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A GENERAL APPROACH
TO LITTLEWOOD-PALEY THEOREMS

FOR ORTHOGONAL FAMILIES

KATHRYN E. HARE

ABSTRACT. A general lacunary Littlewood-Paley type theorem is proved, which
applies in a variety of settings including Jacobi polynomials in [0Ò 1], SU(2), and the
usual classical trigonometric series in [0Ò 2ô). The theorem is used to derive new results
for Lp multipliers on SU(2) and Jacobi Lp multipliers.

1. Introduction. Littlewood-Paley theorems have been investigated and applied in
a wide variety of settings, with different technical methods which are particular to each
setting. The purpose of this paper is to present a generic approach. While our results are
not always new (although, in many cases they are), our method, which is based on ideas
in [14] and [15], is elementary and unifies a range of examples.

The method applies to general orthogonal decompositions of L2 which satisfy the
following conditions: Assume L2(ñ) =

L1
k=0 Hk where the subspaces Hk are closed,

closed under complex conjugation and pairwise orthogonal. We let Pk: L2 ! Hk denote
the orthogonal projection, and suppose that whenever f Ò g 2 L2, then

(1) Pk(f )Pj(g) 2
k+jM

i=jk�jj
Hi

Given such a decomposition of L2 and a sequence E = fnjg1j=1 of positive integers we
define operators Sj and the square function SE on L2 by:

Sj(f ) =
X

k2[nj�1Ònj)
Pk(f )Ò j = 1Ò 2Ò    (n0 = 0)

and

SE(f ) =
�1X

j=1
jSj(f )j2

�1Û2


Our main result, which is proved in Section 3, is
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THEOREM 1.1. Suppose L2(ñ) =
L1

k=0 Hk where the subspaces Hk are closed, closed
under conjugation, pairwise orthogonal and satisfy property (1). Suppose E = fnjg1j=1 is
a lacunary sequence of positive integers (i.e. inf nj+1Ûnj Ù 1)Ò s 2 N and Hk � L2s(ñ)
for all k. Then there is a constant c(sÒE) so that for all f 2 L2s(ñ)

(2) kfk2s � c(sÒE)kSEfk2s

Decompositions of L2 of this type arise naturally in many different settings. For
example, in L2[�1Ò 1] the subspaces Hk = spfeiôkxÒ e�iôkxg or Hk = spfP(ãÒå)

k (x)g, where
P(ãÒå)

k is the Jacobi polynomial of degree k, have the required properties. These examples,
as well as orthogonal decompositions of L2(SU(2)), are discussed in detail in Section 2
where we compare Theorem 1.1 to the Littlewood-Paley theorems which are already
known in these settings.

In Sections 4 and 5 applications to the study of Lp multipliers on SU(2) and Jacobi Lp

multipliers are examined.

2. Examples. In this section we will give a list of examples to which our theorem
applies, and indicate how our theorem compares with what is currently known.

(1) Classical Trigonometric Series on [0Ò 2ô).
Let L2(ñ) = L2(T, Lebesgue measure) and Hk = spfeikxÒ e�ikxg for k = 0Ò 1Ò 2Ò    .

The classical Littlewood-Paley theorem (a good reference is [10]) for this setting, states

THEOREM 2.1. If E is a lacunary sequence, then for every 1 Ú p Ú 1, there are
constants A(pÒE) and B(pÒE) Ù 0 so that

A(pÒE)kfkp � kSEfkp � B(pÒE)kfkp for all f 2 Lp(T)

In fact, the comparability of norms remains true when lacunary sequencesare replaced
by certain more general partitions of Z (cf. [11], [22] and [15]). In [15] it is also observed
that if for a given set E

kfk2s � c(sÒE)kSEfk2s for all f 2 L2s(T)

and for all s 2 N, then the usual two-sided Littlewood-Paley inequalities hold for all
1 Ú p Ú 1 (this is essentially a consequence of [21]), and thus we have a new proof of
the classical theorem.

Before proceeding with the next two examples it is convenient to prove an elementary
lemma.

LEMMA 2.2. Let Hk be closed, closed under conjugation, orthogonal subspaces of
L2 and let Pk denote the orthogonal projection onto Hk. If for all kÒ j 2 N and for all
f Ò g 2 L2

Pk(f )Pj(g) 2
k+jM
i=0

HiÒ

then

Pk(f )Pj(g) 2
k+jM

i=jk�jj
Hi
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PROOF. Without loss of generality assume k � j Ù 0 and 0 � l Ú k � j. Let h be an
arbitrary element of L2. Since

Pj(g)Pl(h) 2
j+lM
i=0

HiÒ

and k Ù j + l, it follows that Pk(f̄ ) is orthogonal to Pj(g)Pl(h). Thus

Z
Pk(f̄ )Pj(g)Pl(h) = 0

for all h 2 L2, and since the subspaces Hi are closed under conjugation this implies that
Pk(f )Pj(g) is orthogonal to Hl.

(2) Classical orthogonal polynomials on [�1Ò 1].
For ãÒ å ½ �1

2 let P(ãÒå)
n (x) denote the Jacobi polynomial of degree n and order (ãÒ å):

(1 � x)ã(1 + x)åPn(ãÒå)(x) � (�1)n

2nn!
dn

dxn
[(1 � x)n+ã(1 + x)n+å]

The Jacobi polynomials are well known [25] to be an orthogonal basis for L2(mãÒå) where

dmãÒå = (1� x)ã(1 + x)å dx

Set Hk = spfP(ãÒå)
k g. It is easy to see that fP(ãÒå)

0 Ò    ÒP(ãÒå)
k g span the subspace of

polynomials of degree k, consequently

P(ãÒå)
k (x)P(ãÒå)

j (x) 2
k+jM
i=0

HiÒ

and Hk � Lp for all 1 � p � 1. An appeal to Lemma 2.2 shows that the conditions of
Theorem 1.1 are satisfied.

Special cases of the Jacobi polynomials include Legendre polynomials (ã = å = 0),
the Gegenbauer or ultraspherical polynomials,

Cï
n (x) =

Γ(ï + 1
2 )Γ(2ï + n)

Γ(2ï)Γ(ï + n + 1
2 )

P
(ï� 1

2 Òï�
1
2 )

n (x)Ò

and the Chebyshev polynomials,

Tn(x) =
n!
pô

Γ(n + 1
2 )

P
(� 1

2 Ò�
1
2 )

n (x)ÒUn(x) =
(n + 1)!

pô
2Γ(n + 3

2 )
P

( 1
2 Ò

1
2 )

n (x)

Littlewood-Paley theory has been studied extensively for the classical families of
orthogonal polynomials (cf. [1], [7], [8], [9], [18], [19] and the references cited therein).
There are theorems involving g-functions, maximal operators, Marcinkiewicz multiplier
theorems and Littlewood-Paley diadic decomposition theorems. In particular Askey [1]
(see also [9]) has shown that for the Jacobi polynomials of order (ãÒ å) with ã ½ å the
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full 2-sided Littlewood-Paley theorem (as in Theorem 2.1) holds for E = f2jg, provided
4(ã + 1)Û(3 + 2ã) Ú p Ú 2(ã + 1)Û(ã + 1

2 ), and it is known that this range of p cannot
be improved [2]. Our one-sided Littlewood-Paley theorem yields new inequalities for
sufficiently large, even integers p.

(3) Spherical Harmonics.
Another example is to consider square integrable functions defined on the sphere in

Rn+1, and take Hk to be the space formed by the harmonic, homogeneous polynomials of
degree k. Similar arguments to those used before show that the necessary conditions for
our theorem are satisfied in this setting. Littlewood-Paley theory has been studied here
as well (for e.g. [4] and [24]), however, our result appears to be new when n ½ 2.

(4) SU(2).
For each non-negative integer k let õk denote the irreducible unitary representation

of SU(2) of degree k + 1. For an orthogonal decomposition of L2(SU(2)) we take Hk =
fTr Aõk : A is a (k + 1)ð (k + 1) matrixg. It is well known that õk 
õj '

Lk+j
i=jk�jj õi [16;

29.26], and consequently

(Tr Aõk)(Tr Bõj) 2
k+jM

i=jk�jj
Hi

Several authors have investigated Littlewood-Paley theorems for this decomposition
including [5] and [26], however our one-sided, unweighted result appears to be new.
Moreover, it is not in general true that kSf2jgfk2s is bounded over f in the unit ball of L2s.
This is due to Clerc [5] who has shown that the partial sums of the Fourier series of a
function in L2s can have unbounded L2s-norms.

