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Abstract

We use the pointwise Lipschitz constant to define an upper Lyapunov exponent for maps on metric spaces
different to that given by Kifer [‘Characteristic exponents of dynamical systems in metric spaces’, Ergodic
Theory Dynam. Systems 3(1) (1983), 119–127]. We prove that this exponent reduces to that of Bessa and
Silva on Riemannian manifolds and is not larger than that of Kifer at stable points. We also prove that
it is invariant along orbits in the case of (topological) diffeomorphisms and under topological conjugacy.
Moreover, the periodic orbits where this exponent is negative are asymptotically stable. Finally, we
estimate this exponent for certain hyperbolic homeomorphisms.
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1. Introduction

The upper Lyapunov exponent at x ∈ M of a differentiable map f : M → M of a
Riemannian manifold M is defined by

Λ f (x) = lim sup
n→∞

1
n

log ‖D f n(x)‖. (1.1)

Here Dh is the derivative of a differentiable map h : M→ M and ‖ · ‖ is the Riemannian
metric. A similar exponent for continuous maps on metric spaces has been considered
by Kifer [8] followed by Barreira, Bessa and Silva [2, 3]. In particular, the paper [3]
introduced such an exponent for continuous maps on Riemannian manifolds, reducing
to (1.1) in the differentiable case. However, as these authors noted, the substitute for
the derivative in their exponent is not a cocycle and so it is unclear how the exponent
relates to the abstract theory [4].

In this paper we use the subcocycle for the pointwise Lipschitz constant [5] to
define an upper Lyapunov exponent on metric spaces. We prove that this exponent
reduces to that of [3] for continuous maps on Riemannian manifolds. Moreover, it is
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not larger than Kifer’s exponent at the stable points. We also prove that this exponent
satisfies some basic properties of the abstract theory such as invariance along orbits for
(topological) diffeomorphisms and under topological conjugacy. We also prove that
every periodic orbit with negative upper Lyapunov exponent is asymptotically stable.
Finally, we estimate the exponent for certain hyperbolic homeomorphisms.

2. Definition and examples

Let (X, d) and (Y, ρ) be metric spaces and f : X → Y be a map. As in [6], the
pointwise Lipschitz constant f ′(x) of f at x ∈ X is defined as 0 if x is isolated and

f ′(x) = lim sup
y→x

ρ( f (x), f (y))
d(x, y)

otherwise. (The notation Lip f is used in [6].) This constant is closely related to the
absolute derivative in [5]. We use it to introduce the main definition of this paper.

Definition 2.1. The upper Lyapunov exponent of a map f : X → X at x ∈ X is defined
by

χ f (x) = lim sup
n→∞

1
n

log( f n)′(x). (2.1)

The map assigning the extended number χ f (x) ∈ [−∞,∞] to each x ∈ X will be denoted
by χ f . Sometimes we write χd

f (x) to emphasise the role of the metric d.

This work is devoted to the study of this exponent. First, we note the similarity to
the definition of the classical exponent (1.1). Next, we turn to some examples.

Example 2.2. If f : X → X is a constant map, then χ f = −∞.

Example 2.3. If f : X → X is a contraction, that is, there is a constant c with 0 < c < 1
such that d( f (x), f (y)) ≤ cd(x, y) for every x, y ∈ X, then χ f ≤ log c < 0. To see this,
fix n ∈ N+. Clearly, d( f n(x), f n(y)) ≤ cnd(x, y) for all x, y ∈ X, so ( f n)′(x) ≤ cn for all
x ∈ X and χ f ≤ log c.

Example 2.4. If f : X → X is bi-Lipschitz, that is, there exists A ≥ 1 such that
A−1d(x, y) ≤ d( f (x), f (y)) ≤ Ad(x, y) for all x, y ∈ X, then A−n ≤ ( f n)′(x) ≤ An for
all n ∈ N and x ∈ X. Thus, −log A ≤ χ f ≤ log A. In particular, if f is an isometric
embedding (that is, d( f (x), f (y)) = d(x, y) for all x, y ∈ X), then χ f = 0. Hence, χIdX = 0,
where IdX is the identity of X.

