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Abstract. The cohomology action of an Anosov diffeomorphism on a nilmanifold
resembles that of a Cartesian product map. Corresponding results hold for infranil-
manifolds, giving an invariant bigrading of the cohomology and a fourfold symmetry
that extends Poincaré duality. Holonomy invariant cocycles are applied to the action
on first cohomology.

0. Introduction
The paradigm of stable dynamics is the transitive Anosov diffeomorphism. We will
study its behaviour on cohomology and relate it to its Anosov foliations.

Recall that a diffeomorphism f: Mo of an oriented closed connected smooth
manifold M is Anosov if the tangent bundle decomposes as a continuous invariant
directsum TM = E“@® E° where Tf contracts the stable bundle E* and Tf ' contracts
the unstable bundle E* in some convenient Riemannian metric. One says f is
transitive if it has a dense orbit. We will also assume that the bundles E* E° are
orientable. We let €, be +1 if f preserves the orientation of E", —1 otherwise and
we define g, accordingly. We let s =dim E°, u =dim E*.

At this level of generality, the current knowledge about the real cohomology
action f*: H*(M)2o is as follows. (Unless otherwise specified, cohomology will
always be taken with real coefficients.) Let h(f) >0 be the topological entropy of
f Let A =¢"Y7>1. Then A is the spectral radius of f*. More precisely the number
Ag, is in the spectrum of f* and its generalized eigenspace is a one dimensional
subspace of H*(M). All other eigenvalues have smaller absolute value.

By Poincaré duality £,A ' is in the spectrum of f* as an eigenvalue on H*(M).
The corresponding eigenvectors &, € H” £ € H® have non-zero cup product. These
facts follow algebraically from those of the previous paragraph, but they also have
a geometric proof {8], [10], [2]. One calls &, & the Ruelle-Sullivan classes of f:
clearly they are unique up to a scalar factor.

We recall the geometric construction of £,. The bundle E* can be integrated to
form a stable foliation W*. On W* there is a transverse holonomy invariant measure,
unique up to scalar multiple. Since W* is orientable, one can define a current ¢ that
integrates forms supported in a coordinate patch over the stable leaves and then
integrates transversally with the transverse measure. This current is closed (by
invariance) and so defines a homology class [c]e H(M;R) that represents.the
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‘average homology class of a stable leaf”. £, is the Poincaré dual to [c]. That &, is
an eigenclass follows from the fact that the transverse measure scales up under f
by a factor of A while the transverse orientation scales by ¢,. & can be constructed
similarly and the transversality of the stable and unstable foliations furnishes the
geometric proof that £, U & #0.

We will develop in this paper the idea that the cohomology action of f resembles
that of a Cartesian product map. Suppose N, are closed oriented connected smooth
di-manifolds, i=1,2, and let N =N, X N,, d =d, +d,. Let g;: N;o be smooth maps
of degree §; and let g = g, X g,: N, X N,© be their Cartesian product. Note that N
carries two transverse foliations, &%, with leaves N, X (point) and %, with leaves
(point) X N,. Taking any transverse measures, the corresponding currents give the
homology classes of these factor manifolds in H,;(N), up to a scalar multiple.
Taking Poincaré duals gives classes ; in H%(N) that scale by &; under f* and
that have non-zero cup product. So in this analogy the Ruelle-Sullivan classes
correspond to the fundamental classes J; that pull back from the projections N > N,
But this projection is just the projection of N to the leaf space of the foliation %,
This suggests that the eigenvalue Az, be viewed as the ‘degree’ of the map induced
by f on the leaf space of the stable foliation.

It is unclear how far this analogy can be pushed. We hope in a future work to
use the symbolic dynamics of f, including the incidence relation on elements of a
Markov partition, to study this question. This tool is suggested by the construction
of transverse measures for the foliations W*, W* from a Markov partition [8] where
the incidence data was not needed, but for lower dimensional cohomology this data
is essential. In this paper, we will present those results we have obtained that don’t
use symbolic methods. One may regard these as guideposts for some subsequent
deeper analysis.