3. Proof of the Main Result.

PROOF OF THEOREM 1.1. The case s = 1 is trivial, so fix s 2 f2Ò 3Ò 4Ò   g and assume
E = fnjg is a lacunary sequence of positive integers. Since inf nj+1Ûnj Ù 1 we can choose
an integer m so large that nj�1 Ù (2s� 1)nj�m for all j.

Standard arguments show that it suffices to prove the inequality (2) for those f 2 L2

satisfying Pk(f ) = 0 for all but finitely many k. For such f 2 L2 and each i = 1Ò    Òm set

Fi(f ) =
1X

k=0
Smk+i(f )

Observe that f =
Pm

i=1 Fi(f ) and

�
SE(f )

�2s
=
�X

j
jSj(f )j2

�s
=
�X

iÒj

þþþSj

�
Fi(f )

�þþþ2
�s

½
mX

i=1
jSE(Fi(f )j2s Ò

so without loss of generality we may assume Fi(f ) = f . An important consequence of
this assumption is that if Sj(f ) 6= 0 then Sk(f ) = 0 if jj � kj Ú m.
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Following the scheme of [15] we let G1 = 0 and Gj =
Pj�1

k=1 Sk(f ) for j = 2Ò 3Ò    , and
we let Pj = jGj + Sj(f )j2s � jGjj2s. With this notation kfk2s

2s =
PR

Pj. Expanding gives

Pj =
sX

aÒb=0
a+b6=0

c(sÒ aÒ b)Gs�a
j Ḡs�b

j (Sjf )a(Sjf )b

where c(sÒ aÒ b) =
�

s
a

��
s
b

�
. There are two cases to consider.

CASE (1). a + b = 1: Without loss of generality we may assume a = 1, b = 0. If
Sj(f ) = 0 then clearly Z

Sj(f )ḠjjGjj2(s�1) = 0Ò
so we assume otherwise. But then Sk(f ) = 0 for k = j � m + 1Ò    Ò j � 1, and thus
Gj =

Pj�m
k=1 Sk(f ). This fact, together with property (1) of the orthogonal decomposition

of L2, ensures that

jGjj2(s�1) 2
2(s�1)nj�mM

i=0
HiÒ

while

Sj(f )Ḡj 2
nj+nj�mM

i=nj�1�nj�m

Hi

The choice of m ensures that these functions are orthogonal, i.e.,
R

Sj(f )ḠjjGjj2(s�1) = 0.

CASE (2). a + b ½ 2: We will prove that in this case there is a constant c so that

(3)
þþþþ
Z

Gs�a
j Ḡs�b

j

�
Sj(f )

�a�
Sj(f )

�b
þþþþ � c

Z �
jSj(f )j2s + jSj(f )j2jf j2s�2

�

For this we obviously may assume Sj(f ) 6= 0 and we set Bj =
P1

k=j+m Sk(f ). Since

Sj(f ) 6= 0, it follows that Gj =
Pj�m

k=1 Sk(f ). Because a + b ½ 2 we have the inequality

(4) jGs�a
j Ḡs�b

j

�
Sj(f )

�a�
Sj(f )

�bj � jSj(f )j2s + jSj(f )j2jGjj2s�2

Observe that the functions GjB̄j, Sj(f )B̄j and their conjugates belong to
L

i½nj+m�1�nj Hi,
while the function jGjj2(s�2)jSj(f )j2 belongs to

2(s�2)nj�m +2njM
i=0

Hi

The definition of m ensures that nj+m�1 � nj Ù (2s � 1)nj � nj = (2s � 2)nj. If s = 2
then 2(s � 2)nj�m + 2nj = 2nj � (2s � 2)nj; while if s ½ 3 then 2(s � 2)nj�m + 2nj Ú
nj�1 + 2nj Ú 3nj Ú (2s � 2)nj. Consequently these are orthogonal subspaces of L2 and
so it follows that
Z
jGjj2(s�2)jSj(f )j2jf j2 =