Example 2.5. Let f : X → X be a continuous map of a compact metric space X. If
f : X → X expands small distances, that is, there are ε0 > 0 and λ > 1 such that
d( f (x), f (y)) ≥ λd(x, y) whenever x, y ∈ X satisfy d(x, y) ≤ ε0 (cf. [13]), then χ f ≥

log λ > 0.
For the proof, fix n ∈ N+. Since f is continuous and X compact, there is εn > 0 such

that d( f i(x), f i(y)) ≤ ε0 for all 0 ≤ i ≤ n − 1 whenever x, y ∈ X satisfy d(x, y) < εn. From
this we obtain recursively that d( f n(x), f n(y)) ≥ λnd(x, y) whenever d(x, y) ≤ εn. Then
( f n)′(x) ≥ λn for all x ∈ X and so χ f (x) ≥ log λ for all x ∈ X.
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Example 2.6. We say that two metrics d and ρ of the same space X are equivalent if
there is A ≥ 1 such that A−1d(x, y) ≤ ρ(x, y) ≤ Ad(x, y) for every x, y ∈ X. It is easy to
see that if d and ρ are equivalent metrics, then χd

f = χ
ρ
f . This may be false if the metrics

d and ρ are only compatible, that is, they define the same topology.

3. Comparisons with the other exponents

In this section we will compare the upper Lyapunov exponent (2.1) with the existing
ones in the literature. We start with the top exponent introduced by Bessa and Silva [3].

Let M denote a compact, connected, boundaryless smooth Riemannian manifold.
By compactness and Darboux’s theorem [1], there is a finite atlas A = {φi : Ui → R

m},
where m = dim(M) and each Ui ⊂ M is an open set. Assume that, for any x ∈ M, we
choose univocally i(x) := min{i ∈ 1, . . . , k : x ∈ Ui}. The Riemannian metric fixed in
the beginning will not be used, but instead we consider the metric in TxM defined
by ‖v‖ := ‖Dφi(x) · v‖. Thus, the computations below are performed in the Euclidean
space via the fixed charts.

Let f : M→ M be a continuous map and, for each x ∈ M, δ > 0 and n ∈ N, consider
the set

Bx(δ, n) = {y ∈ M : d( f i(x), f i(y)) < δ for all i = 0, . . . , n}. (3.1)

Define

∆( f , n, x, y) =
d( f n(x), f n(y))

d(x, y)
,

where d is the distance generated by the Riemannian metric ‖ · ‖. For n fixed, the map
δ 7→ (1/n) log supy∈Bx(δ,n)\{x} ∆( f , n, x, y) is nondecreasing, so the limit

lim
δ→0

1
n

log sup
y∈Bx(δ,n)\{x}

∆( f , n, x, y) = inf
δ>0

1
n

log sup
y∈Bx(δ,n)\{x}

∆( f , n, x, y)

exists. In this way, Bessa and Silva [3] defined the top exponent

χ+
N( f , x) = lim sup

n→∞
lim
δ→0

1
n

log sup
y∈Bx(δ,n)\{x}

∆( f , n, x, y) for all x ∈ M.

This exponent reduces to our exponent for continuous maps on Riemannian
manifolds. More precisely, we have the following result.

Theorem 3.1. Let f : M → M be a continuous map of a Riemannian manifold M.
For every x ∈ M, if χ f (x) is computed with the distance generated by the Riemannian
metric, then χ f (x) = χ+

N( f , x).

Proof. Since the map t 7→ log t is continuous, we can rewrite χ+
N( f , x) as

χ+
N( f , x) = lim sup

n→∞

1
n

log lim
δ→0

sup
y∈Bx(δ,n)\{x}

∆( f , n, x, y).
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On the other hand, using Darboux charts, we can rewrite the derivative ( f n)′(x) for
n ∈ N as

( f n)′(x) = lim
δ→0

sup
y∈Bx(δ,0)\{x}

∆( f , n, x, y) = inf
δ>0

sup
y∈Bx(δ,0)\{x}

∆( f , n, x, y).

