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A GENERAL APPROACH
TOLITTLEWOOD-PALEY THEOREMS
FOR ORTHOGONAL FAMILIES

KATHRYN E. HARE

ABSTRACT. A genera lacunary Littlewood-Paley type theorem is proved, which
appliesin avariety of settings including Jacobi polynomials in [0, 1], SU(2), and the
usual classical trigonometric seriesin [0, 27). The theorem is used to derive new results
for LP multipliers on SU(2) and Jacobi LP multipliers.

1. Introduction. Littlewood-Paley theorems have been investigated and appliedin
awide variety of settings, with different technical methods which are particular to each
setting. The purpose of this paper is to present a generic approach. While our results are
not always new (although, in many casesthey are), our method, which is based on ideas
in [14] and [15], is elementary and unifies a range of examples.

The method applies to general orthogonal decompositions of L? which satisfy the
following conditions: Assume L%(i) = @;2, Hk where the subspaces Hy are closed,
closed under complex conjugation and pairwise orthogonal. We let Py: L2 — H, denote
the orthogonal projection, and suppose that whenever f. g € L?, then

Kt
M PP@ € @ H.

i=[k—j|

Given such a decomposition of L2 and a sequenceE = {n; }f;’l of positiveintegers we
define operators § and the square function S¢ on L2 by:

SO= ¥ P j=12... (v=0)

ke[n—1,n;)

and
1/2

() = (L 150)F)
=1
Our main result, which is proved in Section 3, is
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THEOREM 1.1. SupposeL?(u) = @y, Hx where the subspacesHy are closed, closed
under conjugation, pairwise orthogonal and satisfy property (1). Suppose E = {n; }f;’l is
a lacunary sequence of positive integers (i.e. inf njs1 /nj > 1),s € N and Hx C L%(u)
for all k. Thenthereis a constant ¢(s. E) so that for all f € L?S(y)

) [[fll2s < c(s. E)I|Sef[2s-

Decompositions of L2 of this type arise naturally in many different settings. For
example, in L?[—1, 1] the subspaces Hy = sp{e™*, & ™} or H = sp{P{*?(x)}, where
P(k""“) isthe Jacobi polynomial of degreek, havethe required properties. These examples,
aswell as orthogonal decompositions of L2(SU(2)), are discussed in detail in Section 2
where we compare Theorem 1.1 to the Littlewood-Paley theorems which are already
known in these settings.

In Sections4 and 5 applicationsto the study of LP multipliers on SU(2) and Jacobi LP
multipliers are examined.

2. Examples. In this section we will give alist of examplesto which our theorem
applies, and indicate how our theorem compares with what is currently known.

(1) Classical Trigonometric Serieson [0, 27).

Let L(u) = L?(T, Lebesgue measure) and Hy, = sp{€*. e ™™} for k = 0,1,2.....
The classical Littlewood-Paley theorem (a good referenceis [10]) for this setting, states

THEOREM 2.1. If E is a lacunary sequence, then for every 1 < p < oo, there are
constants A(p, E) and B(p, E) > 0 so that
AP B)Ifllp < ISeflp < B(p B)IIf[lp  for all f € LP(T).

Infact, the comparability of normsremainstrue when lacunary sequencesare replaced
by certain more general partitions of Z (cf. [11], [22] and [15]). In[15] it isalso observed
that if for agiven set E

[fll2s < c(s, E)||Sef||2s for all f € LZ(T)

and for all s € N, then the usual two-sided Littlewood-Paley inequalities hold for all
1 < p < oo (thisisessentially aconsequence of [21]), and thus we have a new proof of
the classical theorem.

Before proceeding with the next two examplesit is convenient to prove an el ementary
lemma.

