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It is well-known [3; V.I3.7] that each irreducible complex character of a finite group
G is rational valued if and only if for each integer m coprime to the order of G and each
g e G, g is conjugate to gm. In particular, for each positive integer n, the symmetric group
on n symbols, S(n), has all its irreducible characters rational valued. The situation for
projective characters is quite different. In [5], Morris gives tables of the spin characters of
S(n) for n =£ 13 as well as general information about the values of these characters for any
symmetric group. It can be seen from these results that in no case are all the spin
characters of S(n) rational valued and, indeed, for n s= 6 these characters are not even all
real valued. In section 2 of this note, we obtain a necessary and sufficient condition for
each irreducible character of a group G associated with a 2-cocycle a to be rational
valued. A corresponding result for real valued projective characters is discussed in section
3. Section 1 contains preliminary definitions and notation, including the definition of
projective characters given in [2].

1. Let G be a finite group and H be a representation group for G so that H has a
subgroup A such that

(i) A « Z ( H ) n f f ; (ii) G = H/A and (Hi) A = H2(G,C*),

where C* denotes the set of non-zero complex numbers. Let $: G —»H/A be an
isomorphism fixed throughout and, for each g e G, let r(g) be an element of H such that

0(g) = r(g)A

with the convention that r(l) = l. By Proposition 1.1 of [2], we may suppose that the
transversal {r(g) | g € G} is chosen to be conjugacy preserving in the sense that r(x) is
conjugate to r(y) in H whenever x is conjugate to y in G.

Given x, y e G, there exists an element A(x, y) of A such that

r(x)r(y) = r(xy)A(x, y),

where

A ( l , g ) = l = A(g,l),

for all g e G. Now let A be a homomorphism from A to Cx and define a : G x G - » C x b y

a(x, y) = A(A(x, y))

for all x, y e G. It follows that a is a 2-cocycle of G satisfying

a ( l , g ) = l = a(g,l),
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for all g € G. We refer to a as the special cocycle associated with A. Now if P is a
projective representation of G with special cocycle a, the map D on H denned by

D(ar(g)) = A(a)P(g),

for all a e A and all g e G, is a linear representation of H. We say that D linearizes P. The
projective character £ of P is denned by

= trace P(g),

for all gsG, so that if D linearizes P and x is the character of D,

for all geG.
An element g of G is said to be a-regular if

a(g, x) = a(x, g),

for all xe CG(g). It is easily checked that an element g of G is a-regular if and only if
each conjugate of g is a-regular. The following result is Corollary 4.6 of [2].

PROPOSITION 1. Let G be a finite group and a be a special cocycle. An element g o / Gis
a-regular if and only if there exists an irreducible a-projective character £ such that £(g) 7̂  0.

2. In this section we obtain a necessary and sufficient condition for the character of
each irreducible a-projective representation of a group G to be rational valued.

THEOREM 2. Let G be a finite group and a be the special cocycle associated with k.
Each irreducible a-projective character of G is rational valued if and only if for each
a-regular geG and each integer m greater than 1 and coprime to \G\,

(i) g is conjugate to gm, and
(ii) a(g, g)a(g, g 2 ) . . . a(g, g"1"1) = 1.

Proof. For convenience, we will denote

A(g, g)A(g, g 2 ) . . . A(g, g—>)

by /A(g, m) and

«(g, g)«(g, g 2 ) . . . a{g, g"1"1)

by /a(g, m) so that

fa(S,m) = \(fA(g, m)).

Suppose firstly that conditions (i) and (ii) hold. Let P be an irreducible a-projective
representation of G with character £ and suppose P is linearized by the irreducible
representation D of H. By a result of Alperin and Kuo [3;V.24.5], H has exponent
dividing |G|. Thus if w is a primitive |G|-th root of unity, for any geG, the eigenvalues of
D(r(g)) (=P(g)) are powers of w. By Proposition 1, £(g) = 0 if g is not a-regular, so in
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order to show that £ is rational valued, we need only consider the case where g is
a-regular.

An easy induction argument shows that for any positive integer m > 1,

r(gr=fAg,m)r(gm).
Thus

P(g)m=D(r(g))»

= D(fA(g,m)r(gm))
= fa(g,m)D(r(gm))
= /«(g,m)P(gm).

Hence if g is a-regular and m is coprime to \G\, condition (ii) implies that P(g)m = P(gm).
It then follows that if coa\..., (oa" are the eigenvalues of P(g), then P(gm) has eigen-
values wm<\ . . . , wma". Therefore

£(gm) = I <oma> = ( t <*>") Bm = ( | (g))e m
i = l M = l '

where 6m is the automorphism of Q[w] over Q defined by

Condition (i) together with the fact that | is a class function implies that £(g) is fixed by
each element of the Galois group of Q[w] over Q and so ^(g) is rational.

Conversely, suppose that each a-projective character of G is rational valued. Let g
be an a-regular element and m > 1 be an integer coprime to \G\. Let $ be the character of
an a-projective representation P of G and suppose P is linearized by D. Then

) = D(r(g'"))

= D(/A
1(g,m)r(gD

Thus
(1)

By Proposition 1, there is an irreducible a-projective character £0 such that |0(g)7t0.
Since £0(g

m) a nd £o(g) a r^ rational and /~1(g, m) is a root of unity, equation (1) implies
that f~x(g, m) is either 1 or —1.

