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1. Introduction

For eight points (xi, yi) ∈ {0, 1, 2} × {0, 1, 2} \ {(1, 1)}, let φi(x, y) = 1
3 (x, y) + 1

3 (xi, yi).
Then the Sierpinski carpet F of R2 is the invariant set of {φi}8

i=1 with dimH F =
dimB F = log 8/ log 3 [4].

Given θ ∈ [0, 2π) \ {π/2, 3π/2}, let Lθ,a be the line y = (tan θ)x + a, and the section
Fθ,a = Lθ,a ∩ F , the intersection of the Sierpinski carpet and the planar line. For any
θ �= π/2, 3π/2, the interval Jθ is defined by

Jθ =

{
[− tan θ, 1] if θ ∈ [0, π/2) ∪ [π, 3π/2),

[0, 1 − tan θ] if θ ∈ (π/2, π) ∪ [3π/2, 2π).

Then for any θ �= π/2, 3π/2, we have Fθ,a �= ∅ ⇐⇒ a ∈ Jθ.
In the paper, we focus on the intersections of the Sierpinski carpet with lines of rational

slope. When both tan θ and a are rational, [6] proved that Fθ,a has a graph-directed
structure [10], and the corresponding dimension is obtained.

The intersections of some special planar sets with lines in a fixed direction are studied
in [3], [1] and [5], among other publications. For example, [3] proved that dimH[Lπ/4,a ∩
(C × C)] = log 2/(3 log 3) for almost all a ∈ [−1, 1], where C is the Cantor ternary set.
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Figure 1. The steps for generating the Sierpinski carpet.

In [1] the dimensions of fibres Fx = {y ∈ [0, 1] : (x, y) ∈ F} for almost all x ∈ [0, 1] were
discussed for some certain geometric constructions in the unit square [0, 1] × [0, 1]. As
shown in [5], we can calculate the typical value of the Hausdorff dimension of Lπ/4,a ∩ F

for almost all a ∈ Jπ/4. In the literature listed above, tan θ = 0 or 1, but how about the
general case for tan θ ∈ Q? This question is the motivation for this paper.

The main result of paper is as follows.

Theorem 1.1. Suppose F is the Sierpinski carpet in the plane and that tan θ =
M/N > 0 is rational with N, M ∈ N. Let A0, A1 and A2 be (M + N) × (M + N) non-
negative integer matrices defined by At = (ct

pq)1�p,q�N+M and ct
pq = #{i : xiM −yiN =

2M + 2 + q − 3p − t}. Then we have the following.

(1) If

a =
−M − 1 + k

N
+

1
N

( ∞∑
i=1

xi3−i

)

with k ∈ N∩ [1, N +M ] and if {xi}i�1 ∈ {0, 1, 2}N satisfies 3naN /∈ Z for all n ∈ N,
then

dimBFθ,a = lim
n→∞

log ‖ekAx1Ax2 · · ·Axn‖
n log 3

,

where ek = (δk,1, δk,2, . . . , δk,N+M ) is the kth natural basis of RN+M .

(2) Denote by L the Lebesgue measure, then for L-a.e. a ∈ Jθ,

dimB Fθ,a = γ/ log 3 � log 8/ log 3 − 1,

where γ is the Lyapunov exponent for the symmetric independent random product
of A0, A1, A2, i.e.

γ = lim
n→∞

log ‖Ax1Ax2 · · ·Axn‖
n

with xn i.i.d. random variables assuming the values {0, 1, 2} with equal probabili-
ties.

(3) For L-a.e. a ∈ Jθ, dimH Fθ,a = dimB Fθ,a.

https://doi.org/10.1017/S0013091505000428 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000428


Sections of Sierpinski carpet 413

Remark 1.2. The results for θ ∈ (π/2, 2π) are the same.

Remark 1.3. The Marstrand theorem [8,9] concerns dimensions of sections for almost
all θ, where θ is random.

Remark 1.4. By using the Hutchinson metric of fractal measures, we can compute
the Lyapunov exponent in special cases and we obtain

when tan θ = 1, for a.e. a ∈ [−1, 1], dimH Fθ,a = 0.8858 . . . ,

when tan θ = 1
2 , for a.e. a ∈ [− 1

2 , 1], dimH Fθ,a = 0.8914 . . . ,

when tan θ = 1
3 , for a.e. a ∈ [− 1

3 , 1], dimH Fθ,a = 0.8926 . . . ;

all of them are less than log 8/ log 3 − 1 = 0.8927 . . . .