LEMMA 2.2. Let Hy be closed, closed under conjugation, orthogonal subspaces of
L2 and let Py denote the orthogonal projection onto Hy. If for all k.j € N and for all
f.gelL?

k+j
P(f)Pi(9) € _G% Hi.
=l
then

k+j
Pu(f)Pi(9) € ?%w Hi.
i=|k—j
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ProoOF. Without loss of generality assumek —j > 0and 0 <| <k —j. Lethbean
arbitrary element of L2. Since

i+l
Pi(Q)Pi(h) € G%His
1=l
andk > j +1, it follows that Pk(f_) is orthogonal to P;(g)P;(h). Thus

JPOP@PiI(h) =0

for all h € L2, and since the subspacesH; are closed under conjugation this implies that
Px(f)P;j(g) is orthogonal to H;.

(2) Classical orthogonal polynomialson [—1, 1].

Fora, 3 > —% let P9 (X) denotethe Jacobi polynomial of degreen and order («, 3):

( )n dn

onnl dxn[(:L X)L+ X))

(1= X" (1 +X) Priap(¥) =

The Jacobi polynomialsarewell known [25] to be an orthogonal basisfor L2(m,, 5) where
dmg, 5 = (1—x)*(1+x)° dx.
Set Hy = sp{P™M}. It is easy to see that {PY), ... P} span the subspace of
polynomials of degreek, consequently

k+j
PUP WP (x) € DH
i=0

and Hy C LPfor al 1 < p < oo. An appeal to Lemma 2.2 shows that the conditions of
Theorem 1.1 are satisfied.

Special cases of the Jacobi polynomials include Legendre polynomials (« = 3 = 0),
the Gegenbauer or ultraspherical polynomials,

F()\ + 2)r(2)\ + n) (>\_l A—

A 3)
G = I'(2)\)I'(>\+n+2) ®).
and the Chebyshev polynomials,
100 = VTR0, Uy = O DY Tt

Mrn+ %) 2r(n+ 2)

Littlewood-Paley theory has been studied extensively for the classical families of
orthogonal polynomials (cf. [1], [7], [8], [9], [18], [19] and the references cited therein).
There are theoremsinvolving g-functions, maximal operators, Marcinkiewicz multiplier
theorems and Littlewood-Paley diadic decomposition theorems. In particular Askey [1]
(see dso [9]) has shown that for the Jacobi polynomials of order («, 3) with o > 3 the
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full 2-sided Littlewood-Paley theorem (asin Theorem 2.1) holdsfor E = {2/}, provided
Ao +1)/(B+2a) < p < 2a+1)/(a+3), and it is known that this range of p cannot
be improved [2]. Our one-sided Littlewood-Paley theorem yields new inequalities for
sufficiently large, even integersp.

(3) Spherical Harmonics.

Another example is to consider square integrable functions defined on the spherein
R™, and take Hy to be the space formed by the harmonic, homogeneous polynomials of
degree k. Similar arguments to those used before show that the necessary conditions for
our theorem are satisfied in this setting. Littlewood-Paley theory has been studied here
aswell (for e.g. [4] and [24]), however, our result appearsto be new when n > 2.

(4) SU).

For each non-negative integer k let o denote the irreducible unitary representation
of SU(2) of degreek + 1. For an orthogonal decomposition of L2(SU(2)) we take Hy =
{TrAoy : Aisa(k+1) x (k+ 1) matrix}. It iswell known that o ® 0} =~ @ik;ﬁ'kf” oi [16;
29.26], and consequently

k+j
(TrAo)(TrBoj) € € Hi.
=kl

Several authors have investigated Littlewood-Paley theorems for this decomposition
including [5] and [26], however our one-sided, unweighted result appears to be new.
Moreover, it is not in general true that || Sy, f | 2s is bounded over f in the unit ball of L.
Thisis due to Clerc [5] who has shown that the partial sums of the Fourier series of a
function in L? can have unbounded L25-norms.

3. Proof of the Main Result.

PrOOF OF THEOREM 1.1. Thecases = listrivial, sofixs € {2,3.4, ...} and assume
E = {n;} isalacunary sequenceof positiveintegers. Sinceinf nj;1 /n; > 1 wecan choose
aninteger mso large that nj—; > (2s — 1)ni_m for al j.