Z
jGjj2(s�2)jSj(f )j2jGj + Sj(f ) + Bjj2

=
Z
jGjj2(s�2)jSj(f )j2

�
jGjj2 + jSj(f )j2 + jBjj2 + 2 Re GjSj(f )

�

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This identity certainly suffices to show
Z
jGjj2s�2jSj(f )j2 �

Z
jGjj2(s�2)jSj(f )j2jf j2 + 2jGjj2s�3jSj(f )j3

Now we use the elementary inequality axbn�x � èan +c(èÒ x)bn for aÒ b ½ 0Ò 0 � x Ú n
and 0 Ú è Ú 1, in the two forms:

jGjj2(s�2)jf j2 � èjGjj2s�2 + c(èÒ S)jf j2s�2

and
jGjj2s�3jSj(f )j3 � èjGjj2s�2jSj(f )j2 + c1(èÒ S)jSj(f )j2s

Together with the previous estimate this yields the bound
Z
jGjj2s�2jSj(f )j2 � 3è

Z
jGjj2s�2jSj(f )j2

+c2(èÒ s)
Z �
jSj(f )j2jf j2s�2 + jSj(f )j2s

�


Taking è = 1
4 , using (4) and simplifying gives (3).

In order to complete the proof of the theorem we need to combine these two cases
and sum over j to obtain

kfk2s
2s =

X
j

Z
Pj �

X
j

X
a+b½2

c(sÒ aÒ b)
Z
jSj(f )j2s + jSj(f )j2jGjj2s�2

�
X

j
c(s)

Z
jSj(f )j2s + jSj(f )j2jf j2s�2

Again, use the elementary inequality

jSj(f )j2jf j2s�2 � èjf j2s + c(èÒ s)jSj(f )j2s

for sufficiently small è Ù 0, and upon simplifying and observing that

X
j

Z
jSj(f )j2s � kSE(f )k2s

2sÒ

the proof of the theorem is complete.

An important corollary of the theorem is

COROLLARY 3.1. Under the hypothesis of Theorem 1.1, for all f 2 L2s(ñ) we have

kfk2s � c(sÒE)
�X

kSj(f )k2
2s

� 1
2 

PROOF. This simply follows from the theorem and Minkowski’s inequality which
implies that






�X

jSj(f )j2
� 1

2






2s
�
�X

kSj(f )k2
2s

� 1
2 
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4. Multipliers on SU(2).

DEFINITION. Let G be a compact group. A bounded operator M mapping Lp(G) to
Lq(G) which commutes with left translation is called an (LpÒLq) multiplier (or simply an
Lp multiplier if p = q).

This means that if f 2 Trig(G) then M(f ) is the trigonometric polynomial

X
õ2Ĝ

dõ Tr M̂(õ)f̂ (õ)õÒ

where Ĝ is the dual object of G, and for each õ 2 ĜÒ M̂(õ) is a matrix of size dõ ð dõ
(dõ = deg õ). We customarily identity M with the set fM̂(õ)gõ2Ĝ. If M̂(õ) is a scalar
multiple of the identity for each õ then M is called central.

For a matrix A the notation kAk1 will mean the maximum eigenvalue of the matrix
jAj. We refer the reader to [16, Appendix D] for properties of this norm. Since M maps L2

to Lp if and only if MŁ maps Lp0 to L2, an easy consequence of Parseval’s theorem is that
M is an (L2ÒLp) multiplier if the same is true for the central multiplier fkM̂(õ)k1Idõgõ2Ĝ.

Central Lp multipliers on compact Lie groups have been widely investigated. Weiss
[26], for example, studies Hormander-type multiplier theorems, and Coifman and Weiss
[6] consider the problem of transferring Lp multipliers from Tl to a compact Lie group
of rank l.

In this section we will show how Theorem 1.1 allows us to construct (L2ÒLp) mul-
tipliers on SU(2) for p Ù 2 (and in particular Lp-multipliers) which do not satisfy their
criteria. We also obtain a transference result for (L2ÒLp) multipliers.

The theorem from which the new examples and transference results follow is:

THEOREM 4.1. Suppose E is a set of positive integers and that for some 0 � t � 1,

supj
jE \ [2j�1Ò 2j)j

2jt
� C Ú 1

If An is an (n + 1) ð (n + 1) matrix with kAnk1 � 1, and if p Ù 2, then

M̂p(n) =
An

n(1+tÛ2)(1�2Ûp)
üE(n)

defines an (L2ÒLp) multiplier on SU(2) with operator norm (denoted kMpk2Òp) at most

B(p)C
1
2�

1
p (where B(p) is a constant independent of CÒE and t).