We begin with the study of known examples. These are topologically conjugate
to certain automorphisms of nilmanifolds and quotients of these by a finite symmetry
group. For nilmanifolds we will see in § 1 that the analogy with a Cartesian product
is extreme: the cohomology algebra factors as in Kunneth’s theorem so that the
Ruelle-Sullivan classes correspond to the fundamental classes of the factor mani-
folds. When the finite symmetry group is introduced, this factorization breaks down
but certain features persist. These are the existence of an invariant bigrading and
a biduality analogous to the 4-fold symmetry of the cohomology of a Cartesian
product. These matters are discussed in § 2.

In § 3 we consider Alexander cochains. We show that holonomy invariant cocycles
account for the hyperbolic part of the action of f on first cohomology. This is related
to the cohomology of the leaf spaces of the Anosov foliations in the guise of
holonomy invariant cocycles.

1. Anosov automorphisms

We recall some terminology. Let N be a simply connected nilpotent Lie group and
I a discrete subgroup. If the collection of right cosets X =I'\ N is compact we call
X a nilmanifold. When N is abelian, X is just a torus. If «: N> N is a Lie group
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automorphism that induces a 1-1 map A: X » X we call A an automorphism of X.
When N is abelian, X is a group and A is an automorphism in the usual sense.
Let »=T,N be the Lie algebra of N and let a,:~e be the automorphism of »
induced by a, a, = T.a.If a, is hyperbolic as a linear map then « is called hyperbolic
and A is called hyperbolic or Anosov.

Indeed, such an A is an Anosov diffeomorphism as defined above. The invariant
splitting TX = E*® E* is found by taking the a, invariant spiitting » = U@ S, where
U corresponds to eigenvectors outside the unit disc and S to those in its interior,
extending this to a splitting of TN by left translation and factoring by I'. If we give
an inner product for which [Ja,lS| <1, ||a;'|U|| <1 then one can extend it to a
left-invariant Riemannian metric on N and factor by I' to obtain a Riemannian
metric on X. The splitting and metric on X are clearly such that stable (unstable)
vectors shrink under A(A™}), as required.

The unstable and stable foliations on X relate to the group structure as follows.
S is a subalgebra of » and the left cosets n- exp (S), ne N, foliate N and induce
the foliation W* on X. Likewise the left cosets of the subgroup exp (U) determine
w*,

Clearly these foliations are orientable. Also A is transitive so the Ruelle-Sullivan
classes ¢&,, & are defined. We show that A splits the cohomology of X as though it
were a Cartesian product.

THEOREM 1. Let A: X © be an Anosov automorphism of a nilmanifold X. Then there
are subspaces %o, ..., %, and U, . .., U, U, ¥ < H'(X; R), such that

(1) $o=U,= H(X; R).

(2) &, is spanned by £, U, is spanned by &,

(3) U=PU; and F =P, are closed under cup-product.

(4) The cup product maps U;QU,_, > U, and ¥, ® F,_, > ¥, are perfect pairings.

(5) Each U, &, is f*-invariant.

(6) Fori>0,Y, is expanded by f* and U; is contracted.

(7) The cup product map U R F > H*(X; R) is an isomorphism of graded algebras.

Before proving this theorem, we consider the simple case when N is abelian. Then
&, is just the cohomology classes of the i-forms on X with constant coeflicients
that annihilate the stable foliation. This suggests our choice of notation. In a similar
way % is determined by the unstable foliation.

Proof. Let o be the algebra of left-invariant differential forms on N. Clearly « is
isomorphic to the exterior algebra E(»*), since a left invariant form on N is
determined by its value at e. Clearly a acts on . Since d commutes with maps,
dd < oA.

A left-invariant form on N is in particular I'-invariant. This gives an injection
o> Q*(X) of o into the de Rham complex of X. By a theorem of Nomizu this
natural map gives a cohomology isomorphism H*(sf, d)= H*(X), see [7].

The theorem will be shown by decomposing & according to the splitting » = S® U.
We identify S*, the vector space dual of S, with the elements of »* that annihilate
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U and likewise, we embed U* in »*. Then »*= U*® S*. This gives inclusions
E(U*)< E(#*) and E(S*)c E(«*) such that E(«*)= E(U*)® E(S*).

