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Abstract
We prove that the Jacquet–Langlands correspondence for cohomological automorphic forms on quaternionic
Shimura varieties is realized by a Hodge class. Conditional on Kottwitz’s conjecture for Shimura varieties attached
to unitary similitude groups, we also show that the image of this Hodge class in ℓ-adic cohomology is Galois
invariant for all ℓ.
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1. Introduction

This article is motivated by the following question: Is Langlands functoriality in the case of cohomo-
logical automorphic forms on Shimura varieties induced by algebraic cycle classes? When the forms in
question contribute to 𝐻1, this follows from Faltings’ theorem [17] on the Tate conjecture for divisors
on abelian varieties, but for higher 𝐻𝑖 it seems completely open even in the simplest of cases. Since con-
structing algebraic cycle classes seems extremely difficult, one can ask for the next best thing, namely
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to construct the associated absolute Hodge classes [15]. We study this problem in the most classical
example of functoriality, namely the Jacquet–Langlands correspondence for GL2 and its inner forms.

1.1. The main theorem

Let F be a totally real field, [𝐹 : Q] = 𝑛. Denote by Σ∞ the set of infinite places of F, and for 𝑣 ∈ Σ∞, let
𝜎𝑣 : 𝐹 ↩→ R ⊂ C denote the corresponding embedding of F in C. Let 𝐹𝑐 ⊂ Q ⊂ C be the compositum
of 𝜎𝑣 (𝐹) as v varies over Σ∞. Thus, 𝐹𝑐 is the Galois closure of the image of 𝜎(𝐹) for any 𝜎 ∈ Σ∞.

Let 𝜋 = ⊗𝑣𝜋𝑣 be an automorphic representation of GL2(A𝐹 ) corresponding to a (cohomological)
holomorphic Hilbert modular newform of weight (𝑘, 𝑟), where 𝑘 = (𝑘1, . . . , 𝑘𝑛) and 𝑘1 ≡ 𝑘2 ≡ · · · ≡
𝑘𝑛 ≡ 𝑟 mod 2. For simplicity, we will assume that 𝜋 has trivial Nebentypus character so that it is self-
dual up to a (Tate) twist. (See §1.3.2 for the non-self-dual case.) Moreover, in the introduction alone, we
assume that 𝜋 has parallel weight two and that the Hecke eigenvalues 𝑎𝑣 (𝜋) (suitably normalized) are
rational; thus, 𝜋 (at least conjecturally) corresponds to an elliptic curve 𝐴/𝐹. In any case, it is known
that to such a 𝜋 and every rational prime ℓ one can attach a two-dimensional ℓ-adic Galois representation
𝜌𝜋,ℓ of the Galois group Gal(Q/𝐹). The representations 𝜌𝜋,ℓ (for varying ℓ) form a compatible system
in the sense that for all finite primes v of F not dividing ℓ and the conductor of 𝜋, we have

tr 𝜌𝜋,ℓ (Frob𝑣 ) = 𝑎𝑣 (𝜋),

where Frob𝑣 denotes a geometric Frobenius element attached to v; in particular, this trace is independent
of ℓ.

Let 𝐵1 and 𝐵2 be two (nonisomorphic) quaternion algebras over F such that 𝜋 admits Jacquet–
Langlands transfers to the algebraic groups 𝐺1 = Res𝐹/Q 𝐵×1 and 𝐺2 = Res𝐹/Q 𝐵×2 ; we denote the
corresponding automorphic representations of𝐺1 (A) and𝐺2(A) by 𝜋1 and 𝜋2, respectively. We assume
that the set of infinite places of F, where 𝐵1 is split agrees with the set of infinite places where 𝐵2 is
split, and denote this common set of infinite places by Σ ⊂ Σ∞. Let 𝐹Σ be the subfield of C given by

𝐹Σ := Q
{𝜎∈Gal(Q/Q) | 𝜎Σ=Σ}

= (𝐹𝑐) {𝜎∈Gal(𝐹𝑐/Q) | 𝜎Σ=Σ} .

Then 𝐹Σ is also characterized as the subfield of Q generated (over Q) by the elements∑
𝑣 ∈Σ

𝜎𝑣 (𝑥), 𝑥 ∈ 𝐹

and is called the reflex field of the pair (𝐹, Σ).
Let 𝑋1 and 𝑋2 denote the quaternionic Shimura varieties associated with 𝐺1 and 𝐺2. Then 𝑋1 and

𝑋2 are of dimension 𝑑 := |Σ | and have canonical models over the same reflex field 𝐹Σ ⊂ Q ⊂ C. The
Langlands–Kottwitz method can be used to study the ℓ-adic cohomology of the varieties 𝑋1 and 𝑋2.
Following the work of several authors ([45], [11], [13], [59], [54]), we have the following theorem:
For 𝑖 = 1, 2, the 𝜋𝑖-isotypic part of 𝐻∗et(𝑋𝑖,Q,Qℓ) is concentrated entirely in the middle degree d and
moreover is isomorphic to the tensor induction⊗

𝑣 ∈Σ

′
𝜌𝑣𝜋,ℓ , (1.1)

where 𝜌𝑣𝜋,ℓ denotes the representation of Gal(Q/𝜎𝑣 (𝐹)) given by 𝑔 ↦→ 𝜌𝜋,ℓ (𝜎−1
𝑣 𝑔𝜎𝑣 ). As a conse-

quence, for all rational primes ℓ, we have isomorphisms

𝐻𝑑 (𝑋1,Qℓ)𝜋1 � 𝐻𝑑 (𝑋2,Qℓ)𝜋2 (1.2)

as representations of Gal(Q/𝐹Σ). Here and henceforth, we write 𝐻∗(𝑋,Qℓ) for the Qℓ-vector space
𝐻∗et (𝑋Q,Qℓ).
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The isomorphisms (1.2) above may be viewed as giving a collection of Tate classes in

𝐻2𝑑 (𝑋1 × 𝑋2,Qℓ (𝑑)),

and it is natural to ask if there is a single algebraic cycle Z ∈ CH𝑑 (𝑋1 × 𝑋2) that gives rise to this
collection of Tate classes. If 𝑝1 and 𝑝2 are the two projections below,

𝑋1 × 𝑋2
𝑝1

����
��
��
��
�

𝑝2

���
��

��
��

��

𝑋1 𝑋2,

the class of such a putative algebraic cycle Z gives rise to a map

cl(Z)∗ : 𝐻𝑑 (𝑋1) → 𝐻𝑑 (𝑋2), 𝑥 ↦→ 𝑝2,∗(cl(Z) ∪ 𝑝∗1 (𝑥))

for any Weil cohomology theory, which induces isomorphisms

𝐻𝑑 (𝑋1)𝜋1 � 𝐻𝑑 (𝑋2)𝜋2 . (1.3)

Moreover, these isomorphisms for different Weil cohomology theories will be compatible via the usual
comparison theorems.

With this motivation, we state our main theorem. We remark that our proof (of part (ii) of the
theorem below) assumes the validity of Kottwitz’s conjecture characterizing the Galois representations
occurring in the cohomology of Shimura varieties in the special case of Shimura varieties attached to
unitary similitude groups. (See Remark 1.4 below for a more extensive discussion of the status of this
conjecture.)

Theorem 1. Suppose that there is at least one infinite place of F at which 𝐵1 and 𝐵2 are ramified.

(i) There is a nonzero Hodge class

𝜉 ∈ 𝐻2𝑑 (𝑋1 × 𝑋2,Q)𝜋1�𝜋2

such that the induced map

𝜉 (𝑑)∗ : 𝐻𝑑 (𝑋1,Q)𝜋1 → 𝐻𝑑 (𝑋2,Q)𝜋2 , 𝑥 ↦→ 𝑝2,∗(𝜉 (𝑑) ∪ 𝑝∗1 (𝑥)) (1.4)

is an isomorphism of Q-Hodge structures. (i.e., is an isomorphism of Q-vector spaces that, after
extending scalars to C, preserves the Hodge filtration.)

(ii) Assume Kottwitz’s conjecture for Shimura varieties attached to unitary similitude groups. Then the
Hodge class 𝜉 can be chosen such that, for all rational primes ℓ, the image 𝜉ℓ (𝑑) of (the Tate twist)
𝜉 (𝑑) in the ℓ-adic étale realization

𝐻2𝑑 (𝑋1 × 𝑋2,Qℓ)𝜋1�𝜋2 (𝑑)

is Gal(Q/𝐹Σ)-invariant. Consequently, the induced map

𝜉 (𝑑)∗ℓ : 𝐻𝑑 (𝑋1,Qℓ)𝜋1 � 𝐻𝑑 (𝑋2,Qℓ)𝜋2 , 𝑥 ↦→ 𝑝2,∗(𝜉 (𝑑) ∪ 𝑝∗1 (𝑥)) (1.5)

is an isomorphism of Gal(Q/𝐹Σ)-modules. (Here, we view 𝜉 (𝑑) as an étale class via the Betti-étale
comparison theorems.)
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Our proof does not use the previously known isomorphisms (1.2). Rather, it provides an alternate
verification of these isomorphisms which may be of independent interest. We note also that the isomor-
phism (1.4) of Hodge structures implies relations between periods of modular forms on 𝐵×1 and 𝐵×2 .
Such period relations have been studied previously by relating the periods to the Fourier coefficients
of half-integral weight modular forms [55], [56], [53]. In principle, one could use the period relations
to deduce an isomorphism of Hodge structures; however, it seems very unlikely that such methods can
show that this isomorphism is also Galois equivariant.

1.2. Outline of the proof

We now explain the strategy of the proof of Theorem 1. In fact, the proof in the general case is very
similar to that for 𝐹 = Q, 𝑛 = 𝑑 = 1, and so we first describe this case, even though formally speaking
this case is excluded from the theorem on account of the assumption that 𝐵1 and 𝐵2 are ramified at
some infinite place. To be precise, one should work with intersection cohomology in this case, but for
simplicity we just use usual cohomology with the understanding that the proof given below is only
correct once generalized to the setting where F is a totally real field and there is some infinite place
where 𝐵1 and 𝐵2 are both ramified.

The basic idea of the proof is to embed 𝑋1 × 𝑋2 in a larger Shimura variety X, construct a Hodge
class 𝜉 on X and then show that its pullback to 𝑋1 × 𝑋2 has the right property. The implementation of
this idea is a bit involved and breaks up as follows.

1.2.1. Unitary Shimura varieties
We first replace 𝑋1 and 𝑋2 by closely related unitary Shimura varieties. Pick an imaginary quadratic
field E that embeds in both 𝐵1 and 𝐵2. Let V1 = 𝐵1 and V2 = 𝐵2, viewed as (right) E-vector spaces.
These are equipped with natural Hermitian forms that are of signature (1, 1) at the infinite place. The
corresponding unitary similitude groups are given by

GU𝐸 (V1) � (𝐵×1 × 𝐸
×)/𝐹×, GU𝐸 (V2) � (𝐵×2 × 𝐸

×)/𝐹×. (1.6)

Let V = V1⊕V2. Thus V has signature (2, 2) at the infinite place. Consider the maps of algebraic groups

𝐵×1 × 𝐵
×
2 → PB×1 × PB×2 ← G(U𝐸 (V1) × U𝐸 (V2))/𝐸× → GU𝐸 (V)/𝐸×. (1.7)

These induce maps of the associated Shimura varieties

𝑋1 × 𝑋2 → �̃�1 × �̃�2 ← 𝑌 → 𝑋

(where X is the Shimura variety associated with GU𝐸 (V)/𝐸×, etc.), which may be viewed as giving a
correspondence on (𝑋1 × 𝑋2) × 𝑋 . This correspondence induces a map on cohomology

𝜄∗ : 𝐻∗(𝑋) → 𝐻∗(𝑋1 × 𝑋2).

As such, since the kernel of the map

G(U𝐸 (V1) × U𝐸 (V2))/𝐸× → PB×1 × PB×2

is isomorphic to

G(𝐸× × 𝐸×)/𝐸× � 𝐸 (1) � 𝐸×/𝐹×,

one can introduce a character 𝜂 of 𝐸×/𝐹× in the construction of the correspondence; this gives a map

𝜄∗𝜂 : 𝐻∗(𝑋) → 𝐻∗(𝑋1 × 𝑋2).

that depends on the choice of 𝜂.
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1.2.2. Cohomological representations and Vogan–Zuckerman theory
Since the cohomology of X is given by automorphic forms [10], it is natural to first look for a nontempered
automorphic representation Π of GU(V) (or say of U(V) for simplicity) which contributes to 𝐻2 (𝑋) but
only to the (1, 1)-part. The paper of Vogan–Zuckerman [65] classifies cohomological representations;
one finds that there is a unique nontrivial (nontempered) representation Π1

∞ of U(VR) = U(2, 2)R with
the property that

𝐻1,1 (𝔤, 𝐾;Π1
∞) ≠ 0.

