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Helicity dynamics in viscous vortex links
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The dynamics of two slender Hopf-linked vortex rings at vortex Reynolds numbers
(Re ≡ Γ/ν, circulation/viscosity) 2000, 3000 and 4000 is studied using direct numerical
simulations of the incompressible Navier–Stokes equations. Under self-induction, the
initially perpendicularly placed vortex rings approach each other and reconnect to form
two separate vortex rings. The leading ring is closely cuddled and further undergoes
secondary reconnection to form two even smaller rings. At high Re, the leading ring and
the subsequent smaller rings are unstable and break up into turbulent clouds consisting of
numerous even smaller-scale structures. Although the global helicity H remains constant
before reconnection, it increases and then rapidly decays during reconnection – both the
growth and decay rates increase with Re. In the two higher Re (i.e. 3000 and 4000)
cases, H further rises after the first reconnection and reaches a quasi-plateau with the
asymptotic value continuously increasing with Re – suggesting that H for viscous flows is
not conserved at very high Re. Further flow analysis demonstrates that significant numbers
of positive and negative helical structures are simultaneously generated before and during
reconnection, and their different decay rates is the main reason for the complex evolution
of H. By examining the topological aspects of the helicity dynamics, we find that, different
from H, the sum of link and writhe (Lk + Wr) continuously drop during reconnection. Our
results also clearly demonstrate that the twist, which increases with Re, plays a significant
role in the helicity dynamics, particularly at high Re.

Key words: vortex dynamics

1. Introduction

According to Noether’s theorem, conservation laws and symmetries are at the heart of
physics. For a fluid system, in addition to energy, there is another important inviscid
invariant: helicity H, which is defined as H = ∫

V h dV with V the entire flow volume
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and h = u · ω being the helicity density (u and ω are the velocity and vorticity fields,
respectively). Helicity measures the degree to which vortex lines embedded in a fluid
system wind around each other (Moreau 1961; Moffatt 1969) and is believed to play an
essential role in turbulence cascade and fine-scale mixing. In addition, the importance of
helicity is underscored by the growing awareness of the roles of links and knots on various
physical systems, e.g. fluids (Kleckner & Irvine 2013), plasmas (Ricca & Moffatt 1992),
liquid crystals (Martinez et al. 2014) and biology (Chichak et al. 2004).

For finite thickness vortex tubes, Moffatt (1969) and Moffatt & Ricca (1992) showed
that the helicity could be geometrically decomposed as

H =
∑
i /= j

ΓiΓjLk,ij +
∑

i

Γ 2
i (Tw,i + Wr,i), (1.1)

where Γi is the circulation of vortex tube i, Lk,ij is the Gauss linking number between
tubes i and j and Wr,i and Tw,i are, respectively, the writhe and twist of the tube i. Note
that both Lk and Wr can be obtained from the vortex tube centreline alone; however, the
twist Tw and global helicity H – the former consisting of the torsion twist (Tt) of the axis
and the internal intrinsic twist (Ti) of vortex lines within the core – require additional
measurements inside each vortex tube.

The conservation of helicity in ideal (inviscid) fluids is a direct consequence of the
Helmholtz laws of vortex motion. As the conservation laws are fundamental to flow
dynamics, whether the conservation of helicity can be extended to viscous flows at
very high Reynolds number (Re) is a significant question. In viscous flows, vorticity
diffuses, allowing nearby vortex tubes to reconnect (Kida & Takaoka 1994; Yao & Hussain
2022). There have been extensive debates regarding helicity evolution in viscous fluids,
including the extent of its conservation and potential mechanisms for its transfer between
different forms (i.e. link, writhe and twist) (Kleckner & Irvine 2013). On the one hand,
viscosity can alter the field-line topology during the reconnection process – breaking the
conservation of helicity. On the other hand, as helicity dissipation occurs at small scales,
one may argue that, for a slender vortex (i.e. when the core size is much smaller than the
radius of curvature), the localized viscous effect near the reconnection region would not
significantly alter the global helicity at sufficiently high Re, which mainly resides in large
scales (Kivotides & Leonard 2021).

Given its importance, numerous research studies in the past decades have addressed the
helicity dynamics in real fluids. For example, Kida & Takaoka (1987, 1988) conducted
the direct numerical simulation (DNS) of a trefoil knotted vortex and observed that H
slowly decreases during the whole evolution. They further found that the decay rate
decreases with increasing Re, which seems to imply that H is conserved at a sufficiently
high Re. Two vortex rings in the Hopf link configuration have also been studied using
DNS by Aref & Zawadzki (1991) and Kivotides & Leonard (2003). Note that all these
earlier studies were performed at relatively low Re, where viscous effects (i.e. diffusion
and dissipation) are relatively strong. Irvine and co-workers (Kleckner & Irvine 2013;
Scheeler et al. 2014) experimentally created vortex links and knots in a water tank at
relatively high Re(∼ 2 × 104) and observed that the centreline helicity (i.e. sum of link and
writhe helicities) is conserved during the topological change. Note that their experimental
techniques did not allow them to directly measure the twist, and all their claims are drawn
based on the link/writhe calculated from the tracked vortex centrelines and the assumption
of a negligible effect of twist due to rapid viscous dissipation. Inspired by the studies
of Irvine and co-workers, Kerr (2018b) numerically studied the evolution of a perturbed
trefoil knotted vortex and confirmed that the helicity is conserved before reconnection,
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followed by a progressive decay after reconnection. Recently, Kivotides & Leonard (2021)
employed reconnection-capable vortex filament methods to investigate the topological and
helicity dynamics of vortex links for moderate and high Re. By discretizing the finite-core
vortex tubes into bundles of a finite number of filaments, they demonstrated that the
helicity of linked vortex rings is conserved during the unlinking process, and most of the
initial link converts to writhe during the post-reconnection evolution. Note that the vortex
filament simulation by Kivotides & Leonard (2021) did not take into account contributions
from the intrinsic twist Ti to the total helicity. They also performed a DNS of vortex link
at Re = 1500 using the finite-volume method and found that the helicity continuously
decreases, which, similar to that observed by Kida & Takaoka (1987), is attributed to
strong viscous dissipation at low Re. Recently, Zhao et al. (2021) conducted DNS of a
trefoil knotted vortex for Re ≤ 6000 using the adaptive mesh refinement technique and
found that H experiences a sudden jump during reconnection at high Re. Yao, Yang &
Hussain (2021) performed DNS of a trefoil knotted vortex constructed using the method
developed by Xiong & Yang (2019, 2020a) for Re up to 12 000 and also observed that
H grows during and after reconnection with the rate of growth increasing with Re. They
further showed that the increase of H is mainly attributed to the generation of twist (include
both positive and negative signs) before and during reconnection, which contrasts with the
previous claims that the twist has a negligible effect on the helicity dynamics.

In addition to the above-mentioned works for classical fluids, there are also studies of
linked or knotted vortex in quantum fluids. For example, Scheeler et al. (2014) simulated
the evolution of trefoil knots in a superfluid with the Gross–Pitaevskii equation and
observed that the centreline helicity experiences a discrete jump across the reconnection.
Zuccher & Ricca (2017) analysed the evolution of linked vortex rings, which, through
multiple reconnections, cascade into three unlinked and almost planar vortex loops. They
further found that the total helicity remains unchanged throughout the process, and the
link helicity is gradually transferred to writhe and (torsion) twist helicities, followed by a
continuous relaxation of twist across scales.

The objective of this work is to investigate the helicity and topological dynamics of
vortex links in viscous flows. In particular, we aim to address whether helicity is conserved
during the unlinking process. The rest of the paper is organized as follows. The details of
the initial configuration and numerical set-up are given in § 2. The overall flow evolution
and statistics are presented in § 3. The detailed helicity and the topological dynamics are
discussed in §§ 4 and 5, respectively. Finally, conclusions are drawn in § 6.