The paper is organized as follows. Section 2 is gives some preliminary information
about the box dimension. In § 3, we prove Theorem 1.1 (1). In § 4, Theorem 1.1 (2) is
proved using our key lemma: Lemma 4.2 of ergodic type. Section 5 is devoted to the
proof of Theorem 1.1 (3). In § 6, we describe the method mentioned in Remark 1.4. In
the final section, we point out that our method can apply to fractals like the Sierpinski
carpet.

2. Preliminaries

In this section, we do not need the condition that the slope tan θ is rational. For i =
1, . . . , 8, let φi(x, y) = 1

3 (x, y) + 1
3 (xi, yi), where (xi, yi) ∈ {0, 1, 2} × {0, 1, 2} \ {(1, 1)}.

Fix any θ ∈ [0, 2π) \ {π/2, 3π/3}, set Ti(x) = 3x + xi tan θ − yi, then Si = (Ti)−1 :
Jθ → Jθ are linear contractions satisfying

Jθ =
8⋃

i=1

Si(Jθ).

Let mθ denote the normalized Lebesgue measure on Jθ, i.e. mθ = L/|Jθ| with mθ(Jθ) = 1.
Write φi1···in

= φi1 ◦ · · · ◦ φin
.

Let Nn(a) = #{i1 · · · in : φi1···in([0, 1] × [0, 1]) ∩ Lθ,a �= ∅}. Denote by Kn(a) the num-
ber of 3-adic squares of side length 3−n intersecting F ∩ Lθ,a.

Since φi1···in([0, 1] × [0, 1]) ∩ Lθ,a �= ∅ implies φi1···in(F ) ∩ Lθ,a �= ∅, we have Nn(a) �
Kn(a) � 9Nn(a). It follows from the definition of the box dimension that

dimB(F ∩ Lθ,a) = lim
n→∞

log Kn(a)
n log 3

= lim
n→∞

log Nn(a)
n log 3

, (2.1)

dimB(F ∩ Lθ,a) = lim
n→∞

log Kn(a)
n log 3

= lim
n→∞

log Nn(a)
n log 3

. (2.2)

We have the following lemma.
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Lemma 2.1.

Nn(a) =
∑

i1···in

1Si1···in (Jθ)(a). (2.3)

∫
Jθ

Nn(a) dmθ(a) = ( 8
3 )n. (2.4)

Proof. By induction, it is easy to verify that

Lθ,a ∩ φi1···in
([0, 1] × [0, 1]) �= ∅ ⇐⇒ a ∈ Si1···in

(Jθ).

Therefore,

Nn(a) = #{i1 · · · in : Lθ,a ∩ φi1···in
([0, 1] × [0, 1]) �= ∅}

= #{i1 · · · in : a ∈ Si1···in
(Jθ)}

=
∑

i1···in

1Si1···in (Jθ)(a).

And thus,

∫
Nn(a) dmθ(a) =

1
|Jθ|

∑
i1···in

∫
1Si1···in (Jθ)(a) dL(a) = ( 8

3 )n.

�

3. The upper box dimension

In this section, we prove Theorem 1.1 (1). Without loss of generality, we suppose that
tan θ = M/N > 0 is rational, where M, N ∈ N with (M, N) = 1. Here Jθ = [−M/N, 1].

Let D = {a ∈ R : 3n(aN) /∈ Z for any integer n � 0}.

Lemma 3.1. R \ D is an enumerable set. If a ∈ D and n ∈ {0} ∪ N, then 3na ∈ D.

For any a ∈ D, let Γa = {a + i/N ∈ Jθ : i ∈ Z}, then #Γa = (1 + (M/N))/(1/N) =
(N + M) since a /∈ Z/N . Therefore, for any integer n � 0, we have #Γ3na = (N + M)
as 3na ∈ D.

Given a ∈ D, we arrange the elements of Γa as follows:

Γa(1) < Γa(2) < · · · < Γa(N + M),

where

Γa(i) ∈
(

−M − 1 + i

N
,
−M + i

N

)
=̂ Ii (1 � i � N + M).
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Notice that φj(F ) ∩ Lθ,a �= ∅ ⇔ a ∈ Sj(Jθ) and φ−1
j (Lθ,a) = Lθ,Tj(a). Hence, for any

a ∈ Jθ, we have

Fθ,a = F ∩ Lθ,a

=
[ 8⋃

j=1

φj(F )
]

∩ Lθ,a

=
8⋃

j=1

[φj(F ) ∩ Lθ,a]

=
⋃

j s.t. a∈Sj(Jθ)

φj [F ∩ φ−1
j (Lθ,a)]

=
⋃

j s.t. a∈Sj(Jθ)

φj(F ∩ Lθ,Tja)

=
⋃

j s.t. a∈Sj(Jθ)

φj(Fθ,Tja).