Since Bx(δ, n) ⊂ Bx(δ, 0),

sup
y∈Bx(δ,n)\{x}

∆( f , n, x, y) ≤ sup
y∈Bx(δ,0)\{x}

∆( f , n, x, y),

yielding
lim
δ→0

sup
y∈Bx(δ,n)\{x}

∆( f , n, x, y) ≤ ( f n)′(x).

Taking the log, dividing by n and taking the lim sup as n→∞ gives

χ+
N( f , x) ≤ χ f (x).

Conversely, fix δ > 0. Since f is continuous, given n ∈ N+ there is a γ > 0 such that
d( f i(x), f i(y)) < δ for i = 0, . . . , n whenever y ∈ M satisfies d(x, y) < γ. This amounts
to Bx(γ, 0) ⊂ Bx(δ, n) and yields

sup
y∈Bx(γ,0)\{x}

∆( f , n, x, y) ≤ sup
y∈Bx(δ,n)\{x}

∆( f , n, x, y).

It follows that
( f n)′(x) ≤ sup

y∈Bx(δ,n)\{x}
∆( f , n, x, y) for all δ > 0

and so
( f n)′(x) ≤ lim

δ→0
sup

y∈Bx(δ,n)\{x}
∆( f , n, x, y).

Again by taking the log, dividing by n and taking the lim sup as n→∞,

χ f (x) ≤ χ+
N( f , x).

This completes the proof. �

Next, we compare our exponent with Kifer’s exponent [8]. Consider a metric space
without isolated points X and a map f : X → X. In [8], the upper exponent is defined
for all x ∈ X by

∆+( f , x) = lim
δ→0

lim sup
n→∞

1
n

log sup
y∈Bx(δ,n)\{x}

d( f n(x), f n(y))
d(x, y)

,

where Bx(δ, n) is defined as in (3.1) but with X instead of M. Apart from the domain of
the maps, the main difference between this exponent and χ f is the role played by the
limits limδ→0 and lim supn→∞, which makes the comparison difficult. However, such a
comparison can be done under certain conditions.

We say that x ∈ X is a stable point of f : X → X if for every γ > 0 there is δ > 0
such that d( f n(x), f n(y)) < γ for every n ∈ N whenever y ∈ X satisfies d(x, y) < δ. With
this definition, we have following result.
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Theorem 3.2. Let f : X → X be a map on a metric space X without isolated points.
Then χ f (x) ≤ ∆+( f , x) for every stable point x.

Proof. As in the proof of Theorem 3.1,

( f n)′(x) = inf
δ→0

sup
y∈Bx(δ,0)\{x}

d( f n(x), f n(y))
d(x, y)

for all n ∈ N. (3.2)

Fix γ > 0. Since x is stable, there exists δ > 0 such that d(x, y) < δ implies that
d( f n(x), f n(y)) < γ for all n ∈ N. Then Bx(δ, 0) ⊂ Bx(γ, n) for every n ∈ N, so

sup
y∈Bx(δ,0)\{x}

d( f n(x), f n(y))
d(x, y)

≤ sup
y∈Bx(γ,n)\{x}

d( f n(x), f n(y))
d(x, y)

for all n ∈ N.

Then (3.2) implies that

( f n)′(x) ≤ sup
y∈Bx(γ,n)\{x}

d( f n(x), f n(y))
d(x, y)

for all n ∈ N.

Since γ > 0 is arbitrary,

1
n

log( f n)′(x) ≤
1
n

log sup
y∈Bx(γ,n)\{x}

d( f n(x), f n(y))
d(x, y)

for all n ∈ N+, γ > 0. (3.3)

If we take the lim sup as n→∞ in (3.3),

χ f (x) ≤ lim sup
n→∞

1
n

log sup
y∈Bx(γ,n)\{x}

d( f n(x), f n(y))
d(x, y)

for all γ > 0.

Taking the limit as γ→ 0 gives χ f (x) ≤ ∆+(x). �

Remark 3.3. It would be nice to find an example where the inequality in Theorem 3.2
is strict, but we have not been able to do so.