The representation Π1
∞ can be realized as a cohomologically induced representation 𝐴𝔮, where 𝔮 is a

𝜃-stable parabolic subalgebra of 𝔤 with Levi component 𝔲(1, 1) ⊕ 𝔲(1, 1). In order to construct Π, it is
first natural to look for an explicit construction of Π1

∞ which is what is accomplished in the next step.

1.2.3. An exceptional isogeny: Archimedean theta correspondence and Kudla–Millson theory
The representation Π1

∞ can be constructed as a theta lift of the trivial representation of U(1, 1) with
appropriate choices of splitting characters. However, for rather subtle reasons, this fact does not seem
to be useful in our construction. Instead, we use the fact that there is an exceptional isogeny

SU(2, 2)R → SO(4, 2)R. (1.8)

Ignoring for the moment the difference between U and SU, and between O and SO, we may view Π1
∞

as a representation of O(4, 2)R, and viewed this way, the representation Π1
∞ is in fact a theta lift from

SL2. This fact may appear somewhat familiar to connoisseurs of Kudla–Millson theory. Indeed, Kudla–
Millson theory studies certain explicit closed forms that are Poincare dual to geodesic cycles coming
from embedded O(3, 2)s in O(4, 2) and shows that the corresponding automorphic representations of
O(4, 2) (which contribute to 𝐻1,1) can be constructed as theta lifts of forms of weight 3 on SL2.

1.2.4. Inner forms
For our purposes, we need inner form versions both of the isogeny (1.8) and of the theta lift. Moreover,
we need to work with similitude groups rather than isometry groups. First, the theta lift: Let B be the
quaternion algebra given by 𝐵 = 𝐵1 · 𝐵2 in the Brauer group of Q. Since 𝐵1 and 𝐵2 are assumed to be
nonisomorphic, B is a nonsplit quaternion algebra. Then there is a theta lift

Θ : A (GU𝐵 (𝑊)) −→ A (GU𝐵 (�̃�)0),

where �̃� is a certain three-dimensional B-vector space equipped with a B-skew-Hermitian form, W is
a one-dimensional B-vector space equipped with a B-Hermitian form and A (𝐺) denotes the space of
automorphic forms on G. (To be precise, the theta lift depends on a choice of Schwartz function.) The
groups U𝐵 (𝑊) and U𝐵 (�̃�) are, respectively, the requisite inner forms of SL2 and O(4, 2). As for the
isogeny, we construct (in §5) an explicit isomorphism,

𝛿 : PGU𝐸 (V)
�−→ PGU𝐵 (�̃�)0, (1.9)

which is an inner form version of equation (1.8) above for (projectivized) similitude groups.

1.2.5. The global theta lift: Schwartz forms
With this preparation, we can describe the construction of a (1, 1)-class on X. Let h be a modular form
of weight 3 and central character 𝜉𝐸 , the quadratic character associated with the extension 𝐸/Q, chosen
such that it admits a Jacquet–Langlands transfer to 𝐵×. Let 𝜏ℎ be the corresponding representation
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of GL2(A). Let JL denote the Jacquet–Langlands correspondence. Consider the composite maps of
automorphic forms

A (GL2)
JL−−→ A (𝐵×) = A (GU𝐵 (𝑊))

Θ−→ A (GU𝐵 (�̃�)0)

and

A (PGU𝐵 (�̃�)0)
𝛿−1

−−−→ A (PGU𝐸 (V)) → A (GU𝐸 (V)).

We show that Θ ◦ JL(𝜏ℎ) has trivial central character and so may be viewed as an automorphic
representation of the group PGU𝐵 (�̃�)0. Thus, we can consider the composite

Π := 𝛿−1 ◦ Θ ◦ JL(𝜏ℎ),

which we may view as an automorphic representation of the group GU𝐸 (V) (A). This representation
has the property that Π∞ � Π̃1

∞, where Π̃1
∞ denotes the unique representation of GU(2, 2)R with trivial

central character whose restriction to U(2, 2)R is isomorphic to Π1
∞. Further, one can check that

dim𝐻 𝑝,𝑞 (𝔤, 𝐾;Π∞) =
{

1 if (𝑝, 𝑞) = (1, 1) or (3, 3);
2 if (𝑝, 𝑞) = (2, 2).

Explicitly, we construct following the ideas of Kudla–Millson (and Funke–Millson in the higher weight
case), a Schwartz form 𝜑∞ (rather than a Schwartz function) such that with 𝜑 = 𝜑fin ⊗ 𝜑∞ for any choice
of a Schwartz function 𝜑fin, the theta lift

𝜃𝜑 (𝜙)

may be viewed as giving a (1, 1)-class on X, for 𝜙 in the space of JL(𝜏ℎ). To be precise, the construction
only depends on the restriction of JL(𝜏ℎ) to the subgroup GL2 (A)+ (consisting of elements in GL2(A)
with positive determinant at infinity) and the vector 𝜙 must be chosen to lie in the antiholomorphic
component of this restriction.

1.2.6. Nonvanishing of the restriction
Next, we show that for suitable choice of 𝜂, h, 𝜑fin and 𝜙, the (1, 1)-form 𝜄∗𝜂 (𝜃𝜑 (𝜙)) is nonvanishing,
when projected to the 𝜋1 � 𝜋2-isotypic component. Let us now explain the main idea to prove this
nonvanishing. Let 𝜔 𝑓𝐵1

and 𝜔 𝑓𝐵2
denote holomorphic one-forms in 𝐻1(𝑋𝐵1 ,C)𝜋1 and 𝐻1(𝑋𝐵2 ,C)𝜋2 ,

respectively. The strategy is to compute the integral∫
𝑋𝐵1×𝑋𝐵2

𝜄∗𝜂𝜃𝜑 (𝜙) · (𝑝∗1𝜔 𝑓𝐵1
∧ 𝑝∗2𝜔 𝑓𝐵2

)

and show it is nonzero. Using the isomorphism 𝛿 from equation (1.9) and noting that the decomposition
V = V1 ⊕ V2 of E-Hermitian spaces induces a decomposition �̃� = 𝑉 ⊕ 𝑉0 of B-skew-Hermitian spaces
such that

GU𝐵 (𝑉)0 � (𝐵×1 × 𝐵
×
2 )/𝐹

×, GU𝐵 (𝑉0)0 � 𝐸×,

and

𝛿 : G(U𝐸 (V1) × U𝐸 (V2))/𝐸×
�−→ G(U𝐵 (𝑉) × U𝐵 (𝑉0))0/𝐹×,
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we can reduce the integral to a period on the left-hand side of the seesaw diagram below, which again
involves quaternionic unitary groups:

GU𝐵 (�̃�)

����
����

����
����

G(U𝐵 (𝑊) × U𝐵 (𝑊))

����
����

����
����

G(U𝐵 (𝑉) × U𝐵 (𝑉0)) GU𝐵 (𝑊)

.

The seesaw then implies that the period can be computed on the right where it becomes a triple product
period of the form ∫

[GU𝐵 (𝑊 ) ]
𝜙 · 𝑓𝐵𝜃 (𝜂),

where 𝑓𝐵 = 𝜃 ( 𝑓𝐵1 � 𝑓𝐵2 ) is an automorphic form on GU𝐵 (𝑊) � 𝐵× in the Jacquet–Langlands transfer
𝜋𝐵 of 𝜋. We then show that 𝜂, h, 𝜑fin and 𝜙 can be chosen (depending on the finite parts of 𝑓𝐵1 and 𝑓𝐵2 )
so as to make this triple product integral nonzero. A similar argument also shows that∫

𝑋𝐵1×𝑋𝐵2

𝜄∗𝜂𝜃𝜑 (𝜙) · (𝑝∗1𝜔 𝑓𝐵1
∧ 𝑝∗2𝜔 𝑓𝐵2

)

is nonzero, and in fact that the induced map

𝜄∗𝜂𝜃𝜑 (𝜙) : 𝐻1(𝑋𝐵1 ,C) → 𝐻1(𝑋𝐵2 ,C)

is an isomorphism.

1.2.7. Hodge classes
As yet we do not know that 𝜃𝜑 (𝜙) is a Hodge class. In fact, strictly speaking it is not likely to be a rational
cohomology class, but we show that it lies in the C-span of the Hodge classes in 𝐻2(𝑋). The key point
here is that the (expected) classification of automorphic representations implies that any automorphic
representation that is nearly equivalent to Π must have Archimedean component lying in the (unique)
A-packet containing Π̃1

∞. Moreover, this Archimedean A-packet consists of two representations Π̃1
∞, Π̃

2
∞

and the latter contributes only to 𝐻4(𝑋) and not 𝐻2 (𝑋). From this, we deduce that 𝐻2(𝑋,C) [Πfin] is
entirely of type (1, 1). (The notation 𝐻2 (𝑋,C) [Πfin] stands for the subspace of 𝐻2 (𝑋,C) on which the
unramified Hecke algebra at some finite level acts by the same Hecke eigenvalues as on Πfin.)

Suppose for the moment that Π has coefficients in Q. Then

𝐻2(𝑋,Q) [Πfin] ⊗Q C = 𝐻2(𝑋,C) [Πfin],

hence 𝐻2(𝑋,Q) [Πfin] is a rational Hodge structure, pure of type (1, 1). Since 𝜃𝜑 (𝜙) lies in
𝐻2 (𝑋,C) [Πfin], we see that it lies in the C-span of 𝐻2(𝑋,Q) [Πfin] and in particular is a C-linear
combination of Hodge classes 𝜉. We have already seen that 𝜃𝜑 (𝜙) ≠ 0 and moreover that its restric-
tion to the 𝜋1 � 𝜋2-component of 𝑋1 × 𝑋2 is nonzero. From this and a simple continuity argument, one
deduces that there is a Hodge class 𝜉 ∈ 𝐻2(𝑋,Q) [Πfin] such that the induced map

𝜄𝜂 (𝜉 (1))∗ : 𝐻1(𝑋𝐵1 ,Q)𝜋1 → 𝐻1 (𝑋𝐵2 ,Q)𝜋2

given by

𝑥 ↦→ 𝑝2,∗(𝑝∗1 (𝑥) · 𝜄
∗
𝜂𝜉 (1))

is an isomorphism of rational Hodge structures.
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1.2.8. Galois representations
Next, we need to understand the Galois representation on 𝐻∗(𝑋) associated to the A-packet containing
Π. Again, for simplicity let us suppose 𝐹 = Q, 𝑑 = 1, the general case being similar. Then the
expected relation between the Galois representation and the A-parameter can be deduced from Kottwitz’s
conjecture (see Remark 1.4 below). In our case, we have

𝐻2(𝑋,Qℓ)Π = Qℓ (−1),
𝐻4(𝑋,Qℓ)Π = Qℓ (−2) ⊕ Sym2 (𝜌ℎ,ℓ),
𝐻6(𝑋,Qℓ)Π = Qℓ (−3),

where 𝜌ℎ,ℓ is the two-dimensional ℓ-adic representation attached to h. From this, one deduces that as a
Galois module, 𝐻2 (𝑋,Qℓ) [Πfin] � Qℓ (−1)𝑚 for some integer m. For every rational prime ℓ, the action
of Gal(Q/Q) on 𝜉 (1) is then trivial and thus 𝜉 (1)∗ (viewed as acting on ℓ-adic cohomology via the
Betti-étale comparison) is a Galois equivariant isomorphism.

1.2.9. Descending coefficients
The argument above needs a bit more care since Π may not have coefficients in Q. Thus, one needs
some care to ensure that the Hodge class constructed has coefficients in Q. This argument needed to
achieve this is explained in detail in §12. Roughly, the point is to replace𝐻2(𝑋,Q) [Πfin] by𝐻2 (𝑋,Q) [I],
where I is the kernel of the action of the unramified Hecke algebra (withQ-coefficients) on Πfin. Another
possible source of extra coefficients is the character 𝜂, and this needs to be handled separately.

1.2.10. The general case
This completes the outline of the proof of Theorem 1 in the case 𝐹 = Q, 𝑛 = 𝑑 = 1, 𝑘 = 2. The general
case (assuming still that 𝑘 = (2, . . . , 2)) is only slightly more complicated. In general, we have

U𝐸 (V) (R) � U(2, 2)𝑑 × U(4)𝑛−𝑑 ,

where the U(2, 2) factors correspond to the places in Σ and the U(4) factors to the infinite places not
in Σ. At the infinite places in Σ, that is, where 𝐵1 and 𝐵2 are both split, we just imitate the constructions
above. However, we need to deal as well with the infinite places where 𝐵1 and 𝐵2 are both ramified. At
such places the representation Π∞ is trivial and the local A-packet is a singleton, consisting of just the
trivial representation. This is consistent with the fact that at such places v, we have

U𝐸 (V)𝑣 � U(4), U𝐵 (�̃�)𝑣 � O(6), U𝐵 (𝑊)𝑣 � SL2

and the theta lift of the weight 3 holomorphic discrete series representation on SL2 is the trivial
representation of O(6). The conclusion then is that 𝐻2𝑑 (𝑋,C) [Πfin] consists entirely of (𝑑, 𝑑)-classes
and one can find a Hodge class 𝜉 ∈ 𝐻2𝑑 (𝑋,Q) [Πfin] such that the induced map

𝜉 (𝑑)∗ : 𝐻𝑑 (𝑋𝐵1 ,Q) → 𝐻𝑑 (𝑋𝐵2 ,Q)

given by

𝑥 ↦→ 𝑝2,∗(𝑝∗1 (𝑥) · 𝜄
∗
𝜂𝜉 (𝑑))

is an isomorphism of rational Hodge structures, that is also Galois invariant.
Remark 1.1. We note the following conceptual reason why we work with the group U𝐵 (�̃�) which at
Archimedean places is (almost) isomorphic to a product O(4, 2)𝑑 × O(0, 6)𝑛−𝑑 . After all, in principle,
one could also construct Kudla–Millson classes directly on the group U𝐵 (𝑉), which at Archimedean
places looks like a product O(2, 2)𝑑 × O(0, 4)𝑛−𝑑 , by taking a lift of a form of parallel weight two.
However, the issue is that on this smaller group, the Hodge classes are mixed up with other classes of
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the same degree, and therefore it is difficult to see that the Kudla–Millson class is in the C-span of the
Hodge classes, except in the ‘trivial’ situation when 𝐵1 = 𝐵2; in that case, the group U𝐵 (𝑉) is quasi-
split and there are obvious ‘diagonal’ cycles in the correct degree. On the larger group, however, the
Hodge classes in degree (𝑑, 𝑑) can be separated out using Hecke operators; this is the crucial idea on
which the proof rests.

Remark 1.2. The assumption that 𝐵1 and 𝐵2 are ramified at some infinite place is made for technical
reasons; it ensures that the auxiliary Shimura variety X used in the proof is compact. We believe that,
with some extra work (e.g., working with intersection cohomology), this assumption could be relaxed.

Remark 1.3. Our proof of Theorem 1 requires the construction of the particular automorphic represen-
tation Π on the unitary group PGU𝐸 (V) and a precise characterization of the near equivalence class of
this representation. We give two proofs of this characterization. The first proof uses the expected classi-
fication of nontempered automorphic representations on unitary groups (associated to Hermitian spaces
over a CM field) in terms of local and global A-packets, which is work in progress of Kaletha, Minguez,
Shin and White [34]. The expected results from their work that we need are stated carefully in §11.1
and §11.2. But we also give another, more direct proof, of the characterization of this representation
using the theta correspondence, that does not use [34]. While this latter proof is unconditional, we have
retained the proof using the full classification, since it provides a conceptual justification for why the
method works, and since it may be useful in other situations.

Remark 1.4. As mentioned before, our proof of part (ii) of Theorem 1 is conditional on the truth of
Kottwitz’s conjecture describing the Galois representations occurring in the cohomology of Shimura
varieties in terms of automorphic representations. The main results on Galois representations that we
need are stated in Propositions 11.8 and 11.9. In §11.5, we explain in some detail how these propositions
follow from Kottwitz’s conjecture [37].

While we do not prove any new results towards Kottwitz’s conjecture in this paper, it is an area of
active investigation and the results we rely on will hopefully be available in the near future. For the
benefit of the reader, we now explain what results towards this conjecture are currently available and
what work still needs to be done. In loc. cit., Kottwitz outlined a strategy to prove the conjecture via
establishing a stable trace formula and comparing it to the Grothendieck–Lefschetz trace formula. In
the subsequent papers [38], [39], Kottwitz used this strategy to verify his conjecture for certain Shimura
varieties of PEL type.

The Shimura varieties that we use are of abelian-type but not PEL. For abelian-type Shimura varieties,
a stable trace formula and the comparison with the Grothendieck–Lefschetz trace formula has recently
been established by Kisin–Shin–Zhu [35]. However, (as is explained in loc. cit. §0.2 and §9.2) two
additional pieces of work need to be done to complete the characterization of Galois representations:

(i) First, one needs an equality relating the stable distribution of [35] to the one in Kottwitz. This
relation is encoded in the expected formula (9.2.2.1) of [35], which the authors of [35] are planning
to investigate in a sequel to that paper.

(ii) Second, one needs the classification of automorphic representations on unitary similitude groups
in terms of A-parameters. The corresponding results for unitary groups are the subject of past and
ongoing work of Kaletha–Minguez–Shin–White. The extension of these results from unitary groups
to unitary similitude groups is also expected to be within reach.

Remark 1.5. At the request of one of the referees, we discuss the relation between this paper and the
work of Bergeron–Millson-Mœglin (e.g., [6] and [5]), which proves many cases of the Hodge conjecture
for certain orthogonal or unitary Shimura varieties. The strategy in those papers is to show that in a
range of degrees, the space of Hodge classes on the varieties under consideration is spanned (for the
most part) by the classes of Kudla–Millson cycles, which are linear combinations of cycle classes of
sub-Shimura varieties, and are thus algebraic. (In some cases, for example U(2, 2), they also need to use
classes that are known to be algebraic due to the Lefschetz-(1, 1) theorem, but are not obviously in the
span of the classes of Kudla–Millson cycles.) Our work is complementary to this, and in a somewhat
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orthogonal direction, since in our setting, there are no obvious Kudla–Millson cycles in the degrees
under consideration, nevertheless we construct interesting Hodge classes. For example, the simplest
interesting setting for us (beyond (1, 1)-classes for U(1, 1) which can be addressed using Lefschetz-
(1, 1)) is the case of (2, 2)-classes for U(2, 2) ×U(2, 2), which is not covered in loc. cit. Our expectation
is that these Hodge classes (that represent functoriality) cannot be obtained from cycle classes of sub-
Shimura varieties by any functorial process, even if one throws in classes that are known to be algebraic
by the Lefschetz-(1, 1) theorem.

The reader may also be interested in the discussion in §1.3.3. As pointed out there, there are also
situations where there are Kudla–Millson cycles in the degrees of interest, but they do not span the space
of Hodge classes. Thus it seems that to understand whether these Hodge classes are algebraic requires
studying algebraic cycles on Shimura varieties that do not arise from sub-Shimura varieties. This is a
topic that has not seen much systematic work so far.

1.3. Extensions and generalizations

In this section, we discuss some extensions and generalizations of the main result stated above.

1.3.1. Local systems and normalizations
While we have stated the main result for trivial coefficients, it works equally well for local systems. In
the main text, this more general case is treated.

We briefly mention the numerology in the case of general local systems. Suppose that the form 𝜋
has weights 𝑘 = (𝑘1, . . . , 𝑘𝑛). Then (in the classical normalization) the Hodge structure of 𝐻∗(𝑋𝑖)𝜋𝑖 is
a tensor product over the places v in Σ of a Hodge structure of type

(𝑘𝑣 − 1, 0) + (0, 𝑘𝑣 − 1).

Thus, 𝐻∗(𝑋1)𝜋1 ⊗ 𝐻∗(𝑋2)𝜋2 is a tensor product over the places v in Σ of a Hodge structure of type

(2𝑘𝑣 − 2, 0) + 2(𝑘𝑣 − 1, 𝑘𝑣 − 1) + (0, 2𝑘𝑣 − 2). (1.10)

The Hodge class in 𝐻∗(𝑋1)𝜋1 ⊗ 𝐻∗(𝑋2)𝜋2 should come from the tensor product over the places v in
Σ of a class of type (𝑘𝑣 − 1, 𝑘𝑣 − 1). In our construction, we pick an auxiliary form 𝜏 of weights
𝑘 + 1 = (𝑘1 + 1, . . . , 𝑘𝑛 + 1). Then JL(𝜏) corresponds to a Hodge structure which is a tensor product
over the places v in Σ of a Hodge structure of type

(𝑘𝑣 , 0) + (0, 𝑘𝑣 ).

Its lift Π to U𝐵 (�̃�) contributes to different cohomological degrees, so there is an associated Hodge
diamond which is the tensor product over the places v in Σ of a Hodge diamond of the form

(𝑘𝑣 + 1, 𝑘𝑣 + 1) (1.11)

(2𝑘𝑣 , 0) 2(𝑘𝑣 , 𝑘𝑣 ) (0, 2𝑘𝑣 )

(𝑘𝑣 − 1, 𝑘𝑣 − 1).

The Hodge class in 𝐻∗(𝑋)Π comes from the tensor product over the places v in Σ of the class of
type (𝑘𝑣 − 1, 𝑘𝑣 − 1). The ‘rest’ of the Hodge structure at any place v consists of Tate twists of this
(𝑘𝑣 − 1, 𝑘𝑣 − 1) class and Sym2 of the Hodge structure attached to �̃�.

In the main text, we use the ‘automorphic normalization’ instead of the classical normalization. This
amounts to twisting the Hodge structures in equations (1.10) and (1.11) above by (2− 𝑘𝑣 , 2− 𝑘𝑣 ). This
twist is therefore not visible in parallel weight 2.
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1.3.2. The non-self-dual case
The assumption that 𝜋 has trivial central character forces 𝜋 to be self-dual and is just made for simplicity.
The non-self-dual case can also be treated similarly; we do not treat this in the paper, but we outline
here the main differences.

Let us denote the contragredient of 𝜋 by 𝜋∨, and let 𝜒 be the central character of 𝜋 so that 𝜋 � 𝜋∨ ⊗ 𝜒.
The method described above extends to this case, except that we must choose 𝜂 such that 𝜂 |A×𝐹 = 𝜒−1 to
compensate for the central character of 𝜋. We remark on one unusual feature. Namely, it seems that the
method outlined here naturally produces a Hodge class 𝜉 ∈ 𝐻2𝑑 (𝑋,Q(𝜒2))Π such that

(i) The induced map

𝜉 (𝑑)∗ : 𝐻𝑑 (𝑋𝐵1 ,Q(𝜒−1))𝜋∨1 → 𝐻𝑑 (𝑋𝐵2 ,Q(𝜒))𝜋2

is an isomorphism ofQ(𝜒) = Q(𝜒−1)-vector spaces and preserves the Hodge filtration (on tensoring
with C).

(ii) The Galois module 𝐻2𝑑 (𝑋,Qℓ (𝜒2)) is isomorphic to (a sum of copies of) Qℓ (−𝑑) (𝜒2) and the
induced map

𝜉 (𝑑)∗ : 𝐻𝑑 (𝑋𝐵1 ,Qℓ (𝜒−1))𝜋∨1 → 𝐻𝑑 (𝑋𝐵2 ,Qℓ (𝜒))𝜋2

satisfies the following Galois equivariance:

𝜎(𝜉∗(𝑥)) = 𝜒2(𝜎) · 𝜉∗(𝜎(𝑥)).

We note that Q(𝜒−1) = Q(𝜒) and Qℓ (𝜒−1) = Qℓ (𝜒).

The reason this is unusual is that one might expect to have a natural construction producing a ra-
tional Hodge class in 𝐻∗(𝑋𝐵1 ,Q(𝜒))𝜋∨1 ⊗ 𝐻∗(𝑋𝐵2 ,Q(𝜒))𝜋2 , since after all the Galois representation
𝐻∗(𝑋𝐵1 ,Qℓ (𝜒))𝜋∨1 ⊗𝐻

∗(𝑋𝐵2 ,Qℓ (𝜒))𝜋2 always contains the trivial representation as a direct summand.
Instead, our construction naturally produces a Hodge class (with coefficients in a number field) in
𝐻∗(𝑋𝐵1 ,Q(𝜒))𝜋1 ⊗ 𝐻∗(𝑋𝐵2 ,Q(𝜒))𝜋2 and then one has to ‘untwist’ it to produce the rational Hodge
class that one expects to exist.

1.3.3. Absolute Hodge classes
The main theorem above is close to saying that the class 𝜉 is an absolute Hodge class in the sense of
Deligne [15]. However, what is missing is the de Rham piece of the story, that is, in order to show that
𝜉 is absolutely Hodge, we would need to show in addition to the above that it is also de Rham rational
and that for every embedding 𝜏 of 𝐹Σ in C, the class 𝜏(𝜉) is a Hodge class, whose image in ℓ-adic
cohomology is Galois invariant for all ℓ. It seems difficult to show this directly. In a previous version
of this paper, we expressed the hope that one might be able to deduce that 𝜉 is absolutely Hodge by
showing that it satisfies a stronger property, namely that it is a motivated cycle in the sense of André.
However, the strategy that we had in mind runs into a serious obstacle that we are unable to circumvent
at the moment, so the problem of showing that 𝜉 is absolutely Hodge remains open. The obstacle is
related to the following fact: There exist tempered L-packets Π of representations on U𝐸 (V) (with
dim𝐸 (V) = 3) which contribute to Hodge classes on the associated Shimura varieties such that the rank
of the Π-isotypic component of the space of algebraic cycles of group-theoretic origin (i.e., coming
from embeddings U𝐸 (V′) ↩→ U𝐸 (V), with dim𝐸 (V′) = 2) is nonzero, yet is strictly smaller than the
dimension of Π-isotypic component of the space of Hodge classes. In particular, there exist Hodge
classes on such varieties that are not represented by algebraic cycles coming from embedded unitary
groups.
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1.3.4. Functoriality for unitary groups
It would be very interesting to generalize the results of this paper to general unitary groups. The main
obstacle to doing this seems to be understanding automorphic periods for the embedding

U𝐸 (V1) × U𝐸 (V2) ↩→ U𝐸 (V), (1.12)

where dim𝐸 (V1) = dim𝐸 (V2) = 𝑛 say, with tempered representations 𝜋1, 𝜋2 on U𝐸 (V1) and U𝐸 (V2),
respectively, and a nontempered representation 𝜋 on U𝐸 (V). In the case treated in this paper, this is
accomplished for 𝑛 = 2 by using exceptional isogenies to relate the unitary groups above to inner forms
of orthogonal groups and then using a seesaw to relate the requisite period integrals to triple product
periods for GL2, which are well understood and fall within the purview of the Gan–Gross–Prasad (GGP)
conjectures. In the general case, these exceptional isogenies are not available. Thus, it seems important
to formulate and prove analogs of the GGP conjecture in the setting of the equation (1.12) above.

2. Shimura varieties, local systems and motives

2.1. Realizations of motives

Some of our definitions below may be somewhat nonstandard.

2.1.1. Hodge structures
Let L be a number field given with a fixed embedding in C. An L-Hodge structure pure of weight n
will be an L-vector space V equipped with a descending filtration 𝐹 ·𝑉C on 𝑉C = 𝑉 ⊗𝐿 C such that for
𝑝 + 𝑞 = 𝑛 + 1, we have

𝑉C = 𝐹 𝑝𝑉C ⊕ 𝐹𝑞𝑉C.

For any pair (𝑝, 𝑞) with 𝑝 + 𝑞 = 𝑛, we set 𝑉 𝑝,𝑞 = 𝐹 𝑝𝑉C ∩ 𝐹𝑞𝑉C.

2.1.2. Realizations of motives with coefficients
Let k and L be number fields. Let Mot𝐿𝑘 denote the category of motives over k with coefficients in L.
(For the moment, it is not very important what equivalence relation we use on algebraic cycles.) We
are particularly interested in certain realization functors on Mot𝐿𝑘 , assuming we are given embeddings
𝑘 ↩→ Q ⊂ C and 𝐿 ⊂ C.

• The Betti realization. The Betti realization 𝐻𝐵 (𝑀) which is an L-Hodge structure.
• The ℓ-adic realizations. For each rational prime ℓ, 𝐻ℓ (𝑀) is a free 𝐿 ⊗ Qℓ-module, equipped with a

continuous (𝐿 ⊗ Qℓ-linear) action of 𝐺𝑘 := Gal(Q/𝑘).

We also have a natural comparison isomorphism

𝐻𝐵 (𝑀) ⊗Q Qℓ � 𝐻ℓ (𝑀)

of (free) 𝐿 ⊗ Qℓ-modules.
There are other realizations which will not concern us in this paper. Thus, we define a category M𝐿

𝑘
as follows. The objects in this category are collections

(𝑉,𝑉ℓ)

as ℓ varies over the primes, where V is an L-vector space equipped with an L-Hodge structure and 𝑉ℓ is
a free 𝐿 ⊗ Qℓ-module with a continuous (𝐿 ⊗ Qℓ-linear) action of 𝐺𝑘 , along with isomorphisms

𝑖ℓ : 𝑉 ⊗ Qℓ � 𝑉ℓ .
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A morphism between two such objects (𝑉,𝑉ℓ , 𝑖ℓ) and (𝑉 ′, 𝑉 ′ℓ , 𝑖
′
ℓ) is an L-linear map 𝑗 : 𝑉 → 𝑉 ′ that

is a morphism of L-Hodge structures such that the 𝐿 ⊗ Qℓ-linear maps 𝑗ℓ : 𝑉ℓ → 𝑉 ′ℓ defined by the
commutative diagram below:

𝑉 ⊗ Qℓ
𝑗⊗1 ��

𝑖ℓ

��

𝑉 ′ ⊗ Qℓ
𝑖′ℓ
��

𝑉ℓ
𝑗ℓ �� 𝑉 ′ℓ

are 𝐺𝑘 -equivariant.
If 𝐿 = Q, we omit the superscript and simply write M𝑘 . Note that to any proper smooth variety X

over k, we can attach objects

H𝑛 (𝑋) =
(
𝐻𝑛 (𝑋 (C),Q), 𝐻𝑛

et (𝑋Q,Qℓ), 𝑖ℓ
)

in the category M𝑘 .
If 𝐿 ⊂ 𝐿 ′ ⊂ C, there is a natural functor M𝐿

𝑘 → M𝐿′

𝑘 , sending (𝑉,𝑉ℓ) to (𝑉 ⊗𝐿 𝐿 ′, 𝑉ℓ ⊗𝐿 𝐿 ′ =
𝑉ℓ ⊗𝐿⊗Qℓ (𝐿 ′ ⊗ Qℓ)).

2.2. Shimura varieties and local systems

2.2.1. Shimura varieties
We recall some basic facts about Shimura varieties [14]. Let S = ResC/R G𝑚 denote the Deligne torus.
As usual, a Shimura datum is a pair (𝐺, 𝑋) consisting of a reductive algebraic group G over Q and a
𝐺 (R)-conjugacy class X of homomorphisms ℎ : S→ 𝐺R satisfying the following conditions:

(i) For h in X, the Hodge structure on the Lie algebra 𝔤 of𝐺R given by Ad◦ℎ is of type (0, 0)+ (−1, 1)+
(1,−1). (In particular, the restriction of such an h to G𝑚,R ⊂ S has image in the center of 𝐺R.)

(ii) For h in X, (Ad ◦ ℎ) (𝑖) is a Cartan involution on 𝐺ad
R

, where 𝐺ad is the adjoint group of G.
(iii) 𝐺ad has no factor defined over Q whose real points form a compact group.
These conditions imply that X has the natural structure of a disjoint union of Hermitian symmetric
domains. The group 𝐺 (R) acts on X on the left by

(𝑔 · ℎ) (𝑧) = 𝑔 · ℎ(𝑧) · 𝑔−1.

Let A and A 𝑓 denote, respectively, the ring of adèles and finite adèles of Q. Let K be an open
compact subgroup of 𝐺 (A 𝑓 ). The Shimura variety associated to (𝐺, 𝑋,K) is the quotient

ShK (𝐺, 𝑋) = 𝐺 (Q)\𝑋 × 𝐺 (A 𝑓 )/K.

For K small enough, this has the natural structure of a smooth variety over C. The inverse limit

Sh(𝐺, 𝑋) = lim←−−K ShK (𝐺, 𝑋)

is a proalgebraic variety that has a canonical model over a number field 𝐸 (𝐺, 𝑋), the reflex field of the
Shimura datum (𝐺, 𝑋). In particular, each ShK (𝐺, 𝑋) has a canonical model over 𝐸 (𝐺, 𝑋). For brevity
of notation, we will often write simply Sh𝐺 or Sh𝐺,K since X will be understood from context.

We recall the definition of 𝐸 (𝐺, 𝑋). This field is defined to be the field of definition of the conjugacy
class of cocharacters

𝜇ℎ : G𝑚,C → SC → 𝐺C,

where the first map is 𝑧 ↦→ (𝑧, 1) and the second is the one induced by h.
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Remark 2.1. The field 𝐸 (𝐺, 𝑋) is given as a subfield of C, and as such has by definition a canonical
embedding into C. When not specified below, any embedding of 𝐸 (𝐺, 𝑋) in C will always be this
canonical embedding. Indeed, we will not have use for any other embedding.

All Shimura varieties occurring in this paper will be compact, so we will assume this to be the case
in the rest of this chapter.

2.2.2. Local systems and cohomology
Let (𝜌,𝑉) be a finite-dimensional representation of G defined over a number field 𝐿 ⊂ C. We assume
that 𝜌 factors through an action of𝐺/𝑍𝑠 , where 𝑍𝑠 is the largest subtorus of the center of G which is split
over R but which has no subtorus split over Q. To the data (𝐺, 𝑋, 𝜌), we can associate the following:

(i) A local system V of L-vector spaces on Sh𝐺 .
(ii) For each prime ℓ, an ℓ-adic local system Vℓ (of 𝐿 ⊗ Qℓ-vector spaces) on Sh𝐺 .

Then 𝐻𝑖 (Sh𝐺,K (C),V) is an L-vector space (in fact, an L-Hodge structure) and there are natural
isomorphisms of free 𝐿 ⊗ Qℓ-modules

𝐻𝑖 (Sh𝐺,K (C),V) ⊗Q Qℓ � 𝐻𝑖
et (Sh𝐺,K ⊗𝐸 (𝐺,𝑋 ) Q,Vℓ) (2.1)

(see [73, Exposé XI]). Note that we are using the given embedding 𝐸 (𝐺, 𝑋) ↩→ Q ⊂ C on both sides
of the isomorphism above. The Hecke algebra H(𝐺 (A 𝑓 ),K) acts on both sides of equation (2.1) and
the isomorphism is Hecke equivariant. Taking the direct limit over K, we get an isomorphism,

𝐻𝑖 (Sh𝐺 (C),V) ⊗Q Qℓ � 𝐻𝑖
et(Sh𝐺 ⊗𝐸 (𝐺,𝑋 ) Q,Vℓ).

Let Π be an irreducible cohomological automorphic representation of 𝐺 (A). The Π-isotypic com-
ponent of 𝐻𝑖 (Sh𝐺 (C),VC) is defined to be

𝐻𝑖 (Sh𝐺 (C),VC)Π := HomH(𝐺 (A 𝑓 ) ,K) (ΠK
𝑓 , 𝐻

𝑖 (Sh𝐺 (C),VC)K)

= HomH(𝐺 (A 𝑓 ) ,K) (ΠK
𝑓 , 𝐻

𝑖 (Sh𝐺,K (C),VC))

for K small enough, this being independent of the choice of K. By Matsushima’s formula [10],

𝐻𝑖 (Sh𝐺,K (C),VC) �
⊕
𝜋

𝑚(𝜋)𝐻𝑖 (𝔤, 𝐾; 𝜋∞ ⊗ VC) ⊗ 𝜋K𝑓 ,

where the sum is over automorphic representations 𝜋 = 𝜋∞ ⊗ 𝜋 𝑓 of 𝐺 (A) and 𝑚(𝜋) is the multiplicity
of 𝜋 in the discrete spectrum of G. It follows that

𝐻𝑖 (Sh𝐺 (C),VC)Π �
⊕

𝜋,𝜋K
𝑓
�ΠK

𝑓

𝑚(𝜋)𝐻𝑖 (𝔤, 𝐾; 𝜋∞ ⊗ VC),

where the sum is over those 𝜋 such that 𝜋K𝑓 � ΠK
𝑓 as H(𝐺 (A 𝑓 ),K)-modules.

2.2.3. Pullback and pushforward
Let 𝑓 : (𝐺, 𝑋1) → (𝐻, 𝑋2) be a morphism of Shimura data. We assume that the reflex fields of (𝐺, 𝑋1)
and (𝐻, 𝑋2) are the same subfield E of C. Let 𝜌 be a finite-dimensional representation of H defined
over a number field 𝐿 ⊂ C (which we can also view as a representation of G via the map 𝐺 → 𝐻) and
denote by V the associated local systems on Sh𝐻 , Sh𝐺 . (Thus, the local system on Sh𝐺 is just obtained
by pullback from Sh𝐻 .) Then there are functorial maps

𝑓 ∗ : 𝐻𝑖 (Sh𝐻 ,V) → 𝐻𝑖 (Sh𝐺 ,V),
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defined both in Betti and ℓ-adic cohomology, which may be viewed as giving a morphism in the category
M𝐿

𝐸 . Suppose in addition that:

(i) 𝐺 → 𝐻 is surjective with kernel Z contained in the center of G.
(ii) Z is cohomologically trivial so that 𝐺 (A) → 𝐻 (A) is surjective as well.

Then there is a bijection between automorphic representations Π𝐻 of 𝐻 (A) and Π𝐺 of 𝐺 (A) on which
Z acts trivially. Assuming that L contains the (common) field of definition of Π𝐻 and Π𝐺 , the map 𝑓 ∗

induces an isomorphism,

𝐻𝑖 (Sh𝐻 ,V)Π𝐻 � 𝐻𝑖 (Sh𝐺 ,V)Π𝐺 ,

in M𝐿
𝐸 .

We will also need to consider the case when the map 𝐺 → 𝐻 satisfies equation ((i)) but not
equation ((ii)). Typically, in such cases, we will be interested in maps in the opposite direction. Indeed,
there is a natural pushforward map:

𝑓∗ : 𝐻𝑖 (Sh𝐺 ,V) → 𝐻𝑖 (Sh𝐻 ,V).

If K1 and K2 are (small enough) open compact subgroups of 𝐺 (A 𝑓 ) and 𝐻 (A 𝑓 ), respectively, the
induced map

Sh𝐺,K1 → Sh𝐻,K2

is finite étale onto its image which is a union of components of Sh𝐻,K2 . Thus, 𝑓∗ can be defined by
taking the trace to the image and then extending by zero outside the image.

Remark 2.2. To make the definition of 𝑓∗ independent of the choice of K1 and K2, we need to normalize
it by multiplying by the factor vol(K1)/vol(K2) for some choice of Haar measures on 𝐺 (A 𝑓 ) and
𝐻 (A 𝑓 ). In our application, we will implicitly make such a choice in §10.4 and §12, but the exact choice
is unimportant.

3. Quaternionic Shimura varieties and the main theorem

3.1. Quaternionic Shimura varieties

Let F be a totally real field and Σ∞ the set of infinite places of F. Let B be a nonsplit quaternion algebra
over F and Σ the set of infinite places of F where B is split. Put 𝑛 = [𝐹 : Q] and 𝑑 = |Σ |. We fix an
isomorphism,

𝐵 ⊗𝐹 R � M2(R)𝑑 × H𝑛−𝑑 ,

which gives an identification

𝐺𝐵 (R) � GL2(R)𝑑 × (H×)𝑛−𝑑 ,

where 𝐺𝐵 := Res𝐹/Q 𝐵×. Let 𝜏𝑣 denote the composite map

𝐵 ⊗𝐹,𝜎𝑣 R � M2(R) ↩→ M2(C)

for 𝑣 ∈ Σ and

𝐵 ⊗𝐹,𝜎𝑣 R � H ↩→ M2 (C)
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for 𝑣 ∈ Σ∞ \Σ. Then 𝜏𝑣 may be viewed as giving a two-dimensional complex representation of 𝐺𝐵. We
identify C× with a subgroup of GL2(R) via

𝑧 = 𝑎 + 𝑏𝑖 ↦→ 𝜄(𝑧) :=
(
𝑎 𝑏
−𝑏 𝑎

)
. (3.1)

Let X denote the 𝐺𝐵 (R)-conjugacy class of

ℎ : S→ 𝐺𝐵,R, ℎ(𝑧) = (𝜄(𝑧), · · · , 𝜄(𝑧), 1, · · · , 1)

so that ℎ𝑣 (𝑧) := ℎ(𝑧)𝑣 = 𝜄(𝑧) for 𝑣 ∈ Σ and ℎ𝑣 (𝑧) = 1 for 𝑣 ∈ Σ∞ \ Σ. We write either Sh𝐺𝐵 (or for
ease of notation, simply Sh𝐵) for the associated Shimura variety. The variety Sh𝐵 admits a canonical
model over the reflex field 𝐹Σ. The Hecke algebra H(𝐺𝐵 (A 𝑓 ),K) acts on Sh𝐵,K via correspondences.
Moreover, the inverse limit

Sh𝐵 = lim←−−
K

Sh𝐵,K

admits a right 𝐺𝐵 (A 𝑓 )-action. We refer the reader to [30, §1] for a more detailed discussion of the
Shimura varieties Sh𝐵.

3.2. Local systems

Let 𝜋 be an automorphic representation of GL2 (A𝐹 ) attached to a holomorphic Hilbert modular newform
of weight (𝑘, 𝑟), where 𝑘 = (𝑘1, . . . , 𝑘𝑛) is a collection of integers of the same parity and r is an integer
with 𝑘𝑖 ≡ 𝑟 mod 2. (We will often denote 𝑘𝑖 by 𝑘𝑣 if v is the ith place in the ordering and write
𝑘 = (𝑘𝑣 )𝑣 ∈Σ∞ .) We suppose that 𝜋 admits a Jacquet–Langlands transfer 𝜋𝐵 to 𝐺𝐵 (A). We also assume
that 𝑘𝑖 ≥ 2 for all i. This implies that the representation 𝜋𝐵,∞ is cohomological, namely 𝜋𝐵 contributes
to the cohomology of a local system on Sh𝐵. The local system is attached to the representation 𝜏∨𝑘,𝑟 of
𝐺𝐵 (C), where

𝜏𝑘,𝑟 :=
⊗
𝑣

(𝜎𝑣 ◦ 𝜈) (𝑟−𝑘𝑣+2)/2Sym𝑘𝑣−2 (𝜏𝑣 )

=
⊗
𝑣

(det ◦ 𝜏𝑣 ) (𝑟−𝑘𝑣+2)/2Sym𝑘𝑣−2(𝜏𝑣 ).

Here, 𝜈 denotes the reduced norm on B. If 𝑘𝑖 is even for all i, then by [66] (Proposition I.3 and §II.2),
the restriction of the representation 𝜏𝑘,𝑟 to the group 𝐺𝐵 is defined over (any field L containing) Q(𝑘),
where Q(𝑘) is the fixed field of the subgroup

{𝜎 ∈ Aut(C/Q) | 𝜎𝑘 = 𝑘}

with 𝜎𝑘 = (𝑘𝜎−1◦𝑣 )𝑣 ∈Σ∞ . More precisely, this representation contains an L-structure invariant by 𝐺𝐵

and that is unique up to homothety.

Remark 3.1. In this paper, we are only concerned with the case when 𝜋 has trivial central character up
to twisting by a power of the reduced norm. This implies that the weights 𝑘𝑖 must all be even. Then, by
twisting 𝜋 by a power of the norm character, we may assume that 𝑟 = 0. For simplicity, we will thus
make this assumption for the rest of the paper and drop r from the notation. Thus, we will just write 𝜏𝑘
below. (For the more general case of nontrivial central characters, see §1.3.2.)

Let 𝐿 = Q(𝜋) be the field of rationality of 𝜋, as defined in [66], §1.8. By loc. cit. Corollary I.8.3 and
Lemma I.2.3, this field contains Q(𝑘) and also agrees with the field generated by (all but finitely many,
in particular the unramified) Hecke eigenvalues of 𝜋. Thus, we may view 𝜏𝑘 as being defined over L,
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and then we get an associated local system of L-vector spaces V𝑘 (𝐿) on Sh𝐵 (C) and for every finite
prime ℓ, an étale 𝐿 ⊗ Qℓ-sheaf V𝑘 (𝐿)ℓ on Sh𝐵. (See also [13], §2.1.) Let

𝑉K
𝐵 (𝐿) := 𝐻∗(Sh𝐵,K (C),V𝑘 (𝐿)),

𝑉K
𝐵 (C) := 𝐻∗(Sh𝐵,K (C),V𝑘 (C)),

𝑉K
𝐵 (𝐿)ℓ := 𝐻∗et(Sh𝐵,K ⊗𝐹Σ Q,V𝑘,ℓ)

so that there are canonical isomorphisms

𝑉K
𝐵 (𝐿) ⊗𝐿 C � 𝑉

K
𝐵 (C)

and

𝑉K
𝐵 (𝐿) ⊗Q Qℓ � 𝑉

K
𝐵 (𝐿)ℓ .

We fix an isomorphism

𝐵 ⊗ A𝑆𝐹 � M2(A𝑆𝐹 ),

where A𝑆𝐹 denotes the adèles of F outside a finite set of places S containing Σ∞ and all finite places
where B is ramified. This gives an isomorphism

𝐵×(A𝑆𝐹 ) � GL2(A𝑆𝐹 ). (3.2)

We assume that 𝜋 transfers to 𝐵×(A𝐹 ), that is, there exists an automorphic representation 𝜋𝐵 = 𝜋𝐵,∞⊗𝜋 𝑓
𝐵

of 𝐵×(A𝐹 ) (necessarily unique by strong multiplicity one) such that 𝜋𝑆𝐵 � 𝜋
𝑆 via the identification (3.2)

above.
For the cohomology with complex coefficients, we can define the 𝜋𝐵-isotypic component by

𝑉𝐵,𝜋𝐵 (C) := HomHC (𝐺𝐵 (A 𝑓 ) ,K) ((𝜋
𝑓
𝐵 )

K, 𝑉K
𝐵 (C)),

for K small enough. This is concentrated in degree 2𝑑 and is independent of the choice of K. To work
over the field of rationality, we note that by [66, Lemma 1.2.2 and §II.1], the Hecke module (𝜋 𝑓

𝐵 )
K is

also defined over L. More precisely, it contains an L-structure (𝜋 𝑓
𝐵 )

K(𝐿) that is invariant by the Hecke
algebra with Q-coefficients, HQ(𝐺𝐵 (A 𝑓 ),K), and that is unique up to homothety. This allows us to
define the 𝜋𝐵-isotypic components

𝑉𝐵,𝜋𝐵 := HomHQ (𝐺𝐵 (A 𝑓 ) ,K) ((𝜋
𝑓
𝐵 )

K (𝐿), 𝑉K
𝐵 (𝐿)),

𝑉𝐵,𝜋𝐵 ,ℓ := HomHQ (𝐺𝐵 (A 𝑓 ) ,K) ((𝜋
𝑓
𝐵 )

K (𝐿), 𝑉K
𝐵 (𝐿)ℓ),

for K small enough, these being independent of the choice of K. Moreover, there are canonical isomor-
phisms of free 𝐿 ⊗ Qℓ-modules

𝑉𝐵,𝜋𝐵 ⊗Q Qℓ � 𝑉𝐵,𝜋𝐵 ,ℓ .

3.3. The main theorem in the general case

We can now state the main theorem in the case of general local systems. Let 𝐵1 and 𝐵2 be two quaternion
algebras that are split at the same set of Archimedean places Σ ⊂ Σ∞ such that 𝜋 transfers to both
𝐵×1 (A𝐹 ) and 𝐵×2 (A𝐹 ). For ease of notation, we write the transfers as 𝜋1 and 𝜋2 instead of 𝜋𝐵1 and 𝜋𝐵2 ,
respectively.
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Theorem 3.2. Suppose that there is at least one infinite place of F at which 𝐵1 and 𝐵2 are ramified.

(i) Let L be the coefficient field of 𝜋. Then there is an isomorphism of L-Hodge structures

𝜄 : 𝑉𝐵1 , 𝜋1 � 𝑉𝐵2 , 𝜋2 .

(ii) Assume Kottwitz’s conjecture for Shimura varieties attached to unitary similitude groups. Then the
isomorphism 𝜄 of part (i) can be chosen such that, for all finite primes ℓ, the maps 𝜄ℓ , defined by
requiring the diagram

𝑉𝐵1 , 𝜋1 ⊗Q Qℓ
𝜄⊗1 ��

�
��

𝑉𝐵2 , 𝜋2 ⊗Q Qℓ
�
��

𝑉𝐵1 , 𝜋1 ,ℓ
𝜄ℓ �� 𝑉𝐵2 , 𝜋2 ,ℓ

(3.3)

be commutative, are Gal(Q/𝐹Σ)-isomorphisms.

This theorem will be proved in §12.

4. Unitary and quaternionic unitary Shimura varieties

The proof of the main theorem will require working with several different auxiliary Shimura varieties,
some that are associated with unitary groups and some with quaternionic unitary groups. In this section,
we introduce the main actors and the relations between them. Many of the claims below will only be
justified in the following section; however, we believe it is more transparent to introduce all the different
groups up front and relegate the details of various isomorphisms and maps to §5. The reader may want
to read these sections in parallel.

4.1. Unitary and quaternionic unitary groups

Let F be a totally real field. Let 𝐵1 and 𝐵2 be two quaternion algebras that are split at the same set
of infinite places of F. Let E be a CM extension of F that embeds in both 𝐵1 and 𝐵2. We fix such
embeddings 𝐸 ↩→ 𝐵1, 𝐸 ↩→ 𝐵2 and write

𝐵1 = 𝐸 + 𝐸j1, 𝐵2 = 𝐸 + 𝐸j2

for some trace zero elements j1 ∈ 𝐵×1 , j2 ∈ 𝐵×2 . We write pr𝑖 for the projection 𝐵𝑖 → 𝐸 onto the ‘first
coordinate’ and ∗𝑖 for the main involution on 𝐵𝑖 . Then V𝑖 := 𝐵𝑖 is a right Hermitian E-space, the form
being given by

(𝑥, 𝑦)𝑖 = pr𝑖 (𝑥∗𝑖 𝑦).

If 𝑥 = 𝑎 + j𝑖𝑏, 𝑦 = 𝑐 + j𝑖𝑑, then

(𝑥, 𝑦)𝑖 = (𝑎 + j𝑖𝑏, 𝑐 + j𝑖𝑑)𝑖 = 𝑎𝜌𝑐 − 𝐽𝑖𝑏𝜌𝑑,

where 𝜌 is the nontrivial Galois automorphism of 𝐸/𝐹 and 𝐽𝑖 = j2
𝑖 ∈ 𝐹×. This form satisfies the relations

(𝑥𝛼, 𝑦𝛽)𝑖 = 𝛼𝜌 (𝑥, 𝑦)𝑖𝛽

for 𝛼, 𝛽 ∈ 𝐸 and

(𝑥, 𝑦)𝑖 = (𝑦, 𝑥)𝜌𝑖 .
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Then

G1 := GU𝐸 (V1) � (𝐵×1 × 𝐸
×)/𝐹×, G2 := GU𝐸 (V2) � (𝐵×2 × 𝐸

×)/𝐹×,

where the (inverses of these) isomorphisms are given by (𝛽, 𝛼) ↦→ (𝑥 ↦→ 𝛽𝑥𝛼−1). Let

G = G(U𝐸 (V1) × U𝐸 (V2))/𝐸× = G
(
(𝐵×1 × 𝐸

×)/𝐹× × (𝐵×2 × 𝐸
×)/𝐹×

)
/𝐸×,

where 𝐸× embeds as 𝛼 ↦→ ([1, 𝛼], [1, 𝛼]). We define groups G̃ and G0 that are closely related to G as
follows:

G̃ = G(U𝐸 (V1) × U𝐸 (V2)), G0 = 𝐵×1 /𝐹
× × 𝐵×2 /𝐹

×.

Let V = V1 ⊕ V2, which is a four-dimensional E-Hermitian space. Also, let Ṽ = ∧2 (V). In §5.2, we
will show that Ṽ is naturally equipped with the structure of a right B-space, where 𝐵 := 𝐵1 · 𝐵2 is the
quaternion algebra over F whose class in the Brauer group of F equals the product of the classes of 𝐵1
and 𝐵2. (Note that B is split at all the infinite places of F.) When we want to think of Ṽ as a B-space, we
will write instead �̃� for it. Moreover, we show that �̃� is equipped with a B-skew-Hermitian form such
that there is a canonical isomorphism

GU𝐸 (V)/𝐸× = PGU𝐸 (V) � PGU𝐵 (�̃�)0 = GU𝐵 (�̃�)0/𝐹×.

There is also a canonical decomposition �̃� = 𝑉♯ ⊕ 𝑉♯
0 of B-skew-Hermitian spaces. Let

G̃ = GU𝐸 (V),
G = GU𝐸 (V)/𝐸×,

G𝐵 = GU𝐵 (�̃�)0/𝐹×,
G̃𝐵 = GU𝐵 (�̃�)0,

G𝐵 = G(U𝐵 (𝑉♯) × U𝐵 (𝑉♯
0 ))

0/𝐹×

G̃𝐵 = G(U𝐵 (𝑉♯) × U𝐵 (𝑉♯
0 ))

0.

We regard these as algebraic groups overQ by restriction of scalars. We then have the following diagram,
which we also write out in gory detail below. (Here, the dual notation in the right-most column indicates
also the notation used (locally) in §10.)

G̃ �� G
� �� G𝐵 G̃𝐵 = �̃���

G̃ ��

𝑖

��

pr
���

��
��

��
� G

𝑖

��

pr

��

� �� G𝐵

𝑖

��

pr
		��
��
��
��
��

G̃𝐵 = G��

𝑖

��

𝑝

��
pr



�����
�����

�����
�����

�����
�

G0 (𝐵×1 × 𝐵
×
2 )/𝐹

× = 𝐺𝑞
��

𝐺𝐵1 × 𝐺𝐵2

��										

��
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GU𝐸 (V) �� PGU𝐸 (V) = GU𝐸 (V)/𝐸×
� �� PGU𝐵 (𝑉)0 = GU𝐵 (𝑉)0/𝐹× GU𝐵 (𝑉)0��

G(U𝐸 (V1) × U𝐸 (V2))

𝑖

��

�� G(U𝐸 (V1) × U𝐸 (V2))/𝐸×

𝑖

��

� �� G(U𝐵 (𝑉♯) × U𝐸 (𝑉♯
0 ))

0/𝐹×

𝑖

��

G(U𝐵 (𝑉♯) × U𝐸 (𝑉♯
0 ))

0

𝑖

��

��

G((𝐵×1 × 𝐸
×)/𝐹× × (𝐵×2 × 𝐸

×)/𝐹×)

�

��

��

pr

��
���

���
���

���
���

���
���

���
���

���
�

G((𝐵×1 × 𝐸
×)/𝐹× × (𝐵×2 × 𝐸

×)/𝐹×)/𝐸×

�

��

�
𝜉
��

pr

��

G((𝐵×1 × 𝐵
×
2 )/𝐹

× × 𝐸×)/𝐹×

�

��

pr

�����
���

���
���

���
���

���
���

���
���

G((𝐵×1 × 𝐵
×
2 )/𝐹

× × 𝐸×)

�

��

��

pr

������
����

����
����

����
����

����
����

����
����

����
����

�

𝑝

��
PB×1 × PB×2 (𝐵×1 × 𝐵

×
2 )/𝐹

×
𝑞

��

𝐵×1 × 𝐵
×
2

��������������������������

��
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Here, the maps pr, p and q are the obvious projection maps. We write down formulas for some of the
maps as well:

𝐹× ⊂ (𝐵×𝑖 × 𝐸×), 𝑡 ↦→ (𝑡, 𝑡),
𝐸× ⊂ G((𝐵×1 × 𝐸

×)/𝐹× × (𝐵×2 × 𝐸
×)/𝐹×), 𝛼 ↦→ ([1, 𝛼], [1, 𝛼]),

𝐹× ⊂ (𝐵×1 × 𝐵
×
2 ), 𝑡 ↦→ (𝑡, 𝑡−1),

𝐹× ⊂ G((𝐵×1 × 𝐵
×
2 )/𝐹

× × 𝐸×), 𝑡 ↦→ ([𝑡, 1], 𝑡) = ([1, 𝑡], 𝑡),
𝜉 ([[𝑏1, 𝛼1], [𝑏2, 𝛼2]]) = [[𝑏1, 𝑏2], 𝜈(𝑏1)𝛼−1

1 𝛼2)],

where the map 𝜉 is given in the diagram and 𝜈 denotes the reduced norm.

4.2. Shimura data

All the groups in the diagram have associated Shimura varieties, defined such that the maps in the
diagram induce morphisms of Shimura data. It suffices to describe the Shimura datum for G̃ and G̃𝐵
since the Shimura data for all the other groups are defined by composing with the maps above. For G̃,
this is given by

ℎ𝑣 (𝑧) = ([𝜄(𝑧), 1], [𝜄(𝑧), 1])

at the infinite places 𝑣 ∈ Σ and

ℎ𝑣 (𝑧) = ([1, 1], [1, 1])

at the other infinite places. For G̃𝐵, this is given by

ℎ𝑣 (𝑧) = ([𝜄(𝑧), 𝜄(𝑧)], 𝑧𝑧)

at the infinite places 𝑣 ∈ Σ and

ℎ𝑣 (𝑧) = ([1, 1], 1)

at the other infinite places. In §12.2.2, we will write out the Shimura data more explicitly for some of
the other groups in the diagram.

4.3. Components

Later (in §12), we will need to use the structure of the components of ShG̃𝐵
. Let 𝐺1 := G̃𝐵 and

𝐺2 := (𝐵×1 × 𝐵
×
2 )/𝐹

×. We may consider the canonical sequences

1→ 𝐺der
𝑖 → 𝐺𝑖 → 𝑇𝑖 → 1,

where 𝐺der
𝑖 denotes the derived group and 𝑇𝑖 the maximal commutative quotient of 𝐺𝑖 . The map p

induces a map of exact sequences as below:

1 �� (𝐵 (1)1 × 𝐵
(1)
2 )/{±1} ��

��

G
(
(𝐵×1 × 𝐵

×
2 )/𝐹

× × 𝐸×
)( [𝜈,𝜈 ],id)��

𝑝

��

G ((𝐹× × 𝐹×)/𝐹× × 𝐸×) ��

��

1

1 �� (𝐵 (1)1 × 𝐵
(1)
2 )/{±1} �� (𝐵×1 × 𝐵

×
2 )/𝐹

× [𝜈,𝜈 ] �� (𝐹× × 𝐹×)/𝐹× �� 1.
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The set of components of ShG̃𝐵
is in bijection with the Shimura variety attached to (𝑇1, ℎ1), where

𝑇1 = G
(
(𝐹× × 𝐹×)/𝐹× × 𝐸×

)
, ℎ1(𝑧) = ([𝑧𝑧, 𝑧𝑧], 𝑧𝑧).

Now,

𝑍 (𝐺1) � {(𝑡, 𝛼) ∈ 𝐹× × 𝐸× : 𝑡2 = N(𝛼)},

the inverse of this isomorphism being given by (𝑡, 𝛼) ↦→ ([𝑡, 1], 𝛼) = ([1, 𝑡], 𝛼). The natural map
𝑍 (𝐺1) → 𝑇1 is given by

(𝑡, 𝛼) ↦→ ([𝑡2, 1], 𝛼) = ([𝑡, 𝑡], 𝛼) = ([1, 𝑡2], 𝛼)

and induces an isomorphism

𝑍 (𝐺1)/〈(−1, 1)〉 � 𝑇1.

Note that any finite order character 𝜂 of 𝑇1 (Q)\𝑇1 (A) gives rise to a class in 𝐻0(ShG̃𝐵
,Q(𝜂)), where

Q(𝜂) is the field generated by the values of 𝜂. We will denote this class 𝑐𝜂 . Of particular interest to
us are the characters obtained as follows: We fix a finite order character 𝜂 of 𝐸 (1) \A(1)𝐸 and define a
character of 𝑇1 by

𝜂([𝑡1, 𝑡2], 𝛼) = 𝜂((𝑡1𝑡2)−1𝛼).

The pullback of this character to 𝑍 (𝐺1) is given by

𝜂(𝑡, 𝛼) = 𝜂(𝑡−1𝛼).

4.4. Automorphic forms and cohomology of local systems

Recall that we have the following relation between unitary and quaternionic unitary groups given by the
top line of the diagram above:

G̃ = GU𝐸 (V) → GU𝐸 (V)/𝐸× = G � G𝐵 = GU𝐵 (�̃�)0/𝐹× ← GU𝐵 (�̃�)0 = G̃𝐵 .

Since 𝐸× and 𝐹× are cohomologically trivial, the maps G̃𝐵 (A) → G𝐵 (A) and G̃ (A) → G (A) are
surjective. Hence, the isomorphism in the middle induces a natural bijection between automorphic
representations of G̃𝐵 with trivial central character and those of G̃ with trivial central character. Thus,
if Π is an automorphic representation of any of the groups at the ends with trivial central character,
it may be viewed as an automorphic representation of any of the other groups above; we denote all
such representations by the same symbol Π. Moreover, if (𝜌,V𝜌) is a finite-dimensional representation
(again of one of the groups at the end but trivial on the center) defined over a field L containing the
reflex field 𝐹Σ and Π is defined over L, then we get a local system also denoted by V𝜌 on each of the
associated Shimura varieties and there are natural isomorphisms

𝐻𝑖 (ShG̃ ,V𝜌)Π � 𝐻𝑖 (ShG ,V𝜌)Π � 𝐻𝑖 (ShG𝐵 ,V𝜌)Π � 𝐻𝑖 (ShG̃𝐵
,V𝜌)Π

in the category M𝐿
𝐹Σ

. Note that in general, the field of definition of Π contains the field of rationality,
but it is not clear if these are equal. See [12] and [62] for a discussion of these issues, which are not so
important for us, since we will need instead a version of the above isomorphism for eigenvectors of the
unramified Hecke algebra at finite level.

Let K be an open compact subgroup of 𝐺 (A 𝑓 ) for G each of the end groups such that the images
of the two K under the quotient map are identified by the isomorphism in the middle; we write K for
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this image, which is an open compact subgroup of (𝐺/𝑍) (A 𝑓 ) = 𝐺 (A 𝑓 )/𝑍 (A 𝑓 ). (There will be no
confusion since we will always identify what the ambient group is.) Let S be a finite set of rational
primes such that for all the groups 𝐺 = G̃ ,G ,G𝐵, G̃𝐵 above and for all 𝑝 ∉ 𝑆:

• 𝐺 𝑝 is unramified over Q𝑝;
• K𝑝 is a hyperspecial maximal compact subgroup of 𝐺 𝑝;
• Π𝑝 has a nonzero K𝑝-fixed vector.

Let H 𝑆
𝐺 = H (𝐺 (A𝑆),K𝑆) be the Hecke algebra of compactly supported K𝑆-bi-invariant functions

on 𝐺 (A𝑆), where A𝑆 =
∏′

𝑝∉𝑆Q𝑝 and K𝑆 =
∏

𝑝∉𝑆 K𝑝 . Then H 𝑆
𝐺 acts on 𝐻𝑖 (Sh𝐺,K,V𝜌). Put Π𝑆 =⊗′

𝑝∉𝑆 Π𝑝 and

𝐻𝑖 (Sh𝐺,K,V𝜌) [Π𝑆] = {𝑥 ∈ 𝐻𝑖 (Sh𝐺,K,V𝜌) | 𝑇𝑥 = 𝜒(𝑇)𝑥 for all 𝑇 ∈ H 𝑆
𝐺 },

where 𝜒 is the character of H 𝑆
𝐺 associated to Π𝑆 . Let L be a number field such that (𝜌,V𝜌) is defined

over L and such that L contains the values of 𝜒. Then there are canonical isomorphisms

𝐻𝑖 (ShG̃ ,K,V𝜌) [Π𝑆] � 𝐻𝑖 (ShG ,K,V𝜌) [Π𝑆] � 𝐻𝑖 (ShG𝐵 ,K,V𝜌) [Π𝑆] � 𝐻𝑖 (ShG̃𝐵 ,K,V𝜌) [Π
𝑆]

in the category M𝐿
𝐹Σ

.

5. The global exceptional isomorphism

In this section, we construct the global exceptional isomorphism between a (projectivized) unitary group
attached to a Hermitian (or skew-Hermitian) space V and the identity component of a (projectivized)
quaternionic unitary group attached to a quaternionic skew-Hermitian space �̃� . Moreover, we study the
restriction of this isomorphism to certain natural subgroups corresponding to the decomposition of V
into the direct sum of two subspaces.

5.1. Hermitian spaces and unitary groups

Let 𝐸/𝐹 be a quadratic extension of number fields and 𝜌 the nontrivial Galois automorphism of 𝐸/𝐹.
Write 𝐸 = 𝐹 + 𝐹i for some trace zero element i ∈ 𝐸×. Let V be an E-Hermitian space. Thus, V is
equipped with a nondegenerate form

(·, ·)V : V × V→ 𝐸

satisfying

(𝑣𝛼, 𝑤𝛽)V = 𝛼𝜌 (𝑣, 𝑤)V𝛽, (𝑣, 𝑤)V = (𝑤, 𝑣)𝜌V.

We denote by GU𝐸 (V) the unitary similitude group of V:

GU𝐸 (V) = {𝑔 ∈ GL𝐸 (V) | (𝑔𝑣, 𝑔𝑤)V = 𝜈(𝑔) · (𝑣, 𝑤)V for all 𝑣, 𝑤 ∈ V},

where 𝜈 : GU𝐸 (V) → 𝐹× is the similitude character.

Proposition 5.1. Let V be a Hermitian space over E of dimension n, and let 𝑔 ∈ GU𝐸 (V). Then

N(det(𝑔)) = 𝜈(𝑔)𝑛,

where N denotes the norm map 𝐸× → 𝐹×.
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Proof. This is obviously well known, but the proof will serve to establish some notation. Let V∗ be the
E-linear dual of V. First, the form (·, ·)V induces an E-conjugate linear isomorphism

𝜑 : V � V∗,

given by

𝜑(𝑥) (𝑦) = (𝑥, 𝑦)V.

Then for a positive integer r,

∧𝑟𝜑 : ∧𝑟V→ ∧𝑟V∗ (5.1)

is also E-conjugate linear. Let 𝜄 be the E-linear isomorphism

𝜄 : ∧𝑟 (V∗) � (∧𝑟V)∗, (5.2)

induced by the multilinear map

(V∗)𝑟 × V𝑟 → 𝐸, (𝜆1, . . . , 𝜆𝑟 , v1, . . . , v𝑟 ) ↦→ det(𝜆𝑖 (v 𝑗 )). (5.3)

Now, any 𝑔 ∈ GL𝐸 (V) acts on V∗ via 𝑔𝜆(v) = 𝜆(𝑔−1v) and 𝜄 is equivariant for this action since equation
(5.3) is equivariant for the diagonal action of GL𝐸 (V). The composite

𝜄 ◦ ∧𝑟𝜑 : ∧𝑟V→ (∧𝑟V)∗

is an E-conjugate linear isomorphism and may be viewed as giving a Hermitian form on ∧𝑟V, denoted
by (·, ·)∧𝑟V. (That this form is conjugate symmetric follows for instance by computing it in matrix
form in terms of the matrix of the form on V with respect to an orthogonal basis. If the matrix of the
original form is the diagonal matrix with entries 𝑎1, . . . , 𝑎𝑛, then the entries 𝑎𝑖 lie in F and the form
on ∧𝑟V is represented by the diagonal matrix whose entries are products of the form 𝑎𝑖1 · · · 𝑎𝑖𝑟 with
1 ≤ 𝑖1 < · · · < 𝑖𝑟 ≤ 𝑛.)

Now, suppose 𝑔 ∈ GU𝐸 (V). Then

𝜑(𝑔v) (w) = (𝑔v,w)V = 𝜈(𝑔) · (v, 𝑔−1w)V = 𝜈(𝑔) · (𝑔𝜑) (v) (w)

so that

𝜑 ◦ 𝑔 = 𝜈(𝑔) · 𝑔 ◦ 𝜑

and

∧𝑟𝜑 ◦ 𝑔 = 𝜈(𝑔)𝑟 · 𝑔 ◦ ∧𝑟𝜑.

Thus, for x, y ∈ ∧𝑟V, we have

(𝑔x, 𝑔y)∧𝑟V = 𝜈(𝑔)𝑟 (x, y)∧𝑟V.

Now, take 𝑟 = 𝑛. Then g acts on ∧𝑛V as the scalar det(𝑔) so that (𝑔x, 𝑔y)∧𝑛V = N(det(𝑔)) (x, 𝑦)∧𝑛V,
from which it follows that N(det(𝑔)) = 𝜈(𝑔)𝑛. �

5.2. Construction of the (global) exceptional isomorphism

Let V be a four-dimensional (right) E-Hermitian space. Such a V is classified by a collection of its
determinant 𝛿𝑣 ∈ 𝐹×𝑣 /N𝐸×𝑣 for all places v, which equals its discriminant (see [30, §2.1.1] for our
convention) since dim V = 4, together with its signature at ramified Archimedean places. (For a split
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place, 𝛿𝑣 is always trivial. For a ramified Archimedean place, 𝛿𝑣 is trivial if the signature is either
(4, 0), (2, 2) or (0, 4) and is nontrivial if the signature is (3, 1) or (1, 3).) Let B be the unique quaternion
algebra over F which is ramified exactly at those places v of F at which 𝛿𝑣 is nontrivial. Let ∗ be the
main involution on B. Then we will construct

• a three-dimensional right B-space �̃� ,
• a skew-Hermitian B-form 〈·, ·〉 on �̃� , that is, a nondegenerate sesquilinear form 〈·, ·〉 : �̃� × �̃� → 𝐵

satisfying

〈𝑣𝛼, 𝑤𝛽〉 = 𝛼∗〈𝑣, 𝑤〉𝛽, 〈𝑣, 𝑤〉 = −〈𝑤, 𝑣〉∗

such that there is a natural isogeny

GSU𝐸 (V) → GU𝐵 (�̃�)0,

as well as a natural isomorphism

PGU𝐸 (V) � PGU𝐵 (�̃�)0.

Here, we denote by GU𝐵 (�̃�)0 the identity component of the unitary similitude group of �̃� :

GU𝐵 (�̃�) = {𝑔 ∈ GL𝐵 (�̃�) | 〈𝑔𝑣, 𝑔𝑤〉 = 𝜈(𝑔) · 〈𝑣, 𝑤〉 for all 𝑣, 𝑤 ∈ �̃�},

where 𝜈 : GU𝐵 (�̃�) → 𝐹× is the similitude character, and put

GSU𝐸 (V) = {𝑔 ∈ GU𝐸 (V) | det(𝑔) = 𝜈(𝑔)2},
PGU𝐸 (V) = GU𝐸 (V)/𝐸×,

PGU𝐵 (�̃�)0 = GU𝐵 (�̃�)0/𝐹×.

Let Ṽ = ∧2V. This is a right E-space, and we will extend the E-action to a right B-action. To do so,
we must construct an element 𝐿 ∈ End𝐹 (Ṽ) which is conjugate linear for the E-action:

𝐿(𝑥𝛼) = (𝐿𝑥)𝛼𝜌

for 𝑥 ∈ Ṽ, 𝛼 ∈ 𝐸 .
The map L will be a composite of three maps:

(i) The map

∧2𝜑 : ∧2V→ ∧2 (V∗)

obtained by specializing equation (5.1) to 𝑟 = 2, which is an E-conjugate linear isomorphism.
(ii) The map

𝜄 : ∧2(V∗) � (∧2V)∗

obtained by specializing equation (5.2) to 𝑟 = 2, which is an E-linear isomorphism.
(iii) Here, we use that dim V = 4. Fix an isomorphism

𝑑 : ∧4V � 𝐸.

This is well defined up to scaling. The natural map

∧2V × ∧2V→ ∧4V � 𝐸 (5.4)
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is symmetric and induces an E-linear isomorphism

𝜓 : ∧2V � (∧2V)∗.

Let

𝐿 = 𝜓−1 ◦ 𝜄 ◦ ∧2𝜑.

Clearly, L depends on the choice of d. If d is scaled by 𝛼, then 𝜓 is scaled by 𝛼 as well and L is scaled
by 𝛼−1. However, 𝐿2 changes to

(𝛼−1𝐿) (𝛼−1𝐿) = (𝛼𝜌𝛼)−1𝐿2 = N(𝛼)−1𝐿2.

Thus, 𝐿2 is well defined up to norms from 𝐸× to 𝐹×. In fact, 𝐿2 turns out to be a scalar operator. To
identify this scalar, we recall the following invariant attached to a Hermitian space V of dimension n
and an isomorphism 𝑑 : ∧𝑛V � 𝐸 .

Definition 5.2. Let V be a Hermitian space of dimension n with form H, and let 𝑑 : ∧𝑛V � 𝐸 be an
isomorphism. The form H induces a map

V𝑛 × V𝑛 → 𝐸, (v1, . . . , v𝑛,w1, . . . ,w𝑛) ↦→ det[𝐻 (v𝑖 ,w 𝑗 )],

which factors through ∧𝑛V × ∧𝑛V and gives a Hermitian form

ℎ : ∧𝑛V × ∧𝑛V→ 𝐸.

Let 𝑣 ∈ ∧𝑛V be such that 𝑑 (𝑣) = 1. Then define

vol(𝐻, 𝑑) = ℎ(𝑣, 𝑣).

Note that h is a Hermitian form, so vol(𝐻, 𝑑) lies in 𝐹× and its class in 𝐹×/N𝐸× equals the class of the
determinant of H.

Proposition 5.3. The map 𝐿2 is multiplication by vol((·, ·)V, 𝑑).

Proof. We will pick a suitable basis and compute. Since 𝐿2 and vol((·, ·)V, 𝑑) scale in exactly the same
way as a function of d, we can choose any convenient d as well. Let v1, . . . , v4 be a basis of V with
respect to which the form (·, ·)V is diagonal with entries 𝑎1, . . . , 𝑎4 ∈ 𝐹. Let e1, . . . , e4 be the dual basis
of V∗. Then

𝜑(v𝑖) = 𝑎𝑖e𝑖

and

∧2(𝜑) (v𝑖 ∧ v 𝑗 ) = 𝑎𝑖𝑎 𝑗e𝑖 ∧ e 𝑗 .

For 1 ≤ 𝑖 < 𝑗 ≤ 4, let v𝑖 𝑗 denote the element v𝑖 ∧ v 𝑗 ∈ ∧2V. This collection gives a basis of ∧2V. We
let {e𝑖 𝑗 } ⊂ (∧2V)∗ be the dual basis. Then

𝜄(e𝑖 ∧ e 𝑗 ) = e𝑖 𝑗 .

For any pair (𝑖, 𝑗) as above, let (𝑖′, 𝑗 ′) be the unique pair of elements such that {𝑖, 𝑗 , 𝑖′, 𝑗 ′} = {1, 2, 3, 4}
and such that 𝑖′ < 𝑗 ′. Define sign(𝑖, 𝑗) = ±1 by

v𝑖 𝑗 ∧ v𝑖′ 𝑗′ = sign(𝑖, 𝑗)v1 ∧ v2 ∧ v3 ∧ v4.
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Now, choose d such that

𝑑 (v1 ∧ v2 ∧ v3 ∧ v4) = −1. (5.5)

(This choice may seem surprising, but it is made so as to agree with some conventions in [30].) Then

𝜓−1 (e𝑖 𝑗 ) = − sign(𝑖, 𝑗) · v𝑖′ 𝑗′ .

(The − sign here occurs because of the choice made in equation (5.5).) Now, we can write down L
explicitly in the basis v𝑖 𝑗 . It is given by

v12 ↦→ −𝑎1𝑎2v34,

v13 ↦→ 𝑎1𝑎3v24,

v14 ↦→ −𝑎1𝑎4v23,

v23 ↦→ −𝑎2𝑎3v14,

v24 ↦→ 𝑎2𝑎4v13,

v34 ↦→ −𝑎3𝑎4v12.

The proposition follows from this explicit description. �

Now, let us define a quaternion algebra B as follows. Let

𝐽 := vol((·, ·)V, 𝑑),

and define B by

𝐵 := 𝐸 + 𝐸j, j2 = 𝐽, 𝛼j = j𝛼𝜌

for all 𝛼 ∈ 𝐸 . Then we can define a right action of B on Ṽ by

𝑥 · j = 𝐿(𝑥).

We will denote this space by �̃� when we want to regard it as a B-space rather than an E-space.
As in the proof of Proposition 5.1, the composite map 𝜄 ◦ ∧2𝜑 is a conjugate linear isomorphism

∧2V � (∧2V)∗

that gives rise to a Hermitian form (·, ·)Ṽ on Ṽ = ∧2V. Multiplying this form by the trace zero element
i gives a skew-Hermitian form on Ṽ, which we denote simply by (·, ·).

Lemma 5.4. The form (·, ·) on Ṽ satisfies: For all 𝑥, 𝑦 ∈ Ṽ,

(i) (𝑥j, 𝑦) = (𝑦j, 𝑥).
(ii) (𝑥j, 𝑦j)𝜌 = −𝐽 (𝑥, 𝑦).

Proof. Firstly,

(𝑥j, 𝑦) = i · [𝜄 ◦ ∧2(𝜑) (𝑥j)] (𝑦)
= i · [𝜓 ◦ 𝐿 ◦ 𝐿(𝑥)] (𝑦)
= 𝐽i · [𝜓(𝑥)] (𝑦).

Since equation (5.4) is symmetric, we have

[𝜓(𝑥)] (𝑦) = [𝜓(𝑦)] (𝑥),

from which it follows that (𝑥j, 𝑦) = (𝑦j, 𝑥).

https://doi.org/10.1017/fmp.2023.20 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.20


30 A. Ichino and K. Prasanna

Secondly, we have

(𝑥j, 𝑦j) = 𝐽i · [𝜓(𝑥)] (𝑦j)
= 𝐽i · [𝜓(𝑦j)] (𝑥)
= 𝐽i · [𝜓 ◦ 𝜓−1 ◦ 𝜄 ◦ ∧2 (𝜑) (𝑦)] (𝑥)
= 𝐽 · (𝑦, 𝑥)

so that

(𝑥j, 𝑦j)𝜌 = 𝐽 · (𝑦, 𝑥)𝜌 = −𝐽 (𝑥, 𝑦). �

Remark 5.5. In fact, (ii) above follows from (i). Indeed, assuming (i), we have

(𝑥j, 𝑦j) = (𝑦j · j, 𝑥) = 𝐽 (𝑦, 𝑥) = −𝐽 (𝑥, 𝑦)𝜌 .

Now, we can define a B-skew-Hermitian form on �̃� by

〈𝑥, 𝑦〉 = (𝑥, 𝑦) − 1
𝐽
· j · (𝑥j, 𝑦). (5.6)

Proposition 5.6. The map

GL𝐸 (V) → GL𝐸 (Ṽ), 𝑔 ↦→ ∧2𝑔

induces an isogeny

𝜉 : GSU𝐸 (V) −→ GU𝐵 (�̃�)0

with kernel {±1}.
Proof. Let 𝑔 ∈ GU𝐸 (V). We first compute the commutator of L and ∧2𝑔. Recall that

𝐿 = 𝜓−1 ◦ 𝜄 ◦ ∧2𝜑.

Now, for any 𝑔 ∈ GL𝐸 (V), we have

𝜄 ◦ ∧2𝑔 = ∧2𝑔 ◦ 𝜄 (5.7)

and

𝜓 ◦ ∧2𝑔 = det(𝑔) ∧2 𝑔 ◦ 𝜓. (5.8)

If further 𝑔 ∈ GU𝐸 (V), then

(𝑔𝑥, 𝑔𝑦)V = 𝜈(𝑔) (𝑥, 𝑦)V

which implies that (𝑔𝑥, 𝑦)V = 𝜈(𝑔) (𝑥, 𝑔−1𝑦)V and

𝜑 ◦ 𝑔 = 𝜈(𝑔)𝑔 ◦ 𝜑.

Thus,

∧2𝜑 ◦ ∧2𝑔 = 𝜈(𝑔)2 ∧2 𝑔 ◦ ∧2𝜑. (5.9)

It follows from equations (5.7), (5.8) and (5.9) that

𝐿 ◦ ∧2𝑔 = 𝜈(𝑔)2 det(𝑔)−1 ∧2 𝑔 ◦ 𝐿 (5.10)
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for 𝑔 ∈ GU𝐸 (V). Thus, for 𝑔 ∈ GSU𝐸 (V), the endomorphism ∧2𝑔 lies in GU𝐵 (�̃�). This gives a map

GSU𝐸 (V) → GU𝐵 (�̃�)

whose kernel is easily checked to be {±1}. On the other hand, we have

dim GSU𝐸 (V) = dim GU𝐸 (V) − 1 = dim U𝐸 (V) = 42 = 16,
dim GU𝐵 (�̃�) = dim U𝐵 (�̃�) + 1 = 3(2 · 3 − 1) + 1 = 16.

Since GSU𝐸 (V) is connected, this shows that the image of the above map is GU𝐵 (�̃�)0. �

Proposition 5.7. There is a natural isomorphism

𝜉 : PGU𝐸 (V)
�−→ PGU𝐵 (�̃�)0,

where

PGU𝐸 (V) = GU𝐸 (V)/𝐸×, PGU𝐵 (�̃�)0 = GU𝐵 (�̃�)0/𝐹×.

Proof. Let 𝑔 ∈ GU𝐸 (V). Put 𝑓 = ∧2𝑔 and 𝛼 = 𝜈(𝑔)2/det 𝑔. By equation (5.10), we have

𝐿 𝑓 = 𝛼 𝑓 𝐿.

By Proposition 5.1, we have N(det 𝑔) = 𝜈(𝑔)4, so N(𝛼) = 1 and we can choose 𝛽 ∈ 𝐸× (unique up to
multiplication by 𝐹×) such that 𝛼 = 𝛽/𝛽𝜌. Then

𝐿𝛽 𝑓 = 𝛽𝜌𝐿 𝑓 = 𝛽𝜌𝛼 𝑓 𝐿 = 𝛽 𝑓 𝐿

so that 𝛽 𝑓 ∈ GU𝐵 (�̃�). The assignment 𝑔 ↦→ 𝛽 𝑓 gives a homomorphism

GU𝐸 (V) −→ GU𝐵 (�̃�)/𝐹×.

It is easy to see that its kernel is the center of GU𝐸 (V). Indeed, if ∧2𝑔 is a scalar multiplication on Ṽ,
then since dim V > 2, g has to be semisimple and hence is a scalar multiplication on V. On the other
hand, as in the proof of Proposition 5.6, we have dim PGU𝐸 (V) = dim PGU𝐵 (�̃�). Since GU𝐸 (V) is
connected, this shows that the image of the above map is the identity component of GU𝐵 (�̃�)/𝐹×. �

Remark 5.8. The reader may note that the notation is mildly confusing here. Namely, 𝛽 𝑓 is the map
given by 𝛽 𝑓 (𝑥) := 𝑓 (𝑥)𝛽 since the action of E is on the right.

Remark 5.9. For 𝑔 ∈ GSU𝐸 (V), we have 𝛼 = 1, so we may take 𝛽 = 1 as well. This implies that the
maps constructed in the previous two propositions fit into the commutative diagram below, where the
vertical maps are the natural homomorphisms

GSU𝐸 (V)

��

𝜉 �� GU𝐵 (�̃�)0

��

GU𝐸 (V)

��
PGU𝐸 (V)

𝜉 �� PGU𝐵 (�̃�)0.
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5.3. Subgroups

In this section, we discuss the effect of the isogeny/isomorphism of the previous section on certain
natural subgroups of the unitary group obtained from a decomposition of the Hermitian space into a
sum of two Hermitian spaces.

5.3.1. The sum of two two-dimensional spaces
We first discuss the case when V is an orthogonal direct sum of the form V = V1 ⊕ V2 with dim𝐸 V1 =
dim𝐸 V2 = 2. Then

Ṽ = ∧2(V1 ⊕ V2) = ∧2(V1) ⊕ ∧2(V2) ⊕ (V1 ⊗ V2), (5.11)

where we identify V1 ⊗ V2 with its image under the natural map to ∧2V (which sends 𝑣 ⊗ 𝑤 to 𝑣 ∧ 𝑤).
We may assume that the basis (v1, v2, v3, v4) of V is chosen such that (v1, v2) forms a basis of V1

and (v3, v4) a basis of V2. From the explicit formulas for L, it is clear that L preserves the subspaces

V♯
0 = ∧2(V1) ⊕ ∧2 (V2) and V♯ = V1 ⊗ V2,

so these are B-spaces that we denote by𝑉♯
0 and𝑉♯, respectively. Since the collection (v𝑖 𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 4)

forms an orthogonal basis for the form (·, ·), the decomposition Ṽ = V♯ ⊕ V♯
0 is one of skew-Hermitian

E-spaces. Moreover, the formula (5.6) shows that the decomposition �̃� = