ≤ i ≤ n, each pi-block of Q is also a block of P.

Hence, Bi also forms the unique pi-block system of P.

Proof It is well known that the set of orbits of any normal subgroup of a transitive

permutation group must be a complete block system of the group (see [7, Proposi-

tion 7.1]). Take a principal series of P: P0 = 1 ≤ P1 ≤ · · · Pm−1 ≤ Pm = P, where

for each ` satisfying 0 ≤ ` ≤ m − 1, P` is normal in P and |P`+1/P`| = p (see [3,

Chapter III, Theorem 7.2]). Clearly, if an orbit of P` has length pk, then any orbit of

P`+1 has length either pk or pk+1. Since P has both p0-blocks and pn-blocks, it follows

that for any 0 ≤ i ≤ n, P has a pi-block. Note that any block of P must be a block of

Q and Q has the unique pi-block system Bi . Therefore, P has the unique imprimitive

complete pi-block system Bi .

Hereafter, by Lemma 2.1, all pi-blocks mentioned in this paper are pi-blocks of

P, which are orbits of Qi . In particular, every element of P induces an action on Bi .

Moreover, we note the following two facts.

(1) For any x ∈ Ω and 0 ≤ i ≤ n, we have Px = (P{Bx,i})x. Since Qi ≤ P{Bx,i} and

Qi is transitive on Bx,i , we have from Frattini-Argument that P{Bx,i} = PxQi .

(2) Suppose that R is a regular abelian subgroup of P. For any i, with 0 ≤ i ≤ n,

let Ri be the subgroup of R fixing each pi-block setwise. Then R/Ri acts regularly

on Bx,n,i because R is abelian [7, Proposition 4.4]. Hence, Ri acts regularly on each

pi-block, which forces |Ri | = pi .

In what follows, we first consider a special case for m = 3 and n = 2.

Lemma 2.2 Suppose that m = 3 and n = 2. Then P is nonabelian, each noncentral

subgroup of order p of P fixes one p-block pointwise and is transitive on each of the other

p-blocks.

Proof From the hypothesis, P is a transitive permutation group of order p3 acting on

Ω which has cardinality p2. Since P is not regular, it is nonabelian. Since P contains

a cyclic subgroup Q of order p2, we may assume that P has the following defining

relations:

(2.1) P = 〈a, b | ap2

= bp
= 1, b−1ab = a1+p〉,

where Q = 〈a〉. Also, Z(P) = 〈ap〉. It is easy to observe that P has p2 − 1 elements

of order p with the form {ai pb j}. Hence, P has p + 1 subgroups of order p: one is

Z(P) and the others are non-central subgroups. For any x ∈ Ω, Px is a non-central

subgroup of order p. Since |NP(Px)| = p2, it follows that Px fixes p points and so

Px fixes the p-block Bx,1 pointwise [7, Theorem 3.6] and is transitive on By,1 for any

y /∈ Bx,1. This completes the proof.
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Lemma 2.3 Suppose n ≥ 3. Let x, y ∈ Ω, and for 1 ≤ i ≤ n−2, let H = Px∩P{By,i+1}.

If H induces a transitive action on By,i+1,i , then it also must induce a transitive action on

By,i+1,i−1.

Proof Suppose that H induces a transitive action on By,i+1,i . Then x /∈ By,i+1. Let

N = P{Bx,i+1} ∩ P{By,i+1}. Then from fact (1) before Lemma 2.2 and Dedekind’s

law [3, Chapter I, Theorem 2.12], we have that N = (PxQi+1) ∩ P{By,i+1} = (Px ∩
P{By,i+1})Qi+1 = HQi+1. Let K = N(By,i+1,i−1) and N̄ = N/K. Then Qi−1 ≤ K and

N̄ induces a faithful action on By,i+1,i−1 of degree p2. Moreover, Qi+1 is transitive on

By,i+1 which implies N̄ is transitive on By,i+1,i−1.

We proceed by contradiction and assume that H does not induce a transitive ac-

tion on By,i+1,i−1. Since H is transitive on By,i+1,i , it must have p orbits on By,i+1,i−1.

Each orbit then must intersect each pi-block in By,i+1,i in exactly one pi−1-block.

Thus, the stabilizer of a pi−1-block fixes By,i+1,i pointwise, thereby, fixing By,i+1,i−1

pointwise. This implies that H has order p in its action on By,i+1,i−1 so that H̄ :=

HK/K has order at most p. Since H induces a transitive action on By,i+1,i , |H̄| 6= 1

and so |H̄| = p. Therefore, |N̄| ≤ |H̄| |Qi+1| ≤ p3. First we assume that |N̄| = p2.

Then N̄ = Qi+1
∼= Zp2 , which forces H̄ = Qi , fixing each pi-block setwise, contra-

dicting the assumption that H induces a transitive action on By,i+1,i . Next, we assume

that |N̄| = p3. Then N̄ is precisely isomorphic to the group defined in (2.1). The

central subgroup of order p is a subgroup of Qi+1 so that H̄ is a non-central sub-

group of order p. By Lemma 2.2, H fixes the p-blocks of By,i+1,i−1 setwise, also a

contradiction. This completes the proof.