Standard arguments show that it sufficesto prove the inequality (2) for those f € L2
satisfying Py(f) = O for all but finitely many k. For suchf € L2 andeachi =1...., m set

Fif) = > Swei(F).
k=0
Observethat f = >, Fi(f) and
(50" = (2130F) = (SsEO))
> i&(ﬁ(f)ﬁs.

so without loss of generality we may assume F;(f) = f. An important consequence of
this assumptionisthat if §(f) 7 0 then S(f) =0if |j — k] <m.
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Following the scheme of [15] welet Gy = 0and G; = Z{;i S(f)forj=2.3,...,and
welet P, = |Gj + S(f)|% — |Gj|*. With this notation ||f||5 = ¥ J P;. Expanding gives
S — —_
P = > c(s.abG 2G P (Sf)2(EF)°

a,b=0
atb70

wherec(s.a. b) = (3)(3). Therearetwo casesto consider.

CASE (1). a+b = 1. Without loss of generality we may assumea = 1, b = 0. If
S(f) = O then clearly

[shGleP =0
so we assume otherwise. But then §(f) = Ofor k = j —m+1,...,j — 1, and thus
G = Z{;T S(f). This fact, together with property (1) of the orthogonal decomposition

of L2, ensuresthat
2s-1) 2(s—)Nji—m
IGjl € & H.
i=0

while
Nj+Ni—m

5i(f)éj € ~ G? Hi.

Thechoiceof mensuresthat thesefunctionsareorthogond, i.e., J'S(f)(gj|Gj|2(9‘1) =0.

CasE (2). a+b > 2: Wewill provethat in this case thereis a constant ¢ so that

©) 6726 (5(1)(5M)°) < ¢ [(ISO=+ISHEI?)

For this we obviously may assume §(f) # 0 and we set B; = Eijem (f). Since
S(f) #Z 0, itfollows that G; = 2{;'1“ S(f). Becausea + b > 2 we have theinequality

o= ——\b _
@) GG () (SM) | < SO+ ISOPIG .
Observe that the functions G;Bj, §(f)B; and their conjugates belong to @i>n., ,—n Hi,
while the function |G;j|25-2|§(f)|? belongsto
2(s—2)n_m+2n;
H;.
i=0

The definition of m ensures that Njym—1 — Ny > 2s—1)nj —ny = (2s—2)n;. If s =2
then 2(s — 2)ni—m + 2n; = 2n; < (25— 2)n;; while if s > 3 then 2(s — 2)ni_m + 2n; <
Ni—1 +2n; < 3n; < (2s— 2)n;. Consequently these are orthogonal subspaces of L2 and
so it follows that

JIGP2ISOPITP = [1672ISOPIG +S () + B
= [IGP2ISOP(G2 + IS + BI? + 2ReGS ).
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Thisidentity certainly sufficesto show
J1GIP2ISOP < [IGP2ISOPIP + 26 2IS 0.

Now weusethe elementary inequality a*b"* < ea™+c(e, x)b"fora,b > 0,0 < x < n
and 0 < e < 1, in thetwo forms:

|G [? < €] GjI**72 + c(e. S|

and
IGI*IS M < el G2 E)? + cale. SIS (F)*.
Together with the previous estimate this yields the bound
[1GI=2SEP < 3¢ [ 1625 ()?
+eo(e.9) [(ISOPIFP2+IS0).

Taking e = %1, using (4) and simplifying gives(3).
In order to complete the proof of the theorem we need to combine these two cases
and sum over j to obtain

1B =S [P<> 3 csab) [ISOP+ISORIGE?

i arb>2
<>l J1SOP +ISOPIFP2.
Again, use the elementary inequality
ISOPIFP2 < elf[* + cle. 9)|S ()
for sufficiently small e > 0, and upon simplifying and observing that

¥ [1sO < 0I5
.

the proof of the theorem is complete. ]
An important corollary of the theoremis

COROLLARY 3.1. Under the hypothesis of Theorem1.1, for all f € L?5(1) we have

Il < (s B ISOIE)

ProoF. This simply follows from the theorem and Minkowski’s inequality which
implies that

[(=Is0r)’], < (SIsoi) .
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4, Multiplierson SU(2).