In particular, for any a ∈ Jθ, as a = Ti(Si(a)),

Fθ,Si(a) ⊃ φi(Fθ,a). (∗)

If b ∈ Γa and Ti(b) ∈ Jθ, then Ti(b) ∈ Γ3a.
We know that, for any a ∈ Jθ, Fθ,a is composed of some reduced (with ratio 1

3 ) copies
of Fθ,b for some b ∈ Γ3a. We record the number of copies with the following matrix: given
a ∈ Jθ, let A(a) = (cpq)1�p,q�N+M be a non-negative integer matrix defined by

cpq = #{i : Ti(Γa(p)) = Γ3a(q)},

where cpq is just the number of the reduced copies of Fθ,Γ3a(q) that are contained in
Fθ,Γa(p), since

Fθ,Γa(p) =
⋃

i s.t. Γa(p)∈Si(Jθ)

φi(Fθ,Ti(Γa(p)))

and Ti(Γa(p)) = Γ3a(q) implies Γa(p) ∈ Si(Jθ).

Remark 3.2. We can see that for any a ∈ Jθ, Fθ,a is a multi-type Moran set with gen-
erating matrices {A(3na)}n�0 and constant ratio 1

3 . Please refer to [7] for the definition
of multi-type Moran sets. If {A(3na)}n�0 is an ultimately periodic sequence, e.g. when
a ∈ D is rational as in [6], then Fθ,a can be characterized as a graph-directed set.

For any a ∈ D ∩ Jθ, let i0(a) be the integer satisfying

Γa(i0(a)) = a.

Then
Nn(a) = ‖ei0(a)A(a)A(3a) · · ·A(3n−1a)‖1, (3.1)
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where the norm of the row vector is given by

‖(x1, . . . , xN+M )‖1 =
∑

i

|xi|.

For any x ∈ R, let x(mod(1/N)) denote the unique value x′ ∈ [0, 1/N) with x ≡
x′ mod(1/N). Here x ≡ y mod(1/N) means that N(x − y) is an integer.

Given any a ∈ D ∩ Jθ, we write

a =
−M − 1 + k

N
+

1
N

( ∞∑
i=1

xi3−i

)

with k ∈ N ∩ [1, N + M ] and {xi}i�1 ∈ {0, 1, 2}N.
We have the following properties.

(1) Suppose x, y ∈ D, then

x ≡ y mod(1/N) =⇒ Γx = Γy and A(x) = A(y). (3.2)

Furthermore, given j ∈ {0, 1, 2},

A(x) is constant on
{

x ∈ D : x(mod(1/N)) ∈
(

j

3N
,
j + 1
3N

)}
,

since, for any (xi, yi) ∈ {0, 1, 2} × {0, 1, 2} \ {(1, 1)} and η ∈ Z,

3
(

η

3N
,
η + 1
3N

)
+ xi

M

N
− yi =

(
k

N
,
k − 1

N

)
for some k ∈ Z.

Denote by Aj the above constant matrix. In fact, define intervals

Iq =
(

−M − 1 + q

N
,
−M + q

N

)
and J t

p =
(

−M − 1 + p

N
+

t

3N
,
−M − 1 + p

N
+

t + 1
3N

)

for p, q ∈ N ∩ [1, N + M ] and t ∈ {0, 1, 2}. Then At = (ct
pq)1�p,q�N+M with

ct
pq = #{i : Ti(J t

p) = Iq},

i.e. ct
pq = #{i : xiM − yiN = 2M + 2 + q − 3p − t}. That means that, for each j, the

matrix Aj is the same one in Theorem 1.1.
Hence, for

b =
M ′

N
+

1
N

( ∞∑
i=1

xi3−i

)
∈ D

with M ′ ∈ Z and {xi}i ∈ {0, 1, 2}N, we have

A(b) = Ax1 . (3.3)

(2) Let µ = N · L|[0,1/N) and let T (x) = 3x mod(1/N). Then

(R/ mod(1/N), T, µ) is ergodic, (3.4)

since (R/ mod(1/N), T, µ) � (R/ mod(1), x → 3x(mod 1),L).
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(3) For x ∈ D/ mod(1/N), let

An(x) = A(x)A(3x) · · ·A(3n−1x) = A(x)A(Tx) · · ·A(Tn−1x). (3.5)

Then {An(·)}n are measurable functions defined on D/ mod(1/N), a subset of full mea-
sure contained in (R/ mod(1/N), µ).

We will prove Theorem 1.1 (1). For

a =
−M − 1 + k

N
+

1
N

( ∞∑
i=1

xi3−i

)
,

it follows from (2.1), (3.1) and (3.3) that

dimBFθ,a = lim
n→∞

log Nn(a)
n log 3

= lim
n→∞

log ‖ei0(a)A(a)A(3a) · · ·A(3n−1a)‖1

n log 3

= lim
n→∞

log ‖ekAx1Ax2 · · ·Axn‖1

n log 3
,

where i0(a) = k and A(3ja) = Axj+1 for any j ∈ {0} ∪ N.
Replacing ‖ · ‖1 by any norm ‖ · ‖ of RN+M , we get

dimBFθ,a = lim
n→∞

log ‖ekAx1Ax2 · · ·Axn‖
n log 3

. (3.6)

This completes the proof of Theorem 1.1 (1).

4. A typical value of the box dimension

For any real matrix Ak×k = (aij)1�i,j�k, let ‖A‖ =
∑

ij |aij |. Then for any matrices
Ak×k, Bk×k, we have ‖AB‖ � ‖A‖ · ‖B‖.

Lemma 4.1. For L almost all a ∈ Jθ,

lim
n→∞

log Nn(a)
n

� lim
n→∞

log ‖An(a)‖
n

= γ � log( 8
3 ).

Here γ is the Lyapunov exponent with respect to A0, A1 and A2.

Proof. Now An(·) is defined on D/ mod(1/N), a set of full measure contained in
(R/ mod(1/N), µ). Moreover,

An+m(a) = An(a)Am(3na) = An(a)Am(Tna)

for a ∈ D/ mod(1/N). Therefore, we have

log ‖An+m(a)‖ � log ‖An(a)‖ + log ‖Am(Tna)‖.
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It follows from the subadditive ergodic theorem [11] that there exists a constant γ

such that

γ = lim
n→∞

log ‖An(a)‖
n

= lim
n→∞

1
n

∫
log ‖An(a)‖ dµ(a)

for µ almost all a ∈ D/ mod(1/N). This means that γ is the corresponding Lyapunov
exponent with respect to A0, A1 and A2, which is independent of the given matrix norm.

By the definition of µ and (3.2), for L almost all a ∈ Jθ,

γ = lim
n→∞

log ‖An(a)‖
n

= lim
n→∞

1
n

∫
Jθ

log ‖An(a)‖ dmθ(a). (4.1)

By the definition of An(a),

‖An(a)‖ =
∑
b∈Γa

Nn(b). (4.2)

As log(x) is convex,
∫

log f(x) � log
∫

f(x). By using this inequality, (2.4), (4.1) and
(4.2), we have

γ = lim
n→∞

1
n

∫
Jθ

log ‖An(a)‖ dmθ(a)

� lim
n→∞

1
n

log
[ ∫

Jθ

‖An(a)‖ dmθ(a)
]

= lim
n→∞

1
n

log
[ ∫

Jθ

∑
b∈Γa

Nn(b) dmθ(a)
]

= lim
n→∞

1
n

log[(N + M)( 8
3 )n]

= log(8
3 ).

In addition, for L almost all a ∈ J ,

lim
n→∞

log Nn(a)
n

� lim
n→∞

log
∑

b∈Γa
Nn(b)

n
= lim

n→∞

log ‖An(a)‖
n

= γ.

�

Lemma 4.2. Suppose that B ⊂ Jθ is a L-measurable set with mθ(B) > 0. If⋃
i Si(B) ⊂ B, then mθ(B) = 1.

Proof. Suppose that mθ(B) < 1, then 0 < mθ(Bc) < 1 and L(Jθ ∩ Bc) > 0.
As

⋃
i Si(B) ⊂ B, we have

S−1
i1···ik

(Bc) ⊂ Bc for any i1 · · · ik. (4.3)

Since L(Jθ ∩ Bc) > 0, we can take a Lebesgue point x0 ∈ Jθ ∩ Bc of density 1, which
implies that for any δ > 0 there exists ε0 > 0 such that

L[I ∩ (Jθ ∩ Bc)]/|I| � 1 − δ (4.4)

whenever x0 ∈ I with |I| � ε0.
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Given a sufficiently large integer k, as Jθ =
⋃

i1···ik
Si1···ik

(Jθ), we can select an interval
I = Sj1···jk

(Jθ) ⊂ Jθ such that x0 ∈ I with

|I| = 3−k|Jθ| < ε0,

then, by (4.4),
L(I ∩ Bc)/|I| = L(I ∩ Jθ ∩ Bc)/|I| � 1 − δ.

By using (4.3), we have

(Sj1···jk
)−1(I ∩ Bc) = (Sj1···jk

)−1(Sj1···jk
(Jθ) ∩ Bc) ⊂ Jθ ∩ Bc.

Hence,
L(Jθ ∩ Bc)

|Jθ|
� L[(Sj1···jk

)−1(I ∩ Bc)]
L[(Sj1···jk

)−1(I)]
=

3nL(I ∩ Bc)
3n|I| � (1 − δ).

This implies that
mθ(Bc) � 1 − δ.

Letting δ → 0, we have mθ(Bc) = 1. This yields a contradiction. �

Proposition 4.3. For L almost all a ∈ Jθ,

dimBFθ,a = γ/ log 3,

where γ is the Lyapunov exponent with respect to A0, A1 and A2.

Proof. By (2.1) and Lemma 4.1, dimBFθ,a � γ/ log 3 for L almost all a. So we need
to prove only that dimBFθ,a � γ/ log 3 for L almost all a. By (4.2) and Lemma 4.1, for
L almost all a ∈ Jθ, we have

max
b∈Γa

dimBFθ,b = lim
n→∞

log ‖An(a)‖
n log 3

=
γ

log 3
. (4.5)

Let
B = {a ∈ Jθ : dimBFθ,a � γ/ log 3},

which is an L-measurable set. It follows from (4.5) that there is a set K of zero Lebesgue
measure such that

Jθ \ K ⊂
N+M⋃

i=−(N+M)

(
B +

i

N

)
,

where B + x = {b + x : b ∈ B}. Hence

0 < L(Jθ) �
N+M∑

i=−(N+M)

L
(

B +
i

N

)
= (2N + 2M + 1)L(B),

which implies that
mθ(B) = L(B)/|Jθ| > 0.

https://doi.org/10.1017/S0013091505000428 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000428


420 Q.-H. Liu, L.-F. Xi and Y.-F. Zhao

By using (∗) in § 3, we have dimBFθ,Si(a) � dimBFθ,a, i.e.⋃
i

Si(B) ⊂ B.

It follows from Lemma 4.2 that mθ(B) = 1. �

Proposition 4.4. For L almost all a ∈ [− tan θ, 1],

dimB Fθ,a = γ/ log 3.

Proof. Notice that An+m(a) = An(a)Am(Tna), and (R/ mod(1/N), T, µ) is ergodic.
Then it follows from the multiplicative ergodic theorem [11] that for each ei (1 � i �
N + M), and for µ-almost all (i.e. L-almost all) a ∈ [0, 1/N) ∩ D,

lim
n→∞

log ‖eiAn(a)‖
n

= λ(a, i), (4.6)

where λ(a, i) depends on a and ei. It follows from (2.1), (2.2), (3.1), (4.6) and Proposi-
tion 4.3 that, for L almost all a,

dimB Fθ,a = γ/ log 3.

�

5. Equality of the Hausdorff and box dimensions

In this section we will prove Theorem 1.1 (3), i.e. for a fixed rational slope tan θ and
almost all a ∈ Jθ, the Hausdorff dimension and the upper box dimension of the section
Fθ,a are equal. To prove this, we shall use Proposition 2.6 in [5] provided by Ledrappier.

Let T3 denote the endomorphism T3x = 3x(mod 1) of the one-dimensional torus T =
R/(mod 1), and let S be a continuous transformation of a metric space Y . Assume that
Λ ⊂ T ×Y is compact and invariant under the map T3 ×S, and that ν is an S-invariant
probability measure on Y . Then for ν-a.e. y, we have

dimH[π−1(y)] = dimB[π−1(y)],

where π : Λ → Y is the projection onto the second coordinate.

Proof of Theorem 1.1 (3). At first, we will show that, for almost all a ∈ [−M/N, 1],

max
b∈Γa

dimB Fθ,b = max
b∈Γa

dimH Fθ,b. (5.1)

In fact, fix a ∈ [−M/N, 1], we have⋃
b∈Γa

Fθ,b =
⋃
i∈Z

[F ∩ {(x, y) : y = (M/N)x + i/N + a}]

= F ∩ {(x, y) : Ny − Mx ≡ aN (mod 1)}.
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Let T3(x) = 3x(mod 1) be a map on the one-dimensional torus T, and let T = T3 × T3

and P = (x, (Ny−Mx)(mod 1)) be the maps on the two-dimensional torus T2. Then the
Sierpinski carpet F and its image P (F ) are invariant under T . Here P is a bi-Lipschitz
endomorphism when restricted to a subset

{(x, y) ∈ T2 : y ∈ [j/N, (j + 1)/N)}

for each integer j ∈ [0, N − 1]. Therefore, let ‘dim’ stand for any one of dimH, dimB and
dimB,

dim P

( ⋃
b∈Γa

Fθ,b

)
= dim

( ⋃
b∈Γa

Fθ,b

)
. (5.2)

We now prepare to apply the stated result from [5]. Let S = T3 on Y = T equipped
with a normalized Lebesgue measure ν, then T = T3 × T3 = T3 × S, P (F ) ⊂ T × Y = T2

is compact and invariant under T , and

π−1[Na(mod 1)] = P

( ⋃
b∈Γa

Fθ,b

)
.