2. Initial configuration and numerical set-up

The initial condition (figure 1) consists of two vortex rings in the Hopf-link configuration
(i.e. α = 90◦). The radius of the ring is selected as R0 = 1. The initial vorticity distribution
in the cross-section of the ring is assumed to be Gaussian along the radial direction

ω(ρ) = Γ0

2πσ 2 exp
(

− ρ2

2σ 2

)
, (2.1)

where the circulation Γ0 = 1, and the standard deviation σ = 1/(16
√

2π) ≈ 0.025. The
effective core radius is estimated as re = 2σ , within which the vortex tube contains 95 % of
the circulation; hence, the ratio between the mean radius and core size R0/re = 8

√
2π ≈

20. In the current study, the vorticity direction of two rings are chosen so that they have the
same chirality; hence, the total Gauss linking number Lk = ∑

ij Lk,ij = 2. The two rings
lie in planes whose normal vectors are inclined at 45◦ to the z-axis. In this way, the total
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Figure 1. (a) Oblique, (b) top and (c) front views of the initial configuration of the Hopf link (represented by
vorticity isosurface at 4 % of the maximum initial vorticity colour coded by the helicity density h). Note that
α = 90◦, and the blue lines inside the vortex rings denote the vortex axis.

moment of vorticity defined as

I ≡ 1
2

∫∫∫
R3

x × ω(x) dV, (2.2)

is non-zero only for the third component. Consequently, the initial two vortex rings and
the subsequent rings formed after reconnection have skew symmetry in the x–y plane
(e.g. ωz(x, y, z) = ωz(−x, −y, z)) and mainly propagate along the z–direction. If the sign
of vorticity in one of the rings is reversed (i.e. the two rings have opposite chiralities),
then the link helicity becomes −2, and the moment of vorticity I is non-zero along the
x-direction. As the initial writhe Wr and twist Tw of the rings are both zero, the flow
evolution is overall the same between these two cases but with a reversed sign of H. Note
that as demonstrated in Xiong & Yang (2020b), such relationship, in general, is not valid
when the initial Wr and Tw are non-zero (e.g. for coiled vortex rings).

DNS of the incompressible Navier–Stokes equations is carried out in a periodic
domain [−π : π]3 using a Fourier pseudospectral algorithm in the velocity–vorticity form
(Pradeep & Hussain 2004; Yao & Hussain 2020a). Time integration is carried out with
an explicit third-order Runge–Kutta scheme, while the viscous term is treated exactly
with the integrating factor technique (Canuto et al. 2012). Time is non-dimensionalized
as t∗ = t/(R2

0/Γ ). In the current study, we consider three different vortex Reynolds
numbers (varied by changing the viscosity ν) Re = 2000, 3000 and 4000, with grid
points N3 = 7683, 12803 and 15363, correspondingly. Grid and domain size convergence
analyses are conducted in Appendix A, which clearly demonstrates that both the domain
size and the grid resolutions employed here are adequate to capture the flow details.

3. Flow statistics and evolution

3.1. Flow structures
Figure 2 (and supplementary movie 1) shows the time progression of flow structures
visualized using vorticity magnitude isosurface |ω| = 0.04ω0, with ω0 being the
maximum vorticity magnitude at t∗ = 0. By self-induction, the initially perpendicularly
placed vortex rings approach each other and also deform so that the neighbouring parts
become anti-parallel and collide with each other. Then, the vortex rings start to reconnect
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and untie. Note that two reconnections occur simultaneously due to symmetry. Similar
to what is observed for the trefoil knotted vortex (Yao et al. 2021), the reconnected parts
(called bridges) combine with other parts – forming two separate vortex rings, i.e. a leading
ring (LR) and a trailing ring (TR). The coiled TR continues to rotate counter-clockwise
as it propagates along the z-direction. On the other hand, the LR is closely cuddled –
different from what is observed for the trefoil knotted vortex (Yao et al. 2021; Zhao & Scalo
2021). In addition, it continuously decays due to viscous cross-annihilation – similar to that
observed by Aref & Zawadzki (1991). Simultaneously, LR further undergoes reconnection
to form two smaller rings – akin to that happening for an elliptical vortex ring with a large
aspect ratio (Dhanak & Bernardinis 1981; Cheng, Lou & Lim 2016). However, as the LR
is strongly polarized (i.e. with strong axial flow), the reconnection here occurs in a much
more complex manner, particularly at higher Re. The LR and the subsequent two smaller
rings are very unstable due to the presence of strong axial flows and break up to form
turbulent clouds consisting of numerous small-scale structures, which then rapidly decay.
This is quite different from what was observed by Zuccher & Ricca (2017) for quantum
vortex links, where two distinct small rings develop. In addition, due to intense vortex
stretching and weak viscous dissipation at high Re, more small scales are generated and
wrapped around the TR – similar to what is observed for the trefoil knotted vortex (Yao
et al. 2021). After t∗ = 10, as the LR becomes very weak, the flow is mainly dominated
by the TR.

Another feature of interest is that, while the vortex rings initially have predominately
positive helicity density (i.e. +h), some segments acquire negative helicity (i.e. −h) before
and during reconnection, particularly at the tips of the rings. These −h structures become
more prominent and persist longer in time at higher Re. Hence, different from the previous
well-studied scenario, where the two vortices undergoing reconnection are symmetrical,
the reconnection here is asymmetric – similar to that considered by McGavin & Pontin
(2019) and Yao et al. (2021) for anti-parallel vortex reconnection with axial flows. Such
asymmetric reconnection is also observed during the reconnection of a trefoil knotted
vortex (Yao et al. 2021; Zhao et al. 2021) and is the main reason for helicity increase during
reconnection (Zhao & Scalo 2021). In addition, the +h/−h zones appear alternatively in
the TR at a late time (e.g. t∗ = 10 in figure 2c), which implies the presence of strong
oscillations of axial flow/twist.

3.2. Flow statistics
Figures 3(a) and 3(b) show the time evolution of energy E = ∫

V(u2/2) dV and enstrophy
Ω = ∫

V(ω2/2) dV for three different Re cases. The energy E monotonically decays,
and the decay rate depends on viscosity and enstrophy, namely dE/dt = −2νΩ . As
a result, the decay of E is enhanced during reconnection due to increased enstrophy.
The enstrophy initially decays due to viscous dissipation, and the decay rate decreases
with increasing Re due to the limited viscous effect. For a rectilinear Lamb–Oseen
vortex, the rate of change of enstrophy is (1/Ω)∂Ω/∂t = 2ν/σ 2 with the core size σ

growing as σ(t) =
√

σ 2
0 + 2νt (Yao et al. 2021). Consequently, the enstrophy should

follow Ω(t) = Ω0 exp[− ∫ t
0(2ν/σ 2] dt with Ω0 being the enstrophy at t∗ = 0. For the

linked vortices considered here, the initial decrease of Ω also agrees with this prediction,
but the agreement deteriorates as Re increases – probably due to enhanced enstrophy
production caused by vortex stretching. When reconnection starts, Ω experiences rapid
growth due to the generation of numerous small scales, and the peak of Ω increases with
Re – akin to what was found by Yao & Hussain (2020b). In addition, with increasing Re,
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t∗ = 2.0 t∗ = 3.3 t∗ = 4.0 t∗ = 5.0 t∗ = 7.0 t∗ = 10.2

–5 50

h

(a)

(b)

(c)

Figure 2. Evolution of flow structures represented by vorticity isosurface at 4 % of maximum initial vorticity
(|ω| = 0.04ω0) shaded with helicity density h = u · ω for (a) Re = 2000, (b) Re = 3000 and (c) Re = 4000.
See also supplementary movie 1 available at https://doi.org/10.1017/jfm.2022.532 for the time evolution of
different Re cases.

the time for Ω to reach the peak value slightly decreases – suggesting that the reconnection
happens earlier at higher Re. It is somehow expected as the self-induced velocity of the
vortex ring increases at higher Re – due to smaller core size as the viscous diffusion is
suppressed (Saffman 1970). Also, the duration of the increase of Ω is shorter, implying
that reconnection is more rapid at higher Re. Such a Re-trend has also been observed by
Zhao et al. (2021) and Yao et al. (2021) for a trefoil knotted vortex. The enstrophy then
again experiences an exponential drop after the peak – the drop rate increasing with Re
this time, because more numerous and smaller scales are generated at higher Re during
reconnection.