DEFINITION. Let G be a compact group. A bounded operator M mapping LP(G) to
LY(G) which commuteswith left translation is called an (LP, L9) multiplier (or smply an
LP multiplier if p = Q).

Thismeansthat if f € Trig(G) then M(f) is the trigonometric polynomial

S d, TrM(0)f (0)o.

06

where G is the dual object of G, and for each o € G. M(0) is amatrix of sized, x d,
(d, = dego). We customarily identity M with the set {M(0)}, ¢ If M(0) is a scalar
multiple of the identity for each o then M iscalled central.

For amatrix A the notation ||A|| will mean the maximum eigenvalue of the matrix
|A|. We refer the reader to [16, Appendix D] for properties of thisnorm. SinceM mapsL?2
to LP if and only if M* mapsLP to L2, an easy consequenceof Parseval’stheorem is that
M isan (L2, LP) multiplier if the sameis true for the central multiplier {||M(0)]|oolq, Focts-

Central LP multipliers on compact Lie groups have been widely investigated. Weiss
[26], for example, studies Hormander-type multiplier theorems, and Coifman and Weiss
[6] consider the problem of transferring LP multipliers from T' to a compact Lie group
of rank I.

In this section we will show how Theorem 1.1 allows us to construct (L2, LP) mul-
tipliers on SU(2) for p > 2 (and in particular LP-multipliers) which do not satisfy their
criteria. We also obtain a transference result for (L2, LP) multipliers.

The theorem from which the new examples and transference results follow is:

THEOREM 4.1. SupposeE is a set of positive integers and that for some0 <t <1,

EN[2-1,2
Supj| [2 )l

ot < C < oo.

If Apisan (n+1) x (n+ 1) matrix with ||An||- < 1, andif p > 2, then

” _ An
Mp(n) = mXE(”)-
defines an (L2, LP) multiplier on SU(2) with operator norm (denoted [|Mp||2,5) at most
B(p)C%’% (where B(p) is a constant independent of C, E and t).
To provethisit is convenient to first prove alemma.

LEMMA 4.2. SupposeEisasin thetheorem. For each s € N thereis aconstant B(25)
so that for all f € Trig SU(2),

NI

S (n+ )Trf(0)on

nekE

> (n+ VDT f()2)

nekE

< %
. < B9t (
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PrROOF. Example 4 of Section 2 shows that Theorem 1.1 applies in this setting, so
that if

g= > (+)Trfnon,
ne[2-1,2)NE

then Corollary 3.1 impliesthat || S gjl2s < c(9)(X ||gjl|%) 2

An application of Holder's inequality gives ||gj||2s < [|gll3'%lgill% */°. Since f(n) is

an(n+1) x (n+ 1) matrix,
Trif ()| < vn+1(Tr |f(n)|2)%

and so the Cauchy Schwarz inequality, together with the assumption on the cardinality
of EN[21,2), yields

lglle < 3 (+D)Tr[f(n)

ne[2-1,2)NE
< 2629/Clgi|l..
Combining these estimates gives the resullt. ]

PROOF OF THEOREM 4.1. Without loss of generality we assume A, = In.1. The proof
when p = 2s, s € N, isaroutine application of the lemma after observing that

Tr |Masf (n)[2 < [|Mas(n)||2, Tr [F ()]

For arbitrary 2 < p < oo, choose an integer swith 2 < p < 2s, and let v denote the
conjugateindex to 2s (i.e. ¢ + = = 1). By duality

IMagllv2 = [[Mas]l225 < B25)CH%.
Given acomplex number zwith Rez > 0, define an operator M* by

Al [n+1
Mz(n) - n(l+t/2)(lfl/S)ZXE(n)'

If Rez = 1 then ||M% |2 = |[Masf||2 < B(29)Cz~=||f||,, whileif Rez= 0, ||M||, =
|| ]|2- A consequence of Stein’sinterpolation theorem for operators[23] isthat if zsatisfies
1/p' = z/v+ (1 — 2)/2, then M? maps L” to L? with norm at most (B(ZS)C%—%S)Z. As
z(1—1/s) = 1— 2/p, aduality argument completes the proof. "

Takingt = 0 andt = 1 respectively in Theorem 4.1 gives

COROLLARY 4.3. Letp > 2.Ifeither (i) M(n) = n?/P~lnux oy () o (i) [[M(N)]] o0 <
O(n? %) then M isan (L2. LP) multiplier.
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REMARK. The second part can essentially befoundin [17].

In [6] Coifman and Weiss describe a method for transferring LP multipliers on T' to
central LP multipliers on acompact Lie group of rank . When | = 1 their theorem states
that M(n) = ()l .1 isacentral LP multiplier of SU(2) provided

fi(£n) = (n+ )m(n) — (n — Him(n — 2)

defines an LP multiplier on the circle T. Our approach provides new examples of LP
multiplierseveninthecentral case. For example, themultiplier defined in Corollary 4.3(i)
is not one of Coifman and Weiss's type since the corresponding sequence {/(+n)} is
not even bounded.

As far as we are aware there is no result analogous to [6] for transferring (LY, LP)
multipliers with q # p. We consider here the casewhenq =2 < p.

THEOREM 4.4. Suppose {fm(n)} definesan (L2, LP) multiplier on T for some p > 2.
Ifg>2and Ajisan (n+1) x (n+ 1) matrix with || Ayl < 1, then

_ M)A,
M) = &ona 2z

definesan (L2, L%) multiplier on SU(2).

Proor. As remarked earlier, it suffies to assume A, = lh+1. Also, without loss of
generality we may assume sup,, |i(n)| < 1.

For each e > 0, let E(¢) = {n : [(n)| > ¢}. Sincemisan (L%(T). LP(T)) multiplier it
isknown [13, 1.11] that there is a constant C so that for every e > 0 and for each

|E(e) N[22 2)| < Ce223/P,
For agiven 2 < g < oo, define M, by

- _ lneaxenz+(n)
M) = e zra

By Theorem 4.1 one can see that M. is an (L2, L9) multiplier of SU(2) with norm
at most C(g)e—12/9 (where C(q) is independent of ¢), and by duality it is an (LY, L2)
multiplier with the same norm. Since

Tr|Mn)f(n)[2 < 272079 Tr M, (n)f (N> forne EQ27) \ E@707Y),

aconsequenceof Parseval’stheorem and the bounds on the norms of the operators M,-j,
isthat
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o0 .
IMf]|3 < gz-ZU—DHMZﬂHs/.zufué/
]:

< C@IIflIg 2 272 nAN2/a,
J:

Since the latter sum converges, M isan (LY, L2) multiplier, and an (L2, L9) multiplier
by duality. ]

REMARK. In contrast to the situation for the circle there are no central (L2.LP)
multipliers M on SU(2) with limsup [[M(n)||-. > 0. Thisis essentially becausea central
idempotent multiplier maps L2 to LP if and only if supp M is a A(p) set (see [12]), and
SU(2) is known to admit no infinite A(p) set [20].

5. Jacobi multipliers. In this section we derive similar results for multipliers on
Jacobi expansions. We refer the reader to Example 2 of Section 2 for the notation. In
additionwe assumea > 3 > —1/2.

First, we need estimates on the p-norms of the Jacobi polynomials.

THEOREM 5.1. If P denotes the Jacobi polynomial of degree n and order (. 3)
then, for 1 < p < oo,

o(n/2) ifp<2(1+a)/(x+1/2)
IPE“p = ¢ O(n/2(logn)*/?) if p=2(1+ ) /(x +1/2) .
o(n*(=2/M=2/p)  ifp>2(1+a)/(a+1/2)

PROCF. These estimatesare obtained by routine cal culations based upon the fact [ 25,
p. 169] that there is a constant ¢ > 0 so that

97(a+1/2) O(nfl/Z)
Oo(n%)

if £ <6
ifo<éo ’

INIA
Sloply

c
P9 (cosh) = { :

We leave the details to the reader. n

Following the notation of [7] we let Ry(x) = P{*?(x) /Py (1) and hyt = ||Ry/12.
With this notation f = 322, f(n)h,R, where f(n) = j*, f(X)R(X) dm, 5. A consequence
of Theorem 5.1 isthat ||f||3 = > |f (n)|>n>*2.