Applying the result from [5], we have, for almost all a,

dimH P

( ⋃
b∈Γa

Fθ,b

)
= dimB P

( ⋃
b∈Γa

Fθ,b

)
. (5.3)

Since the low box dimension lies between the Hausdorff and upper box dimensions, by
using (5.2) and (5.3), we obtain (5.1). Hence, for L almost all a ∈ Jθ,

max
b∈Γa

dimH Fθ,b = dimB Fθ,a = γ/ log 3.

By an argument analogous to Proposition 4.3, we have

dimH Fθ,a = dimB Fθ,a = γ/ log 3 for L almost all a ∈ Jθ.

�

6. Computation of the Lyapunov exponent and dimension

In this section, we give a method mentioned in Remark 1.4 following Theorem 1.1. Sup-
pose tan θ = N/M > 0. Let n = N + M . Then {Ai}2

i=0 are non-negative integer n × n

matrices.
For x = (x1, . . . , xn)T, let ‖x‖1 =

∑
i |xi|. We define ∆n−1 = {(x1, . . . , xn)T | xi �

0, for all i and ‖x‖1 = 1}. Let L denote the Lebesgue measure on [0, 1]. For almost all
t ∈ [0, 1], write t =

∑∞
i=1 ti3−i with {ti}∞

i=1 ∈ {0, 1, 2}N.

Lemma 6.1. For i ∈ {0, 1, 2}, ‖Aix‖1 � 1 for all x ∈ ∆n−1.
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Proof. Given any x = (x1, . . . , xn)T ∈ ∆n−1,

‖Aix‖1 =
∑

i

‖Ai(0, . . . , xi, . . . , 0)T‖1

=
∑

i

xi‖Ai(0, . . . , 1, . . . , 0)T‖1,

we need only to show that ‖Ai(0, . . . , 1, . . . , 0)T‖1 � 1.
It suffices to prove that, for any c ∈ J ∩ D, every column vector of A(c) is non-zero,

i.e. for any b ∈ Γ3c there exists some i such that

Si(b) ∈ Γc.

Suppose that b = 3c + (i/N). Notice that {Si : Jθ → Jθ}i are contractions satisfying

Si(x) = 1
3x + 1

3yi − 1
3xi tan θ = 1

3x + 1
3yi − M

3N
xi

with (xi, yi) ∈ {0, 1, 2} × {0, 1, 2} \ {(1, 1)}.
We will distinguish three cases.

(1) When M ≡ 1 or M ≡ 2(mod 3), we can always select k ∈ {0, 1, 2} such that

i − kM ≡ 0(mod 3).

By using the self-mapping x → ( 1
3 )x − k(M/3N) on Jθ, we have

( 1
3 )b − k

M

3N
= c +

(i − kM)/3
N

∈ Γc.

(2) When N ≡ 1 or N ≡ 2(mod 3), we can always select k ∈ {0, 1, 2} such that

i + kN ≡ 0(mod 3).

By using the self-mapping x → ( 1
3 )x + k 1

3 on Jθ, we have

( 1
3 )b + k 1

3 = c +
(i + kN)/3

N
∈ Γc.

(3) If M, N ≡ 0(mod 3), then 1 = (M, N) � 3. This yields a contradiction.

�

By Lemma 6.1, given i ∈ {0, 1, 2}, a mapping Āi : ∆n−1 → ∆n−1 is defined by

Āi(x) =
Aix

‖Aix‖1
∈ ∆n−1 for any x ∈ ∆n−1.

As shown in [5, p. 615], a probability measure ν on ∆n−1 is called a stationary measure
for the random product if

ν =
∫

[0,1]
Āt1ν dL(t), (6.1)
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where t1 is the first term of the 3-adic expansion of t. By using the notion in [4], the
above formula is

ν = 1
3 [ν ◦ (Ā0)−1 + ν ◦ (Ā1)−1 + ν ◦ (Ā2)−1]. (6.2)

If the stationary measure is unique, the results of [2] show that

γ = 1
3

∫
∆n−1

(log ‖A0x‖1 + log ‖A1x‖1 + log ‖A2x‖1) dν(x). (6.3)