To prove this it is convenient to first prove a lemma.

LEMMA 4.2. Suppose E is as in the theorem. For each s 2 N there is a constant B(2s)
so that for all f 2 Trig SU(2),






X
n2E

(n + 1)Trf̂ (õ)õn






2s
� B(2s)C

1
2�

1
2s

�X
n2E

(n + 1)(2+t)(1� 1
s )+1 Tr jf̂ (n)j2

� 1
2 
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PROOF. Example 4 of Section 2 shows that Theorem 1.1 applies in this setting, so
that if

gj =
X

n2[2j�1Ò2j)\E

(n + 1) Tr f̂ (n)õnÒ

then Corollary 3.1 implies that kP gjk2s � c(s)(
P kgjk2

2s)
1
2 .

An application of Holder’s inequality gives kgjk2s � kgjk1Ûs
2 kgjk1�1Ûs

1 . Since f̂ (n) is
an (n + 1)ð (n + 1) matrix,

Tr jf̂ (n)j �
p

n + 1
�
Tr jf̂ (n)j2

� 1
2

and so the Cauchy Schwarz inequality, together with the assumption on the cardinality
of E \ [2j�1Ò 2j), yields

kgjk1 �
X

n2[2j�1 Ò2j)\E

(n + 1) Tr jf̂ (n)j

� 2j(tÛ2+1)
p

Ckgjk2

Combining these estimates gives the result.

PROOF OF THEOREM 4.1. Without loss of generality we assume An = In+1. The proof
when p = 2s, s 2 N, is a routine application of the lemma after observing that

Tr j ˆM2sf (n)j2 � kM̂2s(n)k2
1 Tr jf̂ (n)j2

For arbitrary 2 Ú p Ú 1, choose an integer s with 2 Ú p Ú 2s, and let v denote the
conjugate index to 2s (i.e. 1

v + 1
2s = 1). By duality

kM2skvÒ2 = kM2sk2Ò2s � B(2s)C
1
2�

1
2s 

Given a complex number z with Re z ½ 0, define an operator Mz by

M̂z(n) =
In+1

n(1+tÛ2)(1�1Ûs)z
üE(n)

If Re z = 1 then kMzfk2 = kM2sfk2 � B(2s)C
1
2�

1
2s kfkó, while if Re z = 0, kMzfk2 =

kfk2. A consequence of Stein’s interpolation theorem for operators [23] is that if z satisfies
1Ûp0 = zÛv + (1 � z)Û2, then Mz maps Lp0 to L2 with norm at most

�
B(2s)C

1
2�

1
2s

�z
. As

z(1� 1Ûs) = 1� 2Ûp, a duality argument completes the proof.

Taking t = 0 and t = 1 respectively in Theorem 4.1 gives

COROLLARY 4.3. Let p ½ 2. If either (i) M̂(n) = n2Ûp�1In+1üf2jg(n) or (ii) kM̂(n)k1 �
O(n

3
p�

3
2 ) then M is an (L2ÒLp) multiplier.
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REMARK. The second part can essentially be found in [17].

In [6] Coifman and Weiss describe a method for transferring Lp multipliers on Tl to
central Lp multipliers on a compact Lie group of rank l. When l = 1 their theorem states
that M̂(n) = m̂(n)In+1 is a central Lp multiplier of SU(2) provided

ñ̂(šn) � (n + 1)m̂(n) � (n � 1)m̂(n� 2)

defines an Lp multiplier on the circle T. Our approach provides new examples of Lp

multipliers even in the central case. For example, the multiplier defined in Corollary 4.3(i)
is not one of Coifman and Weiss’s type since the corresponding sequence fñ̂(šn)g is
not even bounded.

As far as we are aware there is no result analogous to [6] for transferring (LqÒLp)
multipliers with q 6= p. We consider here the case when q = 2 Ú p.