Proof of Theorem 1.1 Fix a point x in Ω and let y be any point of Ω. If Px fixes y,

then the conclusion is true. Hence, we assume Px does not fix y. Since the orbit of Px

containing y is a then a proper block, there exists an i, 1 ≤ i < n, such that Px fixes

By,i setwise and induces a transitive action on By,i,i−1. The theorem follows trivially

for i = 1. If i ≥ 2, then by Lemma 2.3, Px induces a transitive action on By,i,i−2. By

repeating this process, we obtain that Px induces a transitive action on By,i,0 = By,i .

In other words, By,i is a suborbit of P relative to x containing y. This finishes the

proof.

The following result is a corollary of Theorem 1.1, and will be used in the proof

of Theorem 1.2. Before stating it, we first recall a well-known result in permutation

group theory. For any transitive permutation group G on Γ, the set Fix(Gv) of fixed

points of Gv (v ∈ Gv) has the form {vg | g ∈ NG(Gv)} and is a block of G (see [7,

Theorem 7.4]).

Corollary 2.4 Let x ∈ Ω. Suppose that for some i satisfying 1 ≤ i ≤ n − 1, the

induced action of Px on Bx,i+1,i−1 is non-trivial. Then for any y /∈ Bx,i , Px ∩ P{By,i} is

transitive on By,i . In particular, if P contains a regular abelian subgroup R such that for

any z ∈ Ω, the induced action of R{Bz,i+1} on Bz,i+1,i−1 is isomorphic to Zp ×Zp, then we

have the same conclusion.

Proof Suppose that for some x ∈ Ω and some i with 1 ≤ i ≤ n − 1, the action

of Px on Bx,i+1,i−1 is non-trivial. Then we consider the induced action of P on the
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pi−1-block system Bi−1. Let K = P(Bi−1) be the kernel of the action and P̄ = P/K.

Now (P̄)Bx,i−1
= Px. Therefore, by the arguments before the corollary, the set of fixed

points of Px on Bi−1 is a block of P̄. By the hypotheses, the induced action of Px on

Bx,i+1,i−1 is non-trivial. Hence, Px fixes the pi−1-blocks in Bx,i setwise—there are p

of them—and moves any other pi−1-block in By,i for any y 6∈ Bx,i . By Theorem 1.1,

we know that By,i is contained in the suborbit of P relative to x containing y. In

particular, Px ∩ P{By,i} is transitive on By,i .

Suppose that P has a regular abelian subgroup R such that for any z ∈ Ω, the

induced action of R{Bz,i+1} on Bz,i+1,i−1 is isomorphic to Zp × Zp. Let H = P{Bx,i+1}.

Note that Px ≤ H. Let H̄ be the permutation group on Bx,i+1,i−1 induced by H.

Then H̄ contains two regular subgroups isomorphic to Zp2 and Zp ×Zp, respectively.

Therefore, the induced action of Px on Bx,i+1,i−1 is non-trivial, so we have the same

conclusion as the preceding paragraph.

3 Proof of Theorem 1.2

Before proving Theorem 1.2, we recall some basic concepts and facts. Given a group

G and a permutation group H on a set ∆ = {1, 2, · · ·n}, then the wreath product

G o H is the group defined by

G o H = {(g1, g2, . . . , gn; h) | gi ∈ G, h ∈ H},

where

(g1, g2, . . . , gn; h)(g ′
1, g ′

2, . . . , g ′
n; h ′) = (g1g ′

1h−1 , g2g ′
2h−1 , . . . , gng ′

nh−1 ; hh ′).

Furthermore, if G is a permutation group on Γ, then G o H can be defined to be a

faithful permutation group on Γ × ∆ by (i, j)(g1,g2,...,gn ;h)
= (ig j , jh). Similarly, we

may define the wreath product of more than two groups. Suppose that for 1 ≤ i ≤ k,

Gi is a transitive permutation group on a set ∆i . By [3, Chapter I, Theorem 15.4], we

know that the permutation group G1 oG2 o · · · oGk := ((· · · (G1 oG2) oG3) o · · · oGk)on

((· · · (∆1×∆2)×∆3)×· · ·×∆k)is associative if we identify ((· · · (∆1×∆2)×· · ·×∆k)

with ∆1 × ∆2 · · · × ∆k and in this case, G1 o G2 o · · · o Gk is a transitive group on

∆1 × ∆2 · · · × ∆k. Moreover, from [3, Chapter I, Theorem 15.9] we obtain the

following result.

Lemma 3.1 Let 1 = R0 ≤ R2 · · · ≤ Rk = R be a subnormal series with factor groups

Hi = Ri/Ri−1 (i = 1, 2, . . . , k). Suppose that for each i, Hi is a regular permutation

group on ∆i . Then R is isomorphic to a regular subgroup of H1 o H2 o · · · o Hk acting on

∆1 × ∆2 · · · × ∆k.