DEFINITION. A Jacobi (LP, L) multiplier isabounded map M: LP(m, 5) — LY(m, 5)
defined by

Mf = 5" M(n)f (N)haR,

for some sequence {M(n)}.
Analogousto Theorem 4.1 we have
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THEOREM 5.2. SupposeE is a set of positive integersand that for some0 <t <1

supw <D < 0.
j 2!
(i) 1f2<p<21+a)/(a+1/2)and M(n) = n~t@-2/P*)y () then M is a Jacobi
(L2, L") multiplier for all 2 < r < p, with normat most O(v/D).
(i) Ifse Nand2s> 2(1+ a)/(a +1/2), then M(n) = n~(5—5*(0=2)y (n) defines
an (L2, L) multiplier of normat most O(v/D).

ProoF. Themethod of proof issimilar in spirit to the proof of Theorem 4.1. First we
note that

a 2
> TR

neEN[2-1,21)
<D2' > [fOIPhIR
neEN[2i-1,2))
< { ZJIDCS Lne[2-1.2)) |1j(n)|2n2“+2n’1 ifp<2l+a)/(a+1/2)
= | 2'DCE Sz [F(M)Pr2e2n2@=2-% it p > 2(1+ ) /(@ +1/2)

Part (ii) now follows easily from Corollary 3.1.

For part (i) wefirst use Askey’s Littlewood-Paley theorem [1] and the estimate above
to show that M(n) = n~Y2yg(n) is an (L2 LP) multiplier of norm +/DC, when p <
2(1 + ) /(a +1/2). To complete the proof of the stronger result claimed in (i) we
interpolate: For acomplex number zsetl\//l\z(n) = nTl/zXE- Fix2<r<p<2l+a)/(a+
1/2). Chooser < q < 2(1+ «) /(o +1/2) satisfying

2
21 < (1— g)((x+1).
1-2 p

(Thiscanbedonesince1—2/qincreasesto 1/2(1+«) asqincreasesto 2(1+a) / (a+1/2).)

If Rez = 0 then M? maps L? to L? with norm 1, while if Rez = 1 one sees from
the previous work that M? maps LY to L2 with norm at most O(v/D). If 0 < z < 1iis
chosen satisfying 1/r" = z/q + (1 — 2) /2, then Stein’s complex interpolation theorem
[23] again implies that M? is an (L2, L") multiplier of norm at most O(\/BZ). Since

z=(3-1/G - é) we obtain the desired result. .

ReEMARKS. 1. Clearly result (i) is optimal whent = O (in the sense that no larger
power of n will work). That result (ii) is also optimal when t = O can be seen by
considering the multiplier M(n) = %X (2} Where

1

X<%‘§*“(1—g)-

Since [[M(PS )25/ [PS"?||2 — o0 asj — oo, M is not an (L2, L%) multiplier.
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2. A similar interpolation argument applied to (ii) in the case t = 1 gives a specia
case of Bavinck’'sHardy and Littlewood type fractional integration theorem [3].
There are also similar transference results for (L2, LP) Jacobi multipliers.

THEOREM 5.3.  Supposem: L%(T) — L9(T) for someq > 2.1f2s < 2(1+a) /(a+1/2),
and M(n) = m(n)n~2/a-1/90*) or jf s € N, 25 > 2(1+ ) /(o + 1/2) and M(n) =
m(n)nt/s-1/a-1/2-e(1=1/9) then M mapsL? — L' for all r < 2s.

PROCOF. Theideasherearevery similar to thosein Theorem 4.4. We leave the details
to the reader. -

COROLLARY 5.4. If mL%(T) — Ng>2 LY(T) then, for any ¢ > 0, Mc(n) = m(n)n—<
maps L2 to LP for all p < 2(1+ ) /(o + 1/2).

N
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21
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