We must show that d preserves these factors. Note that E(U*) consists of those
forms in & that annihilate the left cosets of exp (S). By the converse of Frobenius’
theorem, the exterior derivative dw of a form w that annihilates a foliation must
also annihilate that foliation. So dE(U*)< E(U*) and symmetrically, dE(S*)c
E(S%).

We have, then, that E(U*), E(S*) are differential algebras. So by the algebraic
Kunneth theorem, H*(E(»*)) = H*(E(U*))® H*(E(S™)). This defines a factoriz-
ation H*(X;R)=¥® U using the Nomizu isomorphism. Clearly & and % are
homogeneous subalgebras. So (1), (3), (5), (6) and (7) are obvious.

Let d =dim X = s+ u. Then H%(X; R) is one-dimensional. As E(U*), E(S*) are
zero above dimensions u, s respectively, we must have &, and 4, one dimensional.
By (6), any summand &, ® 4; with (i, j) # (u, 0) has a smaller spectral radius than
%.,. This proves (2).

To see (4), let u; € U, Then u; U &, € H*"(X) and by Poincaré duality on X there
isa ¢ e H/(X) with Gu(u;u§,)#0,where j+u+i=d. Thusj=s— i Decomposing
¢ =cjtcj with cje U, ¢j e UR (D)., F;), we see ¢j U (u; L £,) =0 for dimensional
reasons. Thus cjuu; U, #0, so cjuu; #0. This proves that U, > U¥ ; is 1-1.
Reversing the roles of i and s — i proves U, ® U,_; > U, is a perfect pairing. Reasoning
similarly on & gives (4). O

Suppose w € E(U*) < « is also invariant under right translations. Then as a form
on X, w is a holonomy invariant form for the foliation W*, since holonomy can be
defined using right multiplication along a path in S and forms in E(U™) are really
defined on the normal bundle of W*. This applies in particular to the closed 1-forms
in E(U®), since these pull back from the fibration of X over a torus, corresponding
to the map =, X » H,(X; Z)/torsion.

2. Bigrading and biduality
We now turn to the automorphisms of infranilmanifolds and show that part of
theorem 1 remains true for these.

Suppose N is a simply connected nilpotent Lie group. By combining the natural
left action of N on itself with the left action of the automorphism group Aut N on
N, we obtain a left action of the group G of affine automorphisms of N. An element
ge G is a pair {(n, B)e N xAut N that acts on N by g(x)=n- B(x). We define
the group structure by the embedding of G in the diffeomorphisms of N. It is
immediate that G is the semidirect product of the normal subgroup N by the sub-
group Aut N. In case N is abelian, G is the affine automorphisms of the vector
space-N.

Suppose 7 < G is a discrete group that acts freely and properly discontinuously
on N with compact quotient Y. If # » N =T has finite index in 7 then we call Y
an infranilmanifold. This implies that X = "'\ N is compact. Thus Y is the quotient
of the nilmanifold X by the finite group H = #/I" so Y is below (infra) X.
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Suppose a: N> N is a hyperbolic automorphism that normalizes 7 in the sense
that there is an automorphism ¢ o 7 7 with a > g = ¢(g) o a for all g€ o. Then «
induces a map B: Y > Y that is called an Anosov automorphism of Y. We note that
the corresponding automorphism of X, A: X - X, is a lift of B relative to the covering
p: X = Y. Again B is an Anosov diffeomorphism. Every known Anosov diffeomorph-
ism is topologically conjugate to such a B.

We next recall the behaviour of cohomology under a finite cover. The map p has
a multivalued inverse map that acts on forms in a well-defined way. If k=|H| is
the number of sheets, and if x,,..., x, € X are the inverse images of ye Y then
there are natural isomorphisms ¢;: T, X - T,Y induced by Tp. In this way an i-form
w on X determines an i-form 7(w) on Y by

k

(@)@, 0) = ¥ (W5 0n, -, U5 ).

i
This transfer map 7 commutes with d and so induces a map 7*: H*(X)—> H*(Y).
Then action of p on cohomology is related to 7* by (1/k)r* e p*=id: H*(Y)o.
This shows p* is 1-1, so H*Y ¢ H*X.