Given two digraphs Y and Z, the wreath product Y o Z of Y and Z is defined to be

the digraph with vertex set V (Y o Z) = V (Y ) ×V (Z) and arc set

A(Y o Z) =
{(

(y1, z1), (y2, z2)
)

∣

∣ z1 = z2 and (y1, y2) ∈ A(Y ), or (z1, z2) ∈ A(Z)
}

.

Given digraphs Y1,Y2, . . . ,Yk, we denote
(

(Y1 o Y2) · · · o Yk

)

by Y1 o Y2 · · · o Yk. It is

easy to show that Aut(Y1) o Aut(Y2) · · · o Aut(Yk) ≤ Aut(Y1 o Y2 · · · o Yk).
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Proof of Theorem 1.2 The proof is divided into three steps. We prepare the foun-

dation in (1), prove the necessity in (2), and prove the sufficiency in (3).

(1) Let Q and Qi , 0 ≤ i ≤ n, be as in Section 2, and let X = Cay(Q; S) be a Cayley

digraph on Q. Suppose that WS(X) = (i0, i1, . . . , ik). By Sylow’s Theorem, we may

assume P is a Sylow p-subgroup of Aut(X) containing Q. Let Ω := V (X) = Q and

let Bi be as in Section 2. Then by Lemma 2.1, Bi is the unique pi-block system for

P. We say the pi-block system Bi is wreathed if i = 0, i = n, or 1 ≤ i ≤ n − 1 and

the subdigraph induced by X on the union of any two pi-blocks U and W has the

property that if there is one arc from U to W , then there are p2i arcs from U to W . It

follows from the definition of the wreathed sequence WS(X) that {Bi0
, Bi1

, . . . , Bik
}

is the set of all the wreathed block systems of X.

For any x ∈ V (X) and 0 ≤ j < i ≤ n, we define the digraph Xx,i, j to have vertex

set Bx,i, j , where for any two p j-blocks B and B ′ in Bx,i, j , (B, B ′) ∈ A(Xx,i, j ) if and

only if there exist some arcs in X from B to B ′. Clearly, the digraph Xx,i, j is a Cayley

digraph on the group Qi/Q j
∼= Zpi− j . By the analysis in the last paragraph, we know

that X ∼= U1 o U2 o · · · o Uk, where for any 1 ≤ ` ≤ k, U` = Xx,i`,i`−1
is a Cayley

digraph on Zpi`−i`−1 , and it cannot be represented as a wreath product with k terms

in any other way.

(2) Suppose T is a regular abelian subgroup of Aut(X). Up to group isomorphism,

we assume T ≤ P. For any i satisfying 0 ≤ i ≤ n, let Ti be the subgroup of T fixing

each pi-block setwise. Then |Ti | = pi by fact (2) before Lemma 2.2. Assume that

for some `,
Ti`

Ti`−1

is not cyclic. Then there exists an i between i`−1 + 1 and i` − 1

such that the induced action of Ti+1/Ti−1 on Bx,i+1,i−1 is isomorphic to Zp × Zp. By

Corollary 2.4, Px is transitive on By,i for each y 6∈ Bx,i . This forces By,i to be wreathed,

a contradiction (see (1)). Hence,
Ti`

Ti`−1

is cyclic for any ` satisfying 1 ≤ ` ≤ k,

implying that T ∈ C(X).

(3) Suppose R ∈ C(X). Then R has a series of subgroups, say 1 = R0 ≤ R1 · · · ≤
Rk = R, where for any 1 ≤ ` ≤ k, |R`| = pi` and R`

R`−1

∼= Zpi`−i`−1 . Then by

Lemma 3.1, R is isomorphic to a regular subgroup of Zpi1 o Zpi2−i1 · · · o Zp
ik−ik−1 ≤

Aut(U1) o Aut(U2) · · · o Aut(Uk) ≤ Aut(U1 oU2 · · · oUk) = Aut(X).

Remark 3.2 Suppose that Y = Cay(R; S) is a Cayley digraph on an abelian group R

of order pn for an odd prime p. In order to examine whether or not it is isomorphic

to a Cayley digraph on a cyclic group, by Theorem 1.2 we may carry out the following

steps.

(1) First pick up all the minimal elements, under inclusion, of the set of all the

nontrivial cyclic subgroups R1 of R such that S−R1 is the union of some right cosets

of R1 in R. If there exist no such subgroups R1, then by Theorem 1.2 the digraph Y

cannot be a Cayley digraph on a cyclic group.

(2) For each R1 above, find all the minimal elements of the set of all the subgroups

R2 such that R2/R1 is cyclic and S − R2 is the union of some right cosets of R2 in R.

If there exists no such subgroup R2, then by Theorem 1.2 again the digraph Y cannot

be a Cayley digraph on a cyclic group.
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(3) Repeating the above process, if we eventually get a series of the above sub-

groups of R: 1 = R0 ≤ R2 ≤ · · · ≤ Rk = R, then Y is isomorphic to a Cay-

ley digraph X on a cyclic group. Suppose that for 0 ≤ ` ≤ n, |R`| = pi` . Then

WS(X) = (i0, i1, . . . , in). In this case, by Theorem 1.2 again, Y is also isomorphic to

a Cayley graph on a group in C(X).
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