The evolution of the global helicity H (figure 3c) is more interesting and complex.
Initially, H remains almost constant – equal to the link helicity Γ 2Lk (i.e. = 2). It rapidly
grows when reconnection starts, followed by a rapid drop. And the rates of growth/drop
increase with Re. Note that such a rapid decay of H is not observed for the trefoil knotted
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Figure 3. Time evolution of (a) energy E, (b) enstrophy Ω , (c) global helicity H and (d) helicity dissipation
Hd for Re = 2000 (red), 3000 (blue) and 4000 (black). Note that the shaded regions represent the time intervals
when reconnection is happening. The dashed lines in (b) denotes Ω(t) = Ω0 exp[− ∫ t

0(2ν/σ 2]dt with σ =√
σ 2

0 + 2νt. The dashed line in (c) denotes the initial value of helicity; and the square symbols in (d) correspond
to the time derivative of H (the left-hand side of (3.1)).

vortex case (Yao et al. 2021). As will be shown later, it is mainly due to the evolution of
the LR. In addition, the peak value of H also increases with Re, namely, from H = 2.42
at Re = 2000 to 3.0 at Re = 4000. Although the peak of H occurs earlier as Re increases,
which is again consistent with the earlier reconnection at higher Re. Despite the fact that H
eventually decays at late times (e.g. t∗ > 20), its evolution immediately after reconnection
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strongly depends on Re. While H slowly decays at Re = 2000, it increases before reaching
a quasi-steady state at high Re, and the growth becomes more rapid at higher Re. From this
Re trend, it is clear that H would continuously increase at even higher Re. This indicates,
in conjugation with the previous findings by Zhao et al. (2021) and Yao et al. (2021) for
the trefoil knotted vortex, that H is not conserved during the unlinking/untying process,
which contradicts the claims made by Scheeler et al. (2014) and Kivotides & Leonard
(2021) that the helicity is conserved for Re → ∞. The oscillation of H(t) during and
after reconnection is quite surprising and is mainly attributed to the LR formed during
reconnection. To confirm this, we consider the evolution of vortex link with a smaller
angle (i.e. α = 30◦) in Appendix B. Similar to reconnection of a trefoil knot vortex, two
distinct rings form after reconnection for this case. In addition, the strong oscillation of
H (i.e. rapid increase/decrease) is not observed there – suggesting that the evolution of H
after reconnection strongly depends on the initial configurations.

The governing equation for the global helicity H is

DH
Dt

= −
∫∫∫

2νω · (∇ × ω) dV︸ ︷︷ ︸
Hd

, (3.1)

where the right-hand side is viscous dissipation Hd with ω · (∇ × ω) being the so-called
‘superhelicity’ (Brissaud et al. 1973; Hide 1989; Scheeler et al. 2014). As H is not
positive-sign definite, Hd can be either positive or negative – quite different from energy
or enstrophy dissipation. The negative/positive values of Hd represent decreases/increases
of H, respectively. Therefore, Hd can either be a source or sink of H. Nevertheless, as
will be shown later, the helicity dissipation density hd(≡ −2νω · (∇ × ω)), in general, is
negative/positive where h is positive/negative, respectively. For a twisted rectilinear vortex
column (i.e. Batchelor vortex), the relative dissipation of helicity (in the form of twist)
depends mainly on core size σ and viscosity ν, i.e. Hd/H = −2ν/σ 2; and, therefore,
helicity is expected to decay exponentially H(t)/H(0) = exp[− ∫ t

0(2ν/σ 2) dt] (Scheeler
et al. 2014; Yao et al. 2021).

Figure 3(d) shows the evolution of Hd for three different Re. It remains almost zero for
t∗ < 3, becomes positive as reconnection starts and continuously increases and reaches
the peak almost at the same time as the enstrophy (figure 3b). In addition, as Re increases,
the growth of Hd starts earlier and at a larger rate – again due to an earlier and faster
reconnection at higher Re. As the reconnection slows down, Hd decreases and becomes
even negative. And with increasing Re, the minimum value of Hd becomes smaller and
occurs at an earlier time. Then, Hd non-monotonically increases with time and becomes
positive again. At the very late time (i.e. t∗ > 15), Hd becomes very small – consistent
with the slow decay of H observed in figure 3(c). As substantial variations of Hd, as well
as of H, mainly occur during and immediately after reconnection (i.e. t∗ < 12), in the
following section, we will mainly examine their evolution during this period.

To further shed light on the helicity evolution, figure 4 shows the time evolution of
helicity integrated in the x–y plane, defined as

〈h〉(z, t) =
∫∫

h dx dy. (3.2)

The evolution of 〈h〉 is overall quite similar at different Re, except that the amplitude is
larger at higher Re. At t∗ = 0, 〈h〉 is non-zero (positive) only in a narrow range of z,
where the two vortex rings initially reside (i.e. −3 < z < −1.5). As time progress, the
positive patch (i.e. +〈h〉) advects towards larger z values as the two rings move upwards.
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Figure 4. Time evolution of x–y plane-integrated helicity 〈h〉(z, t) for (a) Re = 2000, (b) 3000 and (c) 4000.
Positive and negative isocontours [0.25 : 0.25 : 20] of initial maximum 〈h〉 (i.e. max(〈h〉(z, 0))) are shown in
red and blue, respectively.

Interestingly, around t∗ = 2, −〈h〉 develops at large z, further increasing at later times.
This is consistent with figure 2 showing that the top parts of the rings are predominantly
associated with negative helicity density (i.e. −h). Then, as the two new vortex rings form
and separate after reconnection, 〈h〉 splits into two parts. Although there are some −〈h〉
patches at the top of the trailing part (i.e. TR), it expeditiously disappears. In addition, the
TR carries the majority of H, particularly at late times. For the leading part (i.e. LR), 〈h〉
is initially all negative, suggesting that the LR, in contrast to the TR, has dominantly −h.
Interestingly, a narrow band of +〈h〉 develops in LR, and then is rapidly replaced by strong
−〈h〉, which also diminishes at a late time.

4. Helicity dynamics

4.1. Pre-reconnection
Before reconnection (t∗ ≤ 3), H remains almost constant. However, it does not mean
that there is no generation of h during this period. Instead, due to the helicity splitting
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Figure 5. Earlier evolution (0 ≤ t∗ ≤ 3) of flow structures represented by vortex lines shaded with helicity
density h = u · ω for Re = 3000. The black and green arrows indicate the directions of vorticity and axial
velocity, respectively.

mechanism discussed in Yao & Hussain (2021), ±h are simultaneously developed. To
demonstrate this, figure 5 shows the early time evolution (i.e. t∗ ≤ 3) of flow structures
represented by the vortex lines colour coded by h. For the linked vortex rings, the mutual
interaction is one of the main contributors to h. Initially, h is positive everywhere, attaining
its maximum near the centre of the vortex rings (i.e. A in figure 5a), where the induced
velocity by the other ring is the largest and aligns with the vorticity. The two rings
deform as they move close to each other due to self-induction. At the top parts, the two
rings become anti-parallel and rapidly move upward as a dipole due to mutual induction.
Consequently, at region B in figure 5(d), the velocity is directed opposite to that of
vorticity – resulting in the development of −h. As the rings move closer to each other,
the higher mutual induction causes a much stronger −h (regions C and D in figure 5e).
As explained later, the h generated due to mutual induction is mostly at large scales and
associated with the link and writhe helicities.