To identify the image, note that pulled-back forms are H-invariant and so
determine H-invariant cohomology classes. Using the notation V, to denote the
vectors fixed by a linear action of H on a vector space V, we have H*Y c (H*X ),
Actually equality holds here: one may take a form @ whose class ¢ =[w] is invariant
and average w under H to obtain an H-invariant representative o' = (1/k} Y., h*w
for ¢. But an H-invariant form is a pullback from Y, so w'=p*wy. This gives
c¢=p*[wy] and shows

(H*X)y =p*(H*Y)=H*Y.
So H*Y can be computed in X.
Now we consider the action of H on the Anosov foliations of X. We have that

the action of A is equivariant with respect to the automorphism ¢: Ho induced
by ¢: 7o, i.e. Ac h=(h)e A. This implies

A"oh=y¢"(h)o A"

Choose n so ¢"(h) = h. One sees that h commutes with A" so h permutes the stable
and unstable sets of A". Thus h preserves the Anosov foliations on X. Thus =
preserves the lifts of these foliations to N, i.e. 7 permutes the left cosets of exp (S)
and exp (U).

Now we recall the constructions of theorem 1. The splitting » = S® U is definable
using these left cosets alone, so 7 preserves this direct sum (here we identify a Lie
algebra element with a left-invariant vector field). It follows that 7 preserves the
splitting of = E(S*)® E(U%*). Also since I' acts trivially on , this is really an action
of H on A: it is clearly that which arises by viewing H as an automorphism group
of » under the map 7 - G > Aut N > Aut » which has kernel T.

Since the injection & > Q*X is H equivariant, it induces an H-equivariant map
of cohomology. Using Nomizu’s theorem and the formula H*Y = (H*X )y, we see
that H*Y = (H*sf) . Thus H*Y = (U@ ) s

https://doi.org/10.1017/50143385700003266 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700003266

14 D. Fried

We have Uy ® Py < (U R F)y but the inclusion may be strict. Thus the factoriz-
ation of H*X breaks down for H*Y. On the other hand, the action of H on U® ¥
preserves the bigrading given by (U® ), = URF, i=0,...,s,j=0,...,u Thus
H*Y =(UR® )y carries a bigrading.

We now recall the standing assumption that our Anosov diffeomorphisms have
orientable foliations. This means here that the action of H on S and U preserves
orientation and so H fixes %, and ¥,. This implies that the duality pairing of %;
and U,_; defined by ¢;u c,_; ={¢;, ¢,_;)& is H-invariant, i.e. (hc;, he,_;) =(c;, ¢;_;).
Similarly the pairing of &; and ¥, _; is H-invariant.

We prove

THEOREM 2. Let B: Yo be an Anosov automorphism of the infranilmanifold Y with
oriented foliations. The grading of H*Y by dimension can be refined to a bigrading
HY 0=si<s 0=<j=<u, so that

(1) HY(Y)=®,,,.. H". - -

(2) B preserves bigrading, i.e. B*H"> < H"/.

(3) Under cup product H" - H*' < H™%7*!,

(4) ¢, spans H*, ¢, spans H>".

(5) Biduality: the summands H> H*™*/, H*~"*~/ and H"*/ have equal dimension.
Proof. Let H* =(U;® &) . (1), (2), (3) and (4) are clear from theorem 1. To prove
biduality, we need an algebraic lemma.

LemMMA 1. Suppose H is a finite group and y: Ho an automorphism. Let P, Q, W be
finite dimensional real vector spaces with a linear action of H. Suppose P, Q are dual
by a perfect pairing P® Q- R, denoted (p, q), and that {hp, hq)={p, q) for all
heH,pe P,qe Q. Then

dim (P® W)y =dim (Q® W),

Granted this lemma, we take P=%;, Q=U,_;, W=, and ( , ) as above. The
lemma shows H"* and H*™*/ have equal dimension. Reversing the roles of &, U
gives biduality.

Proof of lemma. We need

SusLEMMA. dim Wy =|H|™' Y, Trace hy, where hy, denotes the action of h on W.
Proof. The map 8(w)=|H|™'Y, hw(w) projects W onto Wj,. Take its trace.