6.1. Hutchinson’s metric

Hutchinson’s metric is a kind of metric for measures [4]. Let δ be a metric on ∆n−1

such that (∆n−1, δ) is a compact space. Then the diameter diamδ(∆n−1) of ∆n−1 is finite.
For any Borel probability measure ν1, ν2 on (∆n−1, δ), Hutchinson’s metric is defined by

dH(ν1, ν2) = sup
Lip(f)�1

∣∣∣∣
∫

f dν1 −
∫

f dν2

∣∣∣∣, (6.4)

where

Lip(f) = sup
x�=y

|f(x) − f(y)|
δ(x, y)

for any function f : ∆n−1 → R.
Notice that, for any ν1, ν2 on (∆n−1, δ),

dH(ν1, ν2) � 2 sup
x,y∈∆n−1

(δ(x, y)) = 2 diamδ(∆n−1). (6.5)

Let M1 be the collection of Borel probability measures on (∆n−1, δ). Then the metric
space (M1, dH) is compact. Define F : M1 → M1 by

Fν = 1
3

2∑
i=0

ν ◦ (Āi)−1. (6.6)

We assume that

(1) there is a constant τ such that

‖x − y‖1 � τ · δ(x, y) for all x, y ∈ ∆n−1; (6.7)

(2) F is contractive, i.e. there is a constant c ∈ (0, 1) such that, for any ν1, ν2 ∈ M1,

dH(Fν1,Fν2) � cdH(ν1, ν2). (6.8)

So, by [4] there is a unique stationary measure, denoted by ν.
Here, for any i,

log ‖Aix‖1 : (∆n−1, δ) → R is Lipschitz (6.9)
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due to Lemma 6.1 and (6.7). In fact, suppose that Ai = (apq)1�p,q�n and let ‖Ai‖∗ =
maxq(

∑
p apq), then, by Lemma 6.1, for any x, y ∈ ∆n−1, we have

|log ‖Aix‖1 − log ‖Aiy‖1| � |‖Aix‖1 − ‖Aiy‖1|

� max
q

( ∑
p

apq

)
‖x − y‖1

� (τ‖Ai‖∗) · δ(x, y).

Under the assumption above, we can estimate the Lyapunov exponent in the following
way.

Let ν0 be an atom measure supported on any point of ∆n−1 and let ν1 = Fν0, . . . ,
νk+1 = Fνk by induction, then

dH(ν, νk) = dH(Fν,Fνk−1)

� cdH(ν, νk−1)
...

� ckdH(ν, ν0) � 2ck diamδ(∆n−1).

Let f(x) = 1
3

∑
i log ‖xAi‖1 be a function on ∆n−1, and let

γk =
∫

f(x) dνk(x).

Therefore, we have the following estimate:

|γ − γk| =
∣∣∣∣
∫

f dν −
∫

f dνk

∣∣∣∣
� Lip(f)dH(ν, νk) � ck

[
2τ

(
max
0�i�2

‖Ai‖∗
)

diamδ(∆n−1)
]
.

That is,
|γ − γk| � ck

[
2τ

(
max
0�i�2

‖Ai‖∗
)

diamδ(∆n−1)
]
. (6.10)

6.2. Example

We mainly compute the Lyapunov exponent in the case of tan θ = 1
2 . We equip ∆2

with a metric defined by

δ(x, y) = max{|x1 − y1|, |x3 − y3|}

for any x = (x1, x2, x3)T, y = (y1, y2, y3)T ∈ ∆2. Here δ is a metric satisfying δ(x, y) �
‖x − y‖1 � 4δ(x, y) and diamδ(∆2) = 1. We note that (∆2, δ) is compact.

In the case of tan θ = 1
2 , we have

A0 =

⎡
⎢⎣1 0 0

0 2 1
1 1 2

⎤
⎥⎦ , A1 =

⎡
⎢⎣1 1 0

2 0 2
0 1 1

⎤
⎥⎦ , A2 =

⎡
⎢⎣2 1 1

1 2 0
0 0 1

⎤
⎥⎦ ,
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with max0�i�2 ‖Ai‖∗ = 3. Take any x = (x1, x2, x3)T, y = (y1, y2, y3)T ∈ ∆2; we then
obtain

δ(Ā0(x), Ā0(y)) = max
{∣∣∣∣ x1

3 − x1
− y1

3 − y1

∣∣∣∣,
∣∣∣∣1 + x3

3 − x1
− 1 + y3

3 − y1

∣∣∣∣
}

,

δ(Ā1(x), Ā1(x)) = max
{∣∣∣∣1 − x3

3 − x2
− 1 − y3

3 − y2

∣∣∣∣,
∣∣∣∣1 − x1

3 − x2
− 1 − y1

3 − y2

∣∣∣∣
}

,

δ(Ā2(x), Ā2(x)) = max
{∣∣∣∣1 + x1

3 − x3
− 1 + y1

3 − y3

∣∣∣∣,
∣∣∣∣ x3

3 − x3
− y3

3 − y3

∣∣∣∣
}

.