4. Some properties of χ f

Next, we present some properties of the upper Lyapunov exponent χ f . To begin, we
compute the pointwise Lipschitz constant in the differentiable case.

Lemma 4.1. Let h : M→ M be a map of a Riemannian manifold M. If h is differentiable
at x ∈ M, then h′(x) = ‖Dh(x)‖.

Proof. By using exponential charts we can assume that M = Rn, where n = dim(M).
Then

h′(x) = lim sup
y→x

d(h(x), h(y))
d(x, y)

= lim sup
y→x

‖h(y) − h(x)‖
‖y − x‖

= lim sup
y→x

∥∥∥∥∥h(y) − h(x) − Dh(x)(y − x)
‖y − x‖

+ Dh(x)
( y − x
‖y − x‖

)∥∥∥∥∥
≤ ‖Dh(x)‖.
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On the other hand, if we fix a unitary vector u such that ‖Dh(x)u‖ = ‖Dh(x)‖ and
define yn = x + (1/n)u, then yn → x and

lim sup
y→x

∥∥∥∥∥h(y) − h(x) − Dh(x)(y − x)
‖y − x‖

+ Dh(x)
( y − x
‖y − x‖

)∥∥∥∥∥
≥ lim

n→∞

∥∥∥∥∥h(yn) − h(x) − Dh(x)(yn − x)
‖yn − x‖

+ Dh(x)
( yn − x
‖yn − x‖

)∥∥∥∥∥
= ‖Dh(x)u‖ = ‖Dh(x)‖.

Thus, h′(x) = ‖Dh(x)‖, completing the proof. �

Although the result below follows from Theorem 3.1 and [3, Theorem 2.3], we can
prove it quickly by applying Lemma 4.1 to h = f n with n ∈ N.

Theorem 4.2. Let f : M→ M be a differentiable map of a Riemannian manifold M. If
d is the Riemannian distance of M, then χd

f (x) = Λ f (x).

We will need the following chain rule for the pointwise Lipschitz constant f ′.

Lemma 4.3 (Upper Chain Rule). For every pair of maps f , g : X→ X of a metric space
X, if x ∈ X and g′(x) <∞, then

( f ◦ g)′(x) ≤ f ′(g(x)) · g′(x).

Proof. We can assume that ( f ◦ g)′(x) , 0 for otherwise we are done. Fix a sequence
yn → x such that

( f ◦ g)′(x) = lim
n→∞

d( f (g(x)), f (g(yn)))
d(x, yn)

.

Since ( f ◦ g)′(x) , 0, we can assume that g(x) , g(yn) for every n ∈ N. Therefore,
d(g(x), g(yn)) > 0 for all n ∈ N. Since g′(x) < ∞, g is pointwise Lipschitz (hence
continuous) at x. Thus, g(yn)→ g(x) and so

( f ◦ g)′(x) = lim
n→∞

d( f (g(x)), f (g(yn)))
d(x, yn)

= lim
n→∞

[d( f (g(x)), f (g(yn)))
d(g(x), g(yn))

·
d(g(x), g(yn))

d(x, yn)

]
≤ lim sup

z→g(x)

f (g(x)), f (z))
d(g(x), z)

· lim sup
y→x

d(g(x), g(y))
d(x, y)

= f ′(g(x)) · g′(x),

proving the result. �

We say that f : X → X is differentiable at x ∈ X if 0 < f ′(x) <∞, and we say that f
is differentiable if it is differentiable at every x ∈ X. Given a map φ : X→ R ∪ {∞}, we
define ‖φ‖∞ = supx∈X |φ(x)|. A homeomorphism h : X → X is called a diffeomorphism
if ‖k′‖∞ <∞ for k ∈ {h, h−1}.
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Theorem 4.4. The following properties hold for every map f : X→ X of a metric space
X without isolated points.

(1) If k ∈ N, then χ f k ≤ k · χ f .
(2) If f is differentiable at x ∈ X, then χ f ( f (x)) ≥ χ f (x). In particular, if f is a

diffeomorphism, then χ f ◦ f = χ f .
(3) If h : X → X is a diffeomorphism, then χh◦ f◦h−1 = χ f ◦ h−1.
(4) χ f ≤ log ‖ f ′‖∞ and, if f is a homeomorphism, χ f −1 ≥ −log ‖ f ′‖∞.