Now we apply the sublemma to P® W and Q® W to get

dim (P® W)y =|H|™' ¥ Trace hp- Trace hy,
h

and
dim (Q® W)y =|H| ™' ¥ Trace hg, - Trace hy.
h

Now we identify Q with P* and give P an H-invariant inner product. This identifies
hp with an orthogonal transformation and h, with its inverse transpose, so they
have the same trace for all he H. Thus all terms in the above sums are equal.
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Note that the structure furnished by the theorem is dependent only on the Anosov
foliations, not on B itself. This structure is topological and so it exists also on any
known Anosov diffeomorphism with oriented foliations.

3. Holonomy invariant cocycles

We now turn to a general transitive Anosov diffeomorphism f: M > M. We will
study its behaviour on H'M and characterize the subspaces of H'M that are
expanded and contracted by f* in terms of the foliations of f This reduces the
problem whether f*: H'M o is hyperbolic to a question about the foliation pair
(1], [4], [5], [6]).

As the foliations of f have no transversal smoothness, we will follow Shub’s lead
and work with Alexander cohomology, specifically the variant that uses continuous
alternating cochains [9]. Recall that a cochain in dimension k is a function M**! >R
and two such are identified when they agree on a neighbourhood of the diagonal A.

We say a cochain in a foliated manifold is holonomy invariant if in each foliation
chart it pulls back from a cochain on the local leaf space. Given a foliation %, the
holonomy invariant cochains form a subcomplex. Let Z *(%) be the holonomy
invariant cocycles and A*(%)< H*(M) the classes with holonomy invariant rep-
resentations. Clearly A*(%) is a graded subalgebra of H*(M), but it may consist
only of H°(M). If &% is a fibration with total space E and base B then A*(%) is
the image of H*(B; R) in H*(E; R).

Suppose that F= W*(f) is the stable foliation of our Anosov f. Let c: M>>R be
a holonomy invariant 1-cocycle. Then there is a neighbourhood U of A= M? on
which

c(m,, my)+ c(my, my) = c(m,, my).

Taking two points m,, m, that are nearby on the same unstable leaf and iterating
7!, we see that f ™ ¢ takes ever smaller values on U. This implies f ™" [c]-0, i.e.
[c]le H'(M;R) is expanded by f We will show

THEOREM 3. The natural map Z'(W*(f)) > H'(M) is 1-1 with image the expanding
subspace of f*: H(M)o.

Given this, one applies it to f and ' to obtain

COROLLARY. f*: H'(M)2 is hyperbolice A W*)+ AY(W*)=H'M.
As mentioned above, this characterizes the hyperbolicity on H' in terms of the
foliations alone.

Proof of theorem. Suppose ce Z'(W?*(f)), as above. If [c¢] =0 then one can integrate
¢ to obtain a function ¢': M >R with ¢ =8¢, i.e. c(my, my)=c'(m;)—c'(m,). As ¢
is holonomy invariant, ¢’ is constant on leaves. As f is transitive, stable leaves are
dense. Thus ¢’ is constant and ¢ =0. This proves injectivity.

For surjectivity, we use [9] to produce a vector space V of 1-cocycles on M that
is f-invariant and contains one representative for each expanded class in H'(M; R).
It is enough to check that V is holonomy invariant.
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Let V* be the dual space of V. We can identify V* with a quotient space of
H,(M;R), so mM acts on V*. There is an equivariant map D: M - V* such that
ve V is identified with 8(v o D), the latter being an equivariant 1-cocycle on M.

If p, q are nearby in M and on the same stable leaf, then the lift f: Mo brings
D, q nearer, hence (as D is uniformly continuous),

|Df "p— Df "q|| 0.
As f is equivariant with respect to an expanding map of V*, we must have Dp = Dq.
This implies that all cocycles pulled back under D are holonomy invariant. O

The relationship between the holonomy invariant cochains and the cohomology of
an Anosov map probably goes deeper. Symbolic dynamics is the logical tool to use
in a further study. It would be interesting to reproduce the bigrading and biduality
results of previous sections in terms that did not involve group structure but only
the foliation pair, thereby generalizing them to include any undiscovered Anosov
diffeomorphisms.
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