In addition to mutual induction, there is another important mechanism of helicity density
generation; namely, the twist of vortex lines with respect to the vortex centreline. Initially,
all the vortex lines aligned with the vortex rings (figure 5a). As the rings evolve, the
vortex lines become twisted, which, as discussed by Melander & Hussain (1994), is mainly
due to the vortex core dynamics. This process can be better illustrated by considering a
simplified model – interaction between a vortex ring and a rectilinear tube (figure 6a),
which is a good approximation of what occurs around region A in figure 5(a). Due to the
variation of the induced velocity of the vortex ring, the vortex tube is compressed (i.e.
ωz∂w/∂z < 0) and stretched (i.e. ωz∂w/∂z > 0) above and below the ring, respectively
– resulting in a variation of the core size along the tube. As the vorticity magnitude is
higher/lower in the region with a small/large core size, the initially straight vortex lines
become radially displaced and undergo coiling (Melander & Hussain 1994; Yao & Hussain
2021). Note that the vortex lines are oppositely twisted with respect to planes A and B;
hence both +h and −h are generated simultaneously. Furthermore, as the vortex tube is,
respectively, compressed and stretched above and below the ring, the twist of the vortex
lines is correspondingly enhanced and suppressed. This explains the twists of vortex lines
observed at regions C and D in figure 5(e) – particularly why the vortex lines in one
segment are more twisted than in the other. Note that the h generated through the twist of
vortex lines is at small scales and is mainly associated with the twist helicity.

The generation of ±h increases with increasing Re. To confirm that, following Yao
et al. (2021), figure 6(b) shows the volume integrated positive and negative helicity
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Figure 6. (a) Schematic of helicity density generation through the coiling of vortex lines; and (b) time
evolution of H+ (dashed) and H− (dash-dotted) for Re = 2000 (red), 3000 (blue) and 4000 (black). Note
that the solid lines in (b) represent the global helicity, and the circles denote −H−(t) + H(0) with H(0) = 2
the initial global helicity.

H± = ∫
h± dV , where

h+ =
{

h, if h ≥ 0
0, otherwise

, (4.1)

and h− = h − h+. As expected, H+(0) = H(0), and H−(0) is zero at t∗ = 0. Both the
H− and H+ slowly grow in magnitude during the initial approach stage, when the two
vortex rings form anti-parallel structures. Just before reconnection, both of them rapidly
increase – at roughly the same rate; hence, H remains constant. In addition, the growth
rate of |H±| increases with Re. During reconnection, although the magnitudes of H− and
H+ still increase, but with different rates. By comparing H+ and H− + H(0), it is clear
that H+ grows faster – resulting in an increase of H. Then, the magnitudes of both H+ and
H− decrease, but with a different decay rate – akin to that observed by Yao et al. (2021)
for a trefoil knotted vortex.

Several comments deserve to be made here. First, as both the two helicity generation
mechanisms discussed above are purely inviscid, they would also occur for Euler flows –
despite the fact that reconnection would be strictly prohibited. Second, the evolution
of vortex lines, particularly their strong twists, is quite different from that observed by
Kivotides & Leonard (2021), who used a bundle of a finite number of filaments to represent
finite-core vortex rings. Due to the inability to capture the detailed core dynamics, one
should be very cautious about using the vortex filament method for understanding the
helicity dynamics in viscous flows. Finally, the rapid generation of ±h and their decays
are essential prerequisites for the oscillation of H observed during and after reconnection.
As shown later, the difference in the growth and decay rates of H+ and H− is the main
reason for the increase or decrease of H observed in figure 3(c).

4.2. During reconnection
As discussed in § 3.2, H rapidly rises during reconnection, particularly at high Re. Such an
increase has also been observed during the unknotting process of a trefoil knotted vortex
(Yao et al. 2021; Zhao et al. 2021). For both of these configurations, ±h patches are
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Figure 7. (a) Schematic of the helicity dissipation during asymmetric reconnection of two anti-parallel vortex
segments with different axial flows; and (b) the thread details.

developed in the anti-parallel vortex structures before reconnection due to the helicity
density generation mechanisms discussed above. In addition, due to the asymmetry
presented in these two anti-parallel segments, the one with −h is much stronger (as shown
in figure 5(e) and further sketched in figure 7a). During reconnection, both +h and −h
patches are then expected to be annihilated through viscous dissipation, and the more
rapid dissipation of −h, presumably due to the larger amplitude, causes the net increase
of H.

Recently, Zhao & Scalo (2021) provided an analytical expression relating helicity
dissipation to circulation transfer, i.e.

DH
Dt

= −2(u1 − u2)δ
dΓ

dt
. (4.2)

Here, ui is the axial velocity in the ith vortex segment, δ and dΓ/dt are the characteristic
length scale of the reconnection region and circulation transfer rate between the two
segments. Equation (4.2) suggests that, when the axial flows in the two interacting vortices
have the same strength, H will remain unchanged during reconnection – consistent with
what was observed by Yao & Hussain (2021) for the symmetrical collision of two vortex
rings. Once there is a difference between axial flows within the two interacting vortices, H
would change during reconnection. This point is further demonstrated in Appendix C by
considering the asymmetric collision of two slender vortex rings. In addition, the rate of
change of H is proportional to the circulation transfer rate (i.e. dΓ/dt) and the difference
in axial velocity (i.e. u1 − u2) – agreeing with the more rapid increase of H at higher
Re (figure 3d). This can also be explained by considering the sketch in figure 7(a). The
difference between the axial velocities in the two vortex tubes results in a non-zero ωz,
which, together with the vorticity gradient ∂ωx/∂y, yields positive helicity dissipation hd –
predominant −νωz∂ωx/∂y. Furthermore, hd increase at higher Re due to the much stronger
vorticity gradient ∂ωx/∂y (Yao & Hussain 2020b). Zhao & Scalo (2021) demonstrated
that, at low Re, (4.2) can successfully connect the change of H with the reconnection
process, and that, at high Re, the correlation between helicity changes and circulation
transfer decreases due to the complex nature of reconnection (Kerr 2018a; Yao & Hussain
2020b, 2021).

To elaborate on the discussion above, figure 8 shows the evolution of flow structures
represented by vortex lines colour coded by h for Re = 3000 during reconnection.
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Figure 8. Evolution of flow structures represented by vortex lines shaded with helicity density h = u · ω for
Re = 3000 during reconnection: (a) t∗ = 3.52, (b) t∗ = 4.04 and (c) t∗ = 4.37. Note that the bottom row shows
the corresponding zoomed-in view of the reconnection region.

The vortex lines in the left ring are more twisted – consistent with the fact that the
magnitude of h is larger. As the two vortex rings closely touch, the vortex lines near the
periphery start to cut and connect. The reconnected vortex lines form cusps and rapidly
recede away from the reconnection site by their sharp curvature-driven self-induction –
similar to that observed for symmetrical anti-parallel vortex reconnection (Melander &
Hussain 1988; Kida & Takaoka 1994). Successive reconnected vortex lines are similarly
laid on top of each other and combine to form progressively stronger bridges. As in
reconnection of anti-parallel vortex tubes with axial flows, the two bridges are not
symmetric. In addition, due to compression, the reconnection vortex lines in the top bridge
are so close that they can reconnect among themselves to form new loops. Furthermore,
the induced velocity of the bridges continuously stretches the unreconnected threads,
straightening the initially kinked and twisted vortex lines (as sketched in figure 7b) and
causing the loss of h there (mainly in the form of twist). Since structures in this region are
predominantly associated with −h before reconnection, their more rapid decrease during
reconnection yields an overall increase of H.

944 A41-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

53
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.532


J. Yao, W. Shen, Y. Yang and F. Hussain

–1

0

1

2

3

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

5 6 7 8 9 10 11 12

6 8 10 12 6 8 10 12 6 8 10 12
–1..0

–0.5

0

0.5

1.0

H
>
, 
H

<
H
d>
, 
H
d<

t∗ t∗ t∗

(a)

(b) (c) (d )

Figure 9. (a) The helicity for the top LR H> (dash-dotted ) and bottom TR H<(t) (dashed) at different Re; and
the corresponding helicity dissipation H>

d (t) (dash-dotted) and H>
d (t) (dash) for (b) Re = 2000, (c) Re = 3000

and (d) Re = 4000. Note that, in (a), the solid lines represent the global helicity H; and in (b–d), the solid lines
denote the global helicity dissipation Hd , and the square symbols correspond to the time derivative of H (the
left-hand side of (3.1)).