Suppose fa(g,m) = —l. Equation (1) would then imply that £(gm) = -£(g) for all
irreducible a-projective characters £. Since g is a-regular, the second orthogonality
relation [2; Lemma 4.4] gives
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where the summation is over all irreducible a-projective characters of G. Also

| G ( g ) | ,

which is impossible. Therefore fa(g, m) = 1 establishing (ii). Equation (1) then implies that
£(gm)= £(g) for all irreducible a-projective characters of G so that g is conjugate to gm as
required.

EXAMPLES, (i) Let G be a group with a special cocycle a such that G has precisely
one irreducible a-projective character. Thus G has precisely one a-regular conjugacy
class which therefore consists of the identity element of G. Proposition 1 now implies that
the irreducible a-projective character of G is rational valued.

In [1], De Meyer and Janusz construct examples of such a group G. In their
terminology, a group H is of central type if H has an irreducible linear character x with

= \H:Z(H)\.

Theorem 1 of [1] asserts that if H is of central type, then there is a cocycle j3 on
G = H/Z(H) such that G has precisely one irreducible j8-projective representation. Since
any cocycle /3 is cohomologous to a special cocycle a and the number of irreducible
j8-projective representations is equal to the number of irreducible a-projective represen-
tations, the groups constructed in section 4 of [1] provide examples of groups all of whose
irreducible a-projective characters are rational valued.

(ii) All known examples of groups of central type are soluble. In [6] Morris gives
projective character tables for various exceptional Weyl groups. Among these, Es

provides an example of a non-soluble group with a cocycle a for which each irreducible
projective character associated with a is rational valued.

3. In this section we prove an analogous result to Theorem 2 for real valued
projective representations.

THEOREM 3. Let G be a finite group and a be a special cocycle. Each irreducible
a-projective character of G is real valued if and only if for each a-regular element g of G

(i) g is conjugate to g"1, and
(ii) a (g ,g- 1 )=l .

Proof. Suppose conditions (i) and (ii) hold. Let P be an irreducible a-projective
representation of G with character £ and suppose P is linearized by D. By Proposition 1
we only need consider a-regular elements of G. However, for any geG,

Thus condition (ii) implies that if g is a-regular P(g~l) = PigY1 and so

DWg-1))

Hence, if \ ' s t n e character of D,
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and so £(g 1 ) = £(g)- Since g is conjugate to g 1 and £ is a class function, we deduce that
|(g) is real.

Conversely, suppose every irreducible a-projective character of G is real valued.
Then for any g e G,

= «(g,g-1)l(g). (2)

Now let g be a-regular and £0 be an irreducible a-projective character of G such that
£o(g) i" 0- Equation (2) implies that a(g, g"1) is a real valued root of unity and so is either
1 or - 1 . However, if a(g, g~1) = - l , as in the proof of Theorem 2, we would obtain a
contradiction to the second orthogonality relation. Therefore a(g, g~1) = 1 and equation
(2) then implies that g is conjugate to g"1.

REMARKS, (i) Given an irreducible linear character ^ of a group G, a well-known
result of Frobenius-Schur [4; 4.5] gives a necessary and sufficient condition for x to be
real valued. Thus, defining

"2(X)= I X(g2),
geG

v2(x) is zero if and only if x is n o t r e a l valued. This result fails for projective characters.
For example, let G be the alternating group on four symbols and u be a primitive cube
root of unity. Let

Then <P(123), P((12)(34))> is a representation group for G. Thus P can be extended to a
projective representation of G in such a way that the cocycle a associated with P is
special and so the character £ of P is a class function. Then £, has value - 1 on elements of
order 3 and value 0 on elements of order 2, so that £ is real valued but v2(£) is zero. On
the other hand, the character £x of the projective representation P1 obtained by taking the
tensor product of P with a non-identity one-dimensional linear character of G is not real
valued but v2(£i) is non-zero.

(ii) An element g of a group G is real if g is conjugate to g"1. It is well-known that
the number of real conjugacy classes of G is equal to the number of irreducible complex
linear characters of G which are real valued. The example of the symmetric groups make
it clear that the number of real a-regular conjugacy classes is not the number of
irreducible a-projective characters of G which are real valued.

In view of Theorem 3, it might be conjectured that the number of irreducible
a-projective characters of a group G which are real valued is equal to the number of
a-regular real conjugacy classes of G in which a(g, g~*) = 1. However this is also false.
Take G to be S(4) and

-io>/V3]

«V(2/3)J-
Then the projective representation P in (i) extends to a projective representation of S(4)
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whose character is not real. The character of the representation Pl obtained by taking the
tensor product of P with the non-identity one-dimensional linear representation of G is
also non-real. In fact G has one irreducible projective representation whose character is
real valued. However, for each element of order 3, a(g, g~1) = 1 so G has two a-regular
real conjugacy classes in which a(g, g~1) = 1.
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