THEOREM 4.4. Suppose fm̂(n)g defines an (L2ÒLp) multiplier on T for some p Ù 2.
If q Ù 2 and An is an (n + 1) ð (n + 1) matrix with kAnk1 � 1, then

M̂(n) =
m̂(n)An

n(1+1Ûp)(1�2Ûq)

defines an (L2ÒLq) multiplier on SU(2).

PROOF. As remarked earlier, it suffies to assume An = In+1. Also, without loss of
generality we may assume supn jm̂(n)j � 1.

For each è Ù 0, let E(è) = fn : jm̂(n)j Ù èg. Since m is an
�
L2(T)ÒLp(T)

�
multiplier it

is known [13, 1.11] that there is a constant C so that for every è Ù 0 and for each j

jE(è) \ [2j�1Ò 2j)j � Cè�222jÛp

For a given 2 Ú q Ú 1, define Mè by

M̂è(n) =
In+1üE(è)\Z+ (n)

n(1+1Ûp)(1�2Ûq)

By Theorem 4.1 one can see that Mè is an (L2ÒLq) multiplier of SU(2) with norm
at most C(q)è�(1�2Ûq) (where C(q) is independent of è), and by duality it is an (Lq0 ÒL2)
multiplier with the same norm. Since

Tr jM̂(n)f̂ (n)j2 � 2�2(j�1) Tr jM̂2�j (n)f̂ (n)j2 for n 2 E(2�j) n E(2�(j�1))Ò

a consequence of Parseval’s theorem and the bounds on the norms of the operators M2�j ,
is that
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kMfk2
2 �

1X
j=1

2�2(j�1)kM2�jk2
q0Ò2kfk2

q0

� C(q)kfk2
q0

1X
j=1

2�2(j�1)22j(1�2Ûq)

Since the latter sum converges, M is an (Lq0 ÒL2) multiplier, and an (L2ÒLq) multiplier
by duality.

REMARK. In contrast to the situation for the circle there are no central (L2ÒLp)
multipliers M on SU(2) with lim supkM̂(n)k1 Ù 0. This is essentially because a central
idempotent multiplier maps L2 to Lp if and only if supp M̂ is a Λ(p) set (see [12]), and
SU(2) is known to admit no infinite Λ(p) set [20].

5. Jacobi multipliers. In this section we derive similar results for multipliers on
Jacobi expansions. We refer the reader to Example 2 of Section 2 for the notation. In
addition we assume ã ½ å ½ �1Û2.

First, we need estimates on the p-norms of the Jacobi polynomials.

THEOREM 5.1. If P(ãÒå)
n denotes the Jacobi polynomial of degree n and order (ãÒ å)

then, for 1 � p Ú 1,

kP(ãÒå))
n kp =

8>><
>>:

O(n�1Û2) if p Ú 2(1 + ã)Û(ã + 1Û2)
O(n�1Û2(log n)1Ûp) if p = 2(1 + ã)Û(ã + 1Û2)
O(nã(1�2Ûp)�2Ûp) if p Ù 2(1 + ã)Û(ã + 1Û2)



PROOF. These estimates are obtained by routine calculations based upon the fact [25,
p. 169] that there is a constant c Ù 0 so that

P(ãÒå)
n (cos í) =

8<
:
í�(ã+1Û2)O(n�1Û2) if c

n � í � ô
2

O(nã) if 0 � í � c
n



We leave the details to the reader.

Following the notation of [7] we let Rn(x) = P(ãÒå)
n (x)ÛP(ãÒå)

n (1) and h�1
n = kRnk2

2.
With this notation f =

P1
n=0 f̂ (n)hnRn where f̂ (n) =

R1
�1 f (x)Rn(x) dmãÒå. A consequence

of Theorem 5.1 is that kfk2
2 =

P jf̂ (n)j2n2ã+1.

DEFINITION. A Jacobi (LpÒLq) multiplier is a bounded map M: Lp(mãÒå) ! Lq(mãÒå)
defined by

Mf =
X

M̂(n)f̂ (n)hnRn

for some sequence fM̂(n)g.
Analogous to Theorem 4.1 we have
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THEOREM 5.2. Suppose E is a set of positive integers and that for some 0 � t Ú 1

sup
j

jE \ [2j�1Ò 2j)j
2jt

� D Ú 1

(i) If 2 Ú p Ú 2(1 +ã)Û(ã + 1Û2) and M̂(n) = n�t(1�2Ûp)(1+ã)üE(n) then M is a Jacobi
(L2ÒLr) multiplier for all 2 Ú r Ú p, with norm at most O(

p
D).