4.3. Post-reconnection
The evolution of H after reconnection is complicated and can be better explained by
examining the LR and TR, separately. Figure 9(a) shows the helicity for the top H>(t)
(i.e. LR) and bottom H<(t) (i.e. TR) parts, defined as

H>(t) =
∫ π

zs

〈h〉 dz, H<(t) =
∫ zs

−π

〈h〉 dz, (4.3a,b)

where zs represents the separation location between the LR and TR (denoted by the dashed
lines in figure 4). In addition, figure 9(b–d) shows the corresponding helicity dissipation
H>

d (t) and H>
d (t) for Re = 2000, 3000 and 4000, respectively.

As the TR predominately has positive h, H< is positive. At low Re (i.e. 2000), it
continuously decreases with time, and the corresponding H<

d remains negative for all
times. Due to increased generation of h before and during reconnection, the magnitude
of H< grows with Re. In addition, the decay rate of H< decreases with increasing Re at
early times (i.e. t∗ < 8), which is mainly due to the suppressed viscous effect. For all Re
cases, H<

d becomes rather small when t∗ > 8. Interestingly, it becomes slightly positive at
Re = 4000. As a result, H< experiences a minor increase, which, as discussed in Scheeler
et al. (2014) and Yao et al. (2021), is mainly due to the effect of writhe and twist helicity
conversions presented for a coiled vortex ring.

As the LR is closely cuddled, its helicity evolution is more complex than that of the TR.
The H> is always negative and decreases initially – suggesting that the contribution of −h
in LR becomes larger. Then, H> increases and asymptotically approaches zero at the late
time. In addition, the growth rate increases with Re – implying a more rapid dissipation
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Figure 10. Evolution of flow structures represented by (a–d) vortex lines shaded with helicity density
h = u · ω and (e–h) helicity dissipation density hd for the TR after reconnection at Re = 3000. Note that
red and blue colours denote positive and negative of 5 % of the maximum value, and the transparent (grey)
isosurface represents |ω| = 0.04ω0.

of negative h at higher Re. By comparing H with H>, it is clear that the decrease and
increase of H immediately after reconnection (i.e. 4.5 < t∗ < 6) is mainly caused by the
LR. During 6 < t∗ < 12, the decay rates of H> and H< is comparable – resulting in a
quasi-steady evolution of H. After that, the H> almost decays to zero, and the evolution of
H is mainly governed by H<, which continuously decays with time (figure 3c).

Figure 10(a–d) further shows the evolution of vortex lines (colour coded by the helicity
density h ) in TR at several instants after reconnection for Re = 3000 with figure 10(e–h)
displaying the corresponding helicity dissipation density hd. Note that helicity dissipation
is indicated by negative (blue) and positive (red) of hd in the +h and −h regions,
respectively. As the TR is mostly associated with +h, vortex lines are mostly right-hand
twisted. In addition, the TR is coiled near the two reconnected sites (indicated by A and
B in figure 10a) with h being positive or negative on each side of the kink structure –
resulting from reconnection of two oppositely polarized vortex segments (figure 8). Due to
the induced velocities of the kinks, the TR rotates counter-clockwise. In addition, the kink
structures also travel counter-clockwise along with the TR through folding/unfolding. The
±h patches, which propagate along the ring, decay with time due to viscous dissipation.
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Figure 11. Evolution of the LR represented by (a–c) vortex lines shaded with helicity density h = u · ω and
(d–f ) vorticity isosurface shaded by ωy helicity dissipation density hd at Re = 3000.

Correspondingly, the vortex lines progressively become untwisted. The regions with strong
h have intense hd of opposite sign – indicating that significant helicity dissipation occurs
in the strong helical region. Initially, the region with −hd is much larger than that of +hd
(figure 10e) – consistent with an overall decrease of H< in the TR (figure 9a). The region
with positive +hd enlarges at late times (i.e. t∗ = 8.5), and becomes comparable to that of
−hd – suggesting the decrease of dissipation of H>. At late times, both ±h decrease, and
hd is mainly localized in the kink region.

Figures 11(a)–11(c) show the evolution of LR represented by vortex lines colour coded
by the helicity density h at several instants immediately after reconnection for Re = 3000.
The LR, which results from the recombination of the top parts of the initial vortex
rings, is closely touched. The vortex lines inside are strongly twisted, predominately near
the ends (i.e. the bridges). In addition, they are oppositely twisted on each side of the
bridges. As h is small near the tipping points, the vortex lines there are almost parallel.
Due to the self-induction of the curved vortex segments, the LR continuously undergoes
reconnection. However, different from what is typically observed for elliptic vortex rings
or colliding vortex rings (Kida & Takaoka 1988; Yao & Hussain 2020c), here, the two
vortex segments collide and reconnect in an asymmetric manner.

The process can be better illustrated by the top view of the vorticity isosurface colour
coded by ωy shown in figure 11(d–f ) and with adjoining illustrated sketches in figure 12.
The two vortex tubes collide with a slight offset, and then the top of one vortex flips over
the other (figures 10d and 12b). Due to skew symmetry, the vortex dipole at the centre
(I in figure 11d) is still symmetric but becomes asymmetric near the end (II in figure 11d).
In particular, the core of the left vortex is deformed. Consequently, the initially straight
vortex lines become curved, and their induced velocity causes the vortices to be polarized
(figure 12c): h is positive near the centre and negative near the side – consistent with what
is shown in figure 11(b). In addition, it further pulls one vortex to the top of the other one –
causing the overall twist of the LR (figure 11e). In addition, the centre region rotates
clockwise – akin to what was observed by Yao & Hussain (2021) for reconnection of
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Figure 12. Schematic of the asymmetric reconnection of the LR.
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Figure 13. Evolution of flow structures represented by vorticity isosurface at 4 % of maximum initial
vorticity (|ω| = 0.04ω0) colour coded by helicity density h: (a) t∗ = 6.2 and (b) t∗ = 7.0.

t∗ = 4.5 t∗ = 5.0 t∗ = 5.5 t∗ = 6.2 t∗ = 7.0

x

y

(a) (b) (c) (d) (e)

Figure 14. Isosurface of helicity dissipation density hd for the LR at Re = 3000: (a) t∗ = 4.5, (b) t∗ = 5.0,
(c) t∗ = 5.5, (d) t∗ = 6.2 and (e) t∗ = 7.0. Note that red and blue colours denote positive and negative of 5 %
of the maximum value.

anti-parallel co-polarized vortex tubes. The positive h around the tipping point is rapidly
dissipated through reconnection, which is consistent with a decrease of H> observed in
figure 9. Consequently, the LR becomes predominantly −h (figure 10c), and its subsequent
break up due to instability (figure 13) results in the loss of −h; hence, a decrease of H>.

Finally, figure 14 shows the isosurfaces of helicity dissipation density hd for the LR at
several instants. Initially, ±hd appears alternatively – which is opposite to the distribution
of h shown in figure 11. Then, as the central region becomes right-hand twisted, hd
becomes predominantly negative – consistent with the decrease of H>. At the late time,
regions with +hd increase and become comparable to that of −hd. Both ±hd occurs at
small scales – implying the existence of a forward helicity cascade along with the energy
cascade.
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Figure 15. Evolution of extracted vortex axis (shaded with centreline helicity density hc = u · T ) for
(a) vortex rings before reconnection and (b) the TR after reconnection at Re = 3000.

5. Topological aspects of helicity dynamics

5.1. Properties of vortex centrelines
In this section, we examine the topological dynamics of the vortex links in terms of the
vortex core centrelines (axes). Following Yao et al. (2021), we use the method developed
by Levy, Degani & Seginer (1990) based on the normalized helicity density u · ω/(|u||ω|)
and implemented in Paraview by Sadlo et al. (2019) to identify vortex centrelines. The
method assumes that the angle between the velocity and vorticity vectors is typically
minimal near the axis and can filter out the regions of low vorticity as well as regions of
high vorticity but low velocity (Levy et al. 1990). It has been demonstrated to successfully
extract the vortex axis, except for the period when reconnection occurs and the vortex axis
is hardly defined (Yao et al. 2021). Figure 15 displays the evolution of the axes for two
vortex rings before reconnection and for the TR after reconnection at Re = 3000. Note
that, as the LR after reconnection is closely cuddled with irregular core shape (figure 11)
and rapidly breaks up afterward, its centreline is rather difficult to extract and, therefore,
is not included.