Proof. For (1), observe that

χ f k (x) = lim sup
n→∞

1
n

log(( f k)n)′(x) = lim sup
n→∞

1
n

log( f n·k)′(x)

= k · lim sup
n→∞

1
n · k

log( f n·k)′(x)

≤ k · χ f (x).

For (2), observe that ( f n)′( f (x)) ≥ ( f n+1)′(x)/ f ′(x) by the upper chain rule, so

χ f ( f (x)) = lim sup
n→∞

1
n

log( f n)′( f (x))

≥ lim sup
n→∞

1
n

[log( f n+1)′(x) − log f ′(x)]

= lim sup
n→∞

1
n

log( f n+1)′(x)

= χ f (x).

If f is a diffeomorphism, applying this argument to f −1 yields χ f ( f −1(x)) ≥ χ f (x).
These inequalities together prove (2).

For (3), first observe by the upper chain rule that

χh◦ f◦h−1 (x) = lim sup
n→∞

1
n

log((h ◦ f ◦ h−1)n)′(x) = lim sup
n→∞

1
n

log(h ◦ f n ◦ h−1)′(x)

≤ lim sup
n→∞

1
n

log(h′( f n(h−1(x))) · ( f n)′(h−1(x)) · (h−1)′(x))

= lim sup
n→∞

1
n

[log(h′( f n(h−1(x))) + log( f n)′(h−1(x)) + log(h−1)′(x))]

= χ f (h−1(x)).

Therefore, χ f = χh−1◦(h◦ f◦h−1)◦h ≤ χh◦ f◦h−1 ◦ h and so χ f ◦ h−1 ≤ χh◦ f◦h−1 . Taken together,
these inequalities prove (3).

Finally, for (4), we first observe that

( f n)′(x) ≤
n−1∏
i=0

f ′( f i(x))
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by the upper chain rule. Thus, ( f n)′(x) ≤ ‖ f ′‖n∞ for every x ∈ X. By taking the
logarithm, dividing by n and taking the lim sup, we obtain χ f ≤ log ‖ f ′‖∞. If f is a
homeomorphism, 1 = ( f n ◦ f −n)′(x) ≤ ( f n)′( f −n(x)) · ( f −n)′(x) by the upper chain rule.
This gives ( f −n)′(x) ≥ 1/( f n)′( f −n(x)) and so

χ f −1 (x) = lim sup
n→∞

1
n

log( f −n)′(x)

≥ lim sup
n→∞

1
n

[−log( f n)′( f −n(x))]

=−lim inf
n→∞

1
n

log( f n)′( f −n(x))

≥−lim inf
n→∞

1
n

log ‖ f ′‖n∞

=−log ‖ f ′‖∞. �

5. The upper Lyapunov exponent, stability and hyperbolicity

Let f : X → X be a map of a metric space X. We say that x ∈ X is periodic if there
is a minimal positive integer nx (called the period) such that f nx (x) = x. Also, x is
asymptotically stable if there is δ > 0 such that

lim
n→∞

d( f n(x), f n(y)) = 0 for all y ∈ B(x, δ). (5.1)

The following result shows how the upper exponent can be used to detect
asymptotically stable periodic points.

Theorem 5.1. Every periodic point of a continuous map of a metric space with negative
upper Lyapunov exponent is asymptotically stable.

Proof. Let f : X → X be a continuous map of a metric space X and x ∈ X be a point
with χ f (x) < 0. We can assume that x is not isolated for otherwise the result is trivial.
Let nx be the period of x. Then x ∈ Fix( f nx ), where Fix(h) denotes the fixed point
set of h. Since χ f (x) < 0, we obtain χ f nx (x) < 0 from Theorem 4.4(1). Thus, we can
assume that x ∈ Fix( f ) by replacing f by f nx if necessary.

Set ∆ = − 1
2χ f (x). Then ∆ < 0 and there is N ∈ N+ such that ( f N)′(x) < eN∆. Since

x ∈ Fix( f ), the definition of χ f implies that there is δ0 > 0 such that d(x, f N(y)) <
eN∆d(x, y) for all y ∈ B(x, δ0). From this, d(x, f kN(y)) < δ0 and d(x, f kN(y)) <
(eN∆)kd(x, y) for every k ∈ N+ and y ∈ B(x, δ0). Since eN∆ < 1,

lim
k→∞

f kN(y) = x for all y ∈ B(x, δ0).

By choosing 0 < δ < δ0 such that f i(y) ∈ B(x, δ0) whenever y ∈ B(x, δ) and 0 ≤ i ≤ N,
we obtain (5.1). �
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There are several definitions of hyperbolicity for a homeomorphism of a metric
space. These include Mañé’s hyperbolicity [10],L-hyperbolicity [14] and the standard
definition [9] (that is, expansivity with the pseudo-orbit tracing property). It is known
that Mañé’s definition and the standard one are equivalent up to some compatible
metric (see, for example, [11, 12]). Here we use the following definition, which is
implicit in [7].

Definition 5.2. A bijective map f : X → X is hyperbolic if there are constants C > 0,
λ > 1 and a sequence εn > 0 such that, for all n ∈ N and all x, y ∈ X,

max{d( f n(x), f n(y)), d( f −n(x), f −n(y))} ≥ Cλnd(x, y) if d(x, y) < εn. (5.2)

We now estimate the upper Lyapunov exponent of such hyperbolic maps.

Theorem 5.3. Let f : X → X be a hyperbolic bijection of a metric space X without
isolated points. Then infx∈X max{χ f (x), χ f −1 (x)} > 0.

Proof. Let C, λ and εn be as in the definition of a hyperbolic bijection. Fix x ∈ X and
n ∈ N. Since X has no isolated points, there is a sequence yk ∈ X \ {x} converging to
x and we can assume that d(x, yk) < εn for all k. If d( f n(x), f n(yk)) < Cλnd(x, yk) for
large k, then d( f −n(x), f −n(yk)) ≥ Cλnd(x, yk) for k large by (5.2), so

( f −n)′(x) ≥ lim sup
k→∞

d( f −n(x), f −n(yk))
d(x, yk)

≥ Cλn.

Otherwise, d( f n(x), f n(yk)) ≥ Cλnd(x, yk) for large k and then ( f n)′(x) ≥ Cλn as before.
We conclude that

max{( f n)′(x), ( f −n)′(x)} ≥ Cλn for all x ∈ X, n ∈ N. (5.3)

Now fix x ∈ X. If χ f (x) < log λ, then ( f n)′(x) < Cλn for large n, so ( f −n)′(x) ≥ Cλn for
large n (by (5.3)) and thus χ f −1 (x) ≥ log λ. Hence, max{χ f (x), χ f −1 (x)} ≥ log λ. �

A direct consequence of this result follows. A homeomorphism f : X → X of a
metric space X is expansive if there is δ > 0 such that x = y whenever x, y ∈ X satisfy
d( f n(x), f n(y)) ≤ δ for all n ∈ Z.

Corollary 5.4. For every expansive homeomorphism f : X → X of a compact metric
space X without isolated points there is a compatible metric d such that

inf
x∈X

max{χd
f (x), χd

f −1 (x)} > 0.

Proof. Fathi proved in [7] that there are λ > 1, ε0 > 0 and a compatible metric d
satisfying

max{d( f (x), f (y), d( f −1(x), f −1(y))} ≥ min{λd(x, y), ε0} for all x, y ∈ X.

Fix n ∈ N. Since f is a homeomorphism and X compact, there exists εn > 0 such that

max
|i|<n

d( f i(x), f i(y)) <
ε0

λ
whenever d(x, y) < εn.

Then, the proof of Theorem 5.4 in [7] implies that

max{d( f n(x), f n(y)), d( f −n(x), f −n(y))} ≥ λnd(x, y) if d(x, y) < εn

and so f is hyperbolic with respect to d. Now apply Theorem 5.3. �
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