(ii) If s 2 N and 2s ½ 2(1 + ã)Û(ã + 1Û2), then M̂(n) = n�( t+1
2 � 1

s +ã(1� 1
s ))üE(n) defines

an (L2ÒL2s) multiplier of norm at most O(
p

D).

PROOF. The method of proof is similar in spirit to the proof of Theorem 4.1. First we
note that






X
n2E\[2j�1Ò2j)

f̂ (n)hnRn






2

p

� D2jt X
n2E\[2j�1Ò2j)

jf̂ (n)j2h2
nkRnk2

p

�
8<
:

2jtDC2
p
P

n2[2j�1Ò2j) jf̂ (n)j2n2ã+2n�1 if p Ú 2(1 + ã)Û(ã + 1Û2)

2jtDC2
p
P

n2[2j�1Ò2j) jf̂ (n)j2n2ã+2n2ã(1� 1
s )� 2

s if p ½ 2(1 + ã)Û(ã + 1Û2)


Part (ii) now follows easily from Corollary 3.1.
For part (i) we first use Askey’s Littlewood-Paley theorem [1] and the estimate above

to show that M̂(n) = n�tÛ2üE(n) is an (L2ÒLp) multiplier of norm
p

DCp when p Ú
2(1 + ã)Û(ã + 1Û2). To complete the proof of the stronger result claimed in (i) we
interpolate: For a complex number z set dMz(n) = 1

nztÛ2üE. Fix 2 Ú r Ú p Ú 2(1 +ã)Û(ã +
1Û2). Choose r Ú q Ú 2(1 + ã)Û(ã + 1Û2) satisfying

1� 2
r

2(1� 2
q )
�
�

1� 2
p

�
(ã + 1)

(This can be done since 1�2Ûq increases to 1Û2(1+ã) as q increases to 2(1+ã)Û(ã+1Û2).)
If Re z = 0 then Mz maps L2 to L2 with norm 1, while if Re z = 1 one sees from

the previous work that Mz maps Lq0 to L2 with norm at most O(
p

D). If 0 Ú z Ú 1 is
chosen satisfying 1Ûr0 = zÛq0 + (1 � z)Û2, then Stein’s complex interpolation theorem
[23] again implies that Mz is an (L2ÒLr) multiplier of norm at most O(

p
D

z
). Since

z = ( 1
2 � 1

r )Û( 1
2 � 1

q ) we obtain the desired result.

REMARKS. 1. Clearly result (i) is optimal when t = 0 (in the sense that no larger
power of n will work). That result (ii) is also optimal when t = 0 can be seen by
considering the multiplier M̂(n) = 1

nxüf2jg where

x Ú 1
2
� 1

s
+ ã

�
1� 1

s

�


Since kM(P(ãÒå)
2j )k2sÛkP(ãÒå)

2j k2 !1 as j !1ÒM is not an (L2ÒL2s) multiplier.
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2. A similar interpolation argument applied to (ii) in the case t = 1 gives a special
case of Bavinck’s Hardy and Littlewood type fractional integration theorem [3].

There are also similar transference results for (L2ÒLp) Jacobi multipliers.

THEOREM 5.3. Suppose m: L2(T) ! Lq(T) for some q Ù 2. If 2s Ú 2(1+ã)Û(ã+1Û2),
and M̂(n) = m̂(n)n�2Ûq(1�1Ûs)(1+ã), or if s 2 NÒ 2s ½ 2(1 + ã)Û(ã + 1Û2) and M̂(n) =
m̂(n)n1Ûs�1Ûq�1Û2�ã(1�1Ûs) then M maps L2 ! Lr for all r Ú 2s.

PROOF. The ideas here are very similar to those in Theorem 4.4. We leave the details
to the reader.

COROLLARY 5.4. If m: L2(T) ! T
qÙ2 Lq(T) then, for any è Ù 0Ò M̂è(n) = m̂(n)n�è

maps L2 to Lp for all p Ú 2(1 + ã)Û(ã + 1Û2).
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