Several interesting quantities can be measured based on the tracked vortex axis. The first
one is the length of the vortex centreline lc. Figure 16 shows the evolution of lengths for the
vortex ring before reconnection and the TR after reconnection (normalized by the initial
length of a single vortex ring 2πR0). Consistent with what was observed by Scheeler et al.
(2014), the length lc(t) before reconnection continuously increases and is almost identical
for different Re. During reconnection, the rate of growth of lc(t) increases with Re, which
is due to a larger vortex stretching at higher Re. After reconnection, lc(t) for the LTR
remains almost constant and, interestingly, is approximately twice the initial length of the
vortex ring.

The moment of vorticity for a vortex knot in a fluid at rest at infinity is related to
the impulse (Batchelor 2000). As a theoretical estimation for the thin vortex filament,

944 A41-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

53
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.532


Helicity dynamics in Hopf link

0.5

1.0

1.5

2.0

2.5

0 2 4 6 8 10 12 2 4 6 8 10 120

0.5

1.0

1.5

2.0
l c(
t)/

(2
π
R 0

)

s z
(t)

/(
2
π
R 02

)

t∗ t∗

(a) (b)

Figure 16. Time evolution of (a) normalized length lc/(2πR0) and (b) the third components of the directed
area enclosed by the vortex centrelines S3 for the vortex ring before reconnection, and LTR after reconnection.

substituting ω dV = Γ dc in (2.2) yields

I = Γ S, (5.1)

where S = ∮
c c × dc/2 is the directed area enclosed by the curve (Wu, Ma & Zhou 2007).

Equation (5.1) provides a geometric way to estimate the momentum by computing the
individual momentum components from direct measurements of the area regions obtained
by planar projections of the vortex axis (Zuccher & Ricca 2019).

The vortex link here has an initial impulse I = (0, 0,
√

2π). Figure 16(b) shows the
evolution of the third component of S, i.e. S3. Note that the other two components are
negligible for all times and hence are not shown. Before reconnection, S3 visually collapses
for all Re cases and slightly increases with time. As I is invariant, the increase of S3 is
mainly due to the decrease in circulation Γ through viscous cross-diffusion. The difference
between the calculated value and the theoretical prediction (based on constant circulation
assumption) is within 1 % for all Re cases. After reconnection, S3 for TR also slightly
increases with time, and is very close to the theoretical value for the whole flow system.
This suggests that the moment of vorticity is mainly carried by the TR – consistent with
the flow visualization in figure 11 showing that the area for the LR projected in the x–y
plane is negligible.

5.2. Centreline helicity
For sufficiently thin vortex tubes with minimal vorticity variation across the cross-section,
the global helicity is encoded completely along the centreline of the vortex tube
(Bretherton 1970; Scheeler et al. 2017). Hence,

Hc =
∑

i

Γi

∮
Ci

u(s) · T (s) ds, (5.2)

where hc = u · T is the centreline helicity density and T denotes the unit tangential vector
along the vortex centreline C. Equation (5.2) provides an easy way for estimating the
helicity of the flow without the need for measuring the full velocity and vorticity fields.
The value of Hc has also been employed to represent the link and writhe helicities, which
is based on the assumption that the twist helicity is small and can be dissipated rather
rapidly, particularly for a very thin vortex (Scheeler et al. 2014).

Figure 17 compares Hc and H for the vortex rings before reconnection and for TR after
reconnection. Note that the circulation Γ is assumed to remain the same as the initial value,
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Figure 17. Time evolution of the centreline helicity Hc (square) and helicity (lines) for the vortex rings before
reconnection and for TR after reconnection at Re = 2000 (red), 3000 (blue) and 4000 (black).

and H in TR is calculated based on (4.3a,b). Before reconnection, Hc is almost identical to
H – confirming that Hc is a reasonably good approximation for H. After reconnection, Hc
experiences oscillations, which are due to the growth and annihilation of the axial flows
along the vortex ring. In addition, the agreement between Hc and H deteriorates with
increasing Re, which, as discussed in Yao et al. (2021), is mainly due to the following
two reasons. First, reconnection induces strong core deformation near the interaction
region, such as forming vortex sheets. Consequently, the vortex core becomes irregular
with a substantial vorticity variation, especially at higher Re. Second, the threads, which
wrap around the TR, are polarized and contain a certain amount of h, which is somehow
excluded by Hc. Therefore, Hc cannot be employed to approximate H immediately after
reconnection. Due to viscous diffusion, the vortex core of TR would become regular (i.e.
circular) again, and the threads become weaker, Hc would eventually approach H. But the
time it takes seems to significantly increase with Re.

5.3. Gauss linking and self-link numbers, writhe and torsion twist
Here, we attempt to provide a topological interpretation of the helicity dynamics. The
definition of the geometric and topological quantities presented in (1.1) are summarized
here. The Gauss linking number between the vortices i and j is obtained by the double
integral over the axes

Lk,ij = 1
4π

∫
Ci

∫
Cj

X i − X j

|X i − X j|3 · (dX i × dX j), (5.3)

where X i and X j denote the position vectors of a point on Ci and Cj, respectively. The
total Gauss linking number Lk, which takes integer values only, provides a measure of the
degree of linking of two (or more) disjoint vortices.

The writhe is defined as

Wri = 1
4π

∫
Ci

∫
Ci

X i − Y i

|X i − Y i|3 · (dX i × dY i), (5.4)

where X i and Y i denote two distinct points on the same vortex axis Ci. Note that Wr,i
is a global geometric property of Ci and is always zero if Ci is a plane curve (Zuccher
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Figure 18. Time evolution of total Gauss link (Lk), writhe (Wr), torsion twist (Tt) and self-link (Ls) for
(a) Re = 2000 and (b) 4000.

& Ricca 2017). Since writhe takes into account distortion, it is often a good indicator of
three-dimensional folding of the vortex.

The twist is defined by the rate of rotation of the ribbon unit vector around the
curve Ci, and it can be further decomposed into torsion Tt and intrinsic twist Ti, given
respectively by

Tt = 1
2π

∫
Ci

τ(s) ds, (5.5)

and

Ti = 1
2π

∫
Ci

ξ(s) ds, (5.6)

with τ(s) and ξ(s) denoting local torsion and the rate of azimuthal change along Ci. Note
that the sum of Wr and Tt is the self-linking number Ls, which takes integer values only
(Pohl 1968).

Figure 18(a,b) shows the total Gauss link (Lk), writhe (Wr), torsion twist (Tt) and
self-link (Ls) for the vortex links before reconnection and the LTR after reconnection at
Re = 2000 and 4000, respectively. As the numerical computation of writhe and torsion is
very sensitive to small-scale noise, a local smoothing filter similar to that used in Scheeler
et al. (2014) and Yao et al. (2021) is applied to the raw extracted vortex centreline. Initially,
Lk is equal to two and remains unchanged before reconnection, as Lk,12 = Lk,21 = +1. In
addition, Wr is initially zero and slightly decreases before reconnection, which is consistent
with what was observed by Zuccher & Ricca (2017) for quantum vortex links. During this
period, Tt is equal to −Wr; consequently, Ls remains zero. In addition, the variation of Wr
and Tt only weakly depends on Re.

During reconnection, when the vortex rings undergo dramatic changes in topology,
all these quantities are expected to experience abrupt changes. As two vortices untie,
Lk decreases to zero after reconnection. The Wr value for TR becomes positive and
slowly varies with time, and Tt also jumps through reconnection; consequently, Ls for
TR becomes 2 after reconnection. Note that the integer Ls jumps discontinuously through
±1 as a curve passes through a configuration containing a point of inflexion (Moffatt &
Ricca 1992). Owing to the bi-symmetry of the vortex links, the curve deformation during
the reconnection involves passage through two inflexional configurations. This explains
why Ls becomes 2 for the TR. For the same reason, Ls for the LR is also speculated
to be 2 – causing a doubling of the total linking number (Lk + Ls) during reconnection.
This argument can be confirmed in Appendix B for the smaller angle case (i.e. α = 30◦).
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Figure 19. Comparison between H/Γ 2 and the sum of Gauss link and writhe (Lk + Wr) for (a) Re = 2000
and (b) 4000.

As Re increases, Wr mildly increases, and Tt decreases. Note that Tt for TR further jumps
around t∗ ≈ 7, which causes Ls to increase from 2 to 4. As the numerical calculation of Tt
(and also Ls) is very sensitive at the inflexional configuration for which Tt is discontinuous
by ±1, the jump of Tt suggests that additional inflexion points develop in the TR, which
might be due to the influence of the other structures. Hence, in viscous flows, Tt (also Ls)
is also not conserved during the evolution.

Figure 19(a,b) shows the sum of Lk and Wr for the vortex links before reconnection
and for the TR after reconnection at Re = 2000 and 4000, respectively. Here, H/Γ 2 is
also included for comparison. The behaviour of Lk + Wr here is similar to that observed
in experiments in classical fluids by Scheeler et al. (2014) and also simulations in
superfluids by Proment & Krstulovic (2020). Before reconnection, Lk + Wr continues
to decrease. Although we are unable to resolve Wr during reconnection and that for the
LR, it seems that the evolution of Lk + Wr is continuous through reconnection. It is
confirmed in Appendix B for the α = 30◦ case, where Lk + Wr for the total two rings
varies continuously through reconnection – consistent with the claim made by Laing,
Ricca & Sumners (2015).

From figure 19, it is clear that that twist, which can be approximated as the difference
between H/Γ 2 and Lk + Wr, is the main contributor to the complex helicity dynamics
observed in figure 3. As both the experimental work by Scheeler et al. (2014) and the
numerical work by Kivotides & Leonard (2021) only considered Lk + Wr, the conservation
of helicity is based on the assumption that the twist generated through reconnection is
small and can be rapidly damped through viscous dissipation. From our DNS results and
also the previous works by Zhao et al. (2021) and Zhao & Scalo (2021), this assumption is
trivially invalid. The contribution of Tw (especially Ti) to H is very significant during and
after reconnection and enlarges with increasing Re. Hence, it is expected that twist would
play a more significant role at very high Re.

6. Concluding remarks

The DNS of two slender vortex rings in Hopf-link configuration is performed at three
different Re (i.e. 2000, 3000 and 4000). The global helicity H, although remaining constant
before reconnection, increases during reconnection, followed by a rapid decay – both the
growth and decay rates increase with Re. Before eventually decaying at the very late time,
H further increases after reconnection and reaches an almost quasi-plateau at high Re.
In addition, the asymptotic value of the plateau increases with Re, suggesting that H is
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not conserved at very high Re – contrasting with the previous findings by Scheeler et al.
(2014) and Kivotides & Leonard (2021). We further discover that significant amounts
of positive and negative twist helicities are simultaneously generated before and during
reconnection, and the difference in their decay rates is the main reason for the increase of
H during reconnection. Different from what was observed for a trefoil knotted vortex (Yao
et al. 2021; Zhao & Scalo 2021), H at higher Re experiences strong oscillation, which is
attributed to the subsequent reconnection and break-up of the closely cuddled LR.

The topological aspects of the helicity dynamics are also examined. The centreline
helicity, calculated as Hc = ∑

i Γi
∮
Ci

u · T (s) ds, is found to be a good approximation
for H only before reconnection. It deviates from H after reconnection, particularly at
high Re. The writhe, Wr, is initially zero, continuously decreases before reconnection and
experiences a sudden jump for the newly formed ring immediately after reconnection.
However, the sum of link and writhe (Lk + Wr) seems to vary continuously during
reconnection – implying that link is mostly converted to writhe during reconnection. But
during this conversion process, significant amount of twist (Tw) is generated. Our results
also clearly show that Tw, which continuously increases with Re, plays a significant role
in the helicity dynamics, particularly at very high Re. It is worth mentioning that the
initial configuration considered here is too idealized such that two reconnections occur
simultaneously due to symmetry. It would be interesting to examine how the flow evolution
and helicity dynamics are altered in a more complicated geometry, which is more generic
in real flows.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2022.532.
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Appendix A. Grid convergence analysis

We provide here a grid sensitivity analysis for Reynolds numbers Re = 2000 and 4000. For
each Re, three different grid resolutions are tested, namely, N3 = 5123, 7683 and 10243 for
Re = 2000; and N3 = 10243, 15363 and 20483 for Re = 4000. Figures 20(a) and 20(b)
show the time evolution of enstrophy Ω and helicity H for these cases. The good collapse
of Ω indicates that grid resolutions we employed in the main text are sufficient to capture
the small scales generated during the reconnection process. In addition, good agreements
for H among different resolutions are also observed, particularly at earlier times. The small
difference at the late times after reconnection might be due to the insufficiency in capturing
the strong axial velocity associated with the twisted structures. Furthermore, to examine
the domain size effect, an additional simulation with domain size (3π)3 is performed for
Re = 2000 with N3 = 10243, which yields exactly the same results as the smaller domain
case – confirming the adequacy of the domain size chosen in the main study.
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Figure 20. Time evolution of (a) enstrophy Ω and (b) global helicity H for Re = 2000 (red), 4000 (blue)
with different grid resolutions and domain sizes.

Appendix B. Evolution of the link of vortex rings at a different angle

In this section, we consider the evolution of the link of two vortex rings at a smaller angle
(i.e. α = 30◦ in figure 1). Two different Re (i.e. 2000 and 4000) are considered, and the
grid resolutions for each Re are identical to those used in the main text. Figure 21(a) shows
the time progression of flow structures visualized based on vorticity magnitude isosurface
|ω| = 0.04ω0 for Re = 2000. Similar to figure 2, the two rings become perturbed and
become locally anti-parallel before reconnection. Note that, as the two rings are initially
closer, the reconnection happens earlier than in the α = 90◦ case. After two simultaneous
reconnections, the vortex link unties to form two distinct coiled vortex rings – quite
different from that for the α = 90◦ case. These two rings then move upward as they
rotate. The whole process is quite similar to that observed in Yao et al. (2021) for the
trefoil knotted vortex. Figure 21(b) shows the corresponding time progression of the
vortex centrelines, which captures well the evolution of the vortex rings before and after
reconnection.

The topological quantities (i.e. Lk, Wr, Tt and Ls) calculated based on the extracted
vortex centrelines are shown in figure 22(a,b) for Re = 2000 and 4000, respectively.
Before reconnection, the evolution of all these quantities is quite similar to that for the
α = 90◦ case. After reconnection, Lk again becomes zero. The value of Wr for both
rings becomes positive and slowly varies with time. In particular, similar to what is
discussed in Yao et al. (2021), Wr continuously increases/decreases for the LR/TR – as
the LR and TR are being stretched and compressed, respectively. In addition, the TR
has a larger Wr, which is consistent with what is shown in figure 21 where the TR has
more three-dimensional folding. The value of Tt also abruptly increases for both rings
during reconnection, but this time, Tt for the LR is larger than that of the TR. Hence, Tt
is not conserved through reconnection, which is quite different from what was shown in
Laing et al. (2015) for the ideal anti-parallel reconnecting segments. Consequently, after
reconnection, Ls(≡ Wr + Tt) for each ring remains constant all the time and is equal to
the value of Ls. This suggests that the total linking number (Lk + Ls) doubles during
reconnection, which is consistent with our previous findings for a trefoil knotted vortex
(Yao et al. 2021). Note that whether such doubling of Lk + Ls through reconnection is
universal for various configurations needs further investigation.

Finally, figure 23 compares H/Γ 2 with Lk + Wr at Re = 2000 and 4000. Different from
the α = 90◦ case, H slightly increases before reconnection, which is probably due to the
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Figure 21. Time evolution of flow structures represented by (a) vorticity isosurface |ω| = 0.04ω0 (shaded with
helicity density h = u · ω) and (b) vortex centrelines (shaded with centreline helicity density hc = u · T ) for
vortex link with α = 30◦ at Re = 2000.
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Figure 22. Time evolution of Gauss link (Lk), writhe (Wr), torsion twist (Tt) and self-link (Ls) for vortex link
with α = 30◦ at (a) Re = 2000 and (b) 4000.

strong mutual interaction of the vortex rings as they are closer at smaller α. Similar to
what is observed for the α = 90◦ case, H/Γ 2 rapidly grows during reconnection and then
decreases – suggesting that the increase of H through reconnection is quite universal.
However, the rapid decay of H immediately after reconnection observed for the α = 90◦
case does not occur here – further implying that it is mainly due to the evolution of the
LR. The value of Lk + Wr also increases at the earlier time and becomes slightly higher
than H, indicating the generation of negative twist helicity. It then decreases before the
reconnection and rapidly drops during the reconnection. And the variation of Lk + Wr
seems to be continuous – indicating that the link is mainly converted to writhe during
the unlinking process. The decay of Lk + Wr slightly decreases with increasing Re. After
reconnection, the variation of Lk + Wr with time becomes limited and only has some slight
oscillations, which is consistent with what was observed in Yao et al. (2021) for the trefoil
knotted vortex case. Again, the difference between H/Γ 2 and Lk + Wr increases with
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Figure 23. Comparison between H/Γ 2 (solid line) and the sum of Gauss link and writhe Lk + Wr (square)
for vortex link with α = 30◦ at Re = 2000 (red) and Re = 4000 (black).

Re – suggesting the more significant generation of Tw at higher Re. Due to the dissipation
of Tw, H/Γ 2 and Lk + Wr would eventually collapse, but the time it takes becomes much
longer at higher Re.

Appendix C. Helicity dynamics in asymmetric reconnection of colliding vortex rings

We demonstrate that the symmetry breaking in the generation of ±h during asymmetric
vortex reconnection causes significant helicity variation, by comparing DNS results
in symmetric and asymmetric collision of two vortex rings. The symmetrical initial
configuration (figure 24a) is set by the parameter equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
cx,±(ζ ) =

√
2

2
cos(ζ ) ∓ ε,

cy,±(ζ ) = − sin(ζ ),

cz,±(ζ ) = ±
√

2
2

cos(ζ ),

(C1)

where ε = 0.85 denotes the separation distance between two rings. The asymmetric initial
configuration (figure 24b) is set by slightly rotating a ring by θ = π/8 around a diameter
on the x − z plane. The parametric equations for the rotated ring are⎧⎪⎪⎪⎨

⎪⎪⎪⎩
cx,+(ζ ) =

√
2

2
[cos(ζ ) + sin(ζ ) sin(θ)] − ε,

cy,+(ζ ) = − sin(ζ ) cos(θ),

cz,+(ζ ) =
√

2
2

[cos(ζ ) − sin(ζ ) sin(θ)].

(C2)

The other geometric parameters in these two cases are the same as those for the Hopf link,
i.e. R0 = 1, Γ0 = 1 and σ = 1/(16

√
2π) ≈ 0.025. The DNS with the initial conditions in

(C1) and (C2) is performed at Re = 2000 with N3 = 7683 grid points.
The time evolutions of the symmetric and asymmetric vortex ring collisions in

figure 25(a,b) look quite similar. The two unlinked vortex rings are reconnected into a
coiled vortex ring. During the reconnection, two bridges separate outwards, along with
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Figure 24. Initial (a) symmetric and (b) asymmetric configurations of a pair of vortex tubes represented by
the vorticity isosurface at 4 % of maximum initial vorticity.

threads stretching upwards. On the other hand, the subtle difference in the structural
evolutions between symmetric and asymmetric cases is compared in figure 25(c,d),
focusing on the small region of the bridge and adjacent threads. We can clearly observe
the uneven generations of h for the main vortex tube and threads during the asymmetric
reconnection. In particular, the pair of threads generate strong opposite helicity densities
with significantly different magnitudes. On the contrary, the symmetry is preserved in the
generation of ±h during the symmetric reconnection. Figure 26 plots the time evolution
of H, H+ and H− in symmetric and asymmetric reconnections. Similar to figure 6 for
the Hopf link, both |H+| and |H−| surge during the reconnection. In the symmetric
reconnection, the identical growths of |H+| and |H−| cancel each other, so H is conserved.
In the asymmetric reconnection, the relatively small difference in the growths of |H+| and
|H−| in the skewed collision leads to the notable fluctuation of H.

Figure 27(a,b) further shows the difference for the topological helicity decomposition
in symmetric and asymmetric reconnections, respectively. In the former case, the positive
and negative writhing or twisting of the perfectly symmetric vortex tube is completely
cancelled out in the evolution. In the latter case, in contrast, the contacting vortex tubes are
not strictly anti-parallel, leading to the changes in writhing and twisting and the fluctuation
of H.

Appendix D. Effects of the vortex tube thickness

It is well known that the tube thickness σ of the vortex ring affects its self-induced velocity
and, hence, its evolution. As shown in Yao & Hussain (2020b), σ also plays an important
role in the reconnection process, i.e. the reconnection time and rate. Most importantly,
the decay rate of helicity is strongly influenced by σ . Therefore, in this appendix, we
examine the effect of σ on the helicity evolution of the linked vortex rings by conducting
an additional simulation with smaller initial tube thickness (i.e. σ0 = 1/(32

√
2π)) at Re =

2000 on N3 = 15363 grid points.
Figure 28(a) compares the evolutions of H, H+ and H− between the σ0 = 1/(16

√
2π)

and 1/(32
√

2π) cases. It is clear that all these quantities follow similar trends between
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Figure 25. Time evolution of the isosurface of |ω| = 0.04ω0 shaded by the helicity density in (a) symmetric
and (b) asymmetric cases; close-up top views of the vortex structure after (c) symmetric and (d) asymmetric
reconnections at t∗ = 2.
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Figure 26. Time evolution of (a) H (solid line), (b) H+ (dashed line) and H− (dash-dotted line) for
symmetric (black) and asymmetric (red) cases. The circles denote −H−(t).

these two cases, with the only difference being that they surge earlier for the smaller tube
thickness (i.e. σ0 = 1/(32

√
2π)) case, which is due to a larger convective velocity and,

hence, an earlier reconnection. A good agreement between these two cases can also be
observed for the Lk + Wr, particularly before reconnection (figure 28b) – suggesting that
the helicity dynamics is less sensitive to σ0.

Note that the similar evolution of helicity between these two different σ0 cases is
somehow not unexpected. In viscous flows, the vortex tube thickness generally grows

as σ =
√

σ 2
0 + 2νt. Figure 29 shows the time evolution of σ for different σ0 and ν

cases. For initially small tube thickness σ0, the viscous effect soon becomes the dominant
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Figure 27. Time evolution of H/Γ 2 and the topological helicity decomposition in (a) symmetric and
(b) asymmetric reconnection cases.
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Figure 28. Time evolution of (a) H (solid line), H+ (dashed line) and H− (dash-dotted line) and (b) Lk + Wr
(square) for σ0 = 1/(16

√
2π) (red) and σ0 = 1/(32

√
2π) (red) cases at Re = 2000.
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Figure 29. Time evolution of the vortex tube thickness σ for different σ0 and ν cases.

contribution to σ for the large ν case. Consequently, the difference of σ between different
σ0 becomes smaller. Interestingly, at ν = 1/2000, the evolution of σ for σ0 = 1/(32

√
2π)

is also very close to the case with zero initial tube thickness (i.e. σ0 = 0), which implies
that the helicity evolution at Re = 2000 would still be quite similar to that shown in
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figure 28 for even smaller σ . Figure 29 also shows that the relative difference in σ

increases with decreasing ν – suggesting that the flow evolution and the associated helicity
dynamics between different σ0 might be quite different at high Re. However, due to the
spatial requirement for resolving the fine vortex core and small scales generated during
reconnection, it is currently rather challenging to employ DNS to exam it, but it is definitely
a subject that is worth pursuing in the future.
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