We have∣∣∣∣ x1

3 − x1
− y1

3 − y1

∣∣∣∣ =
3(x1 − y1)

(3 − x1)(3 − y1)
� 3

4 |x1 − y1|,

∣∣∣∣1 + x3

3 − x1
− 1 + y3

3 − y1

∣∣∣∣ =
∣∣∣∣ (1 + y3)(x1 − y1) + (3 − y1)(x3 − y3)

(3 − x1)(3 − y1)

∣∣∣∣
� 1 + y3

(3 − x1)(3 − y1)
|x1 − y1| +

1
3 − x1

|x3 − y3|(
as

1 + y3

3 − y1
� 2 − y1

3 − y1
� 2

3

)

� 1
3 |x1 − y1| + 1

2 |x3 − y3|,∣∣∣∣1 − x3

3 − x2
− 1 − y3

3 − y2

∣∣∣∣ =
∣∣∣∣ (3 − y1)(y3 − x3) + (1 − y3)(y1 − x1)

(2 + x1 + x3)(2 + y1 + y3)

∣∣∣∣
� 3

4 |x3 − y3| + 1
4 |x1 − y1|.

Hence, Lip(Ā0) � 5
6 , Lip(Ā1) � 1 and Lip(Ā2) � 5

6 . So in the case of tan θ = 1
2 , F is

contractive with ratio not greater than (5
6 + 1 + 5

6 )/3 = 8
9 . It follows from (6.10) that,

for any k,
|γ − γk| � 24( 8

9 )k,

which implies that we can compute this Lyapunov exponent to any accuracy. By numer-
ical computation, we obtain γ = 0.9793 . . . and, for a.e. b ∈ Jθ, dimH Fθ,b = dimB Fθ,b =
γ/ log 3 = 0.8914 . . . . This typical value is strictly less than log 8/ log 3 − 1 = 0.8927 . . . .

Remark 6.2. For tan θ = 1,

A0 =

[
1 0
2 2

]
, A1 =

[
2 1
1 2

]
, A2 =

[
2 2
0 1

]
.

Let δ(x, y) = |x1 − y1|. Then

Lip(Ā0) � 1
2 , Lip(Ā1) � 1

3 , Lip(Ā2) � 1
2 ,

and thus c � ( 1
2 + 1

3 + 1
2 )/3 = 4

9 . We have the error estimation

|γ − γk| � (12)( 4
9 )k.
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We list some typical values of dimensions of sections as follows:

tan θ = 0 : 0.8927 . . . (= log 8/ log 3 − 1),

tan θ = 1 : 0.8858 . . . ,

tan θ = 1
3 : 0.8926 . . . ,

tan θ = 1
4 : 0.8917 . . . .

According to the above numerical result, we pose the following conjecture.

Conjecture 6.3. If tan θ ∈ Q and dθ is the typical value of dimH Fθ,a for almost all
a ∈ Jθ, then dθ < (log 8/ log 3) − 1.

7. Fractals like the Sierpinski carpet

In fact, we can deal with the fractals like the Sierpinski carpet.
Given an integer m � 2, let {ψi}k

i=1 be a family of different similitudes of R2 such that
ψi(x, y) = (x, y)/m+(ci, di)/m, where ci, di ∈ Z∩[0, m−1]. Suppose that E =

⋃k
i=1 ψi(E)

(⊂ [0, 1]2) is the self-similar set.
Fix θ and let {τj : R → R}k

j=1 be linear mappings such that

ψ−1
j (Lθ,a) = Lθ,τj(a) for all j.

Write ςj = τ−1
j , Eθ,a = E ∩ Lθ,a and Jθ = {a : Lθ,a ∩ E �= ∅}. Here ςj |Jθ

: Jθ → Jθ,
since we have

Eθ,ςj(a) ⊃ ψj(Eθ,a), (∗∗)

which is like formula (∗).
Suppose that tan θ = M/N > 0 is rational with N, M ∈ N.
We make the assumption that Jθ is an interval. For example, if the boundary of [0, 1]2

is contained in E, then Jθ is an interval for each θ. In fact, when the boundary ∂[0, 1]2

is contained in
⋃k

i=1 ψi([0, 1]2), e.g. the Sierpinski carpet, we have ∂[0, 1]2 ⊂ E.
As in § 3, there exist matrices A0, . . . ,Am−1, which are (N + M) × (N + M) non-

negative integer matrices. Because of the assumption, we can prove a lemma of ergodic
type similar to Lemma 4.2. By using this lemma and formula (∗∗), we can prove results
similar to Propositions 4.3 and 4.4. As in § 5, we also establish the equality for Hausdorff
and box dimensions.

Consequently, a result like Theorem 1.1, for the fractals like the Sierpinski carpet, can
be established when Jθ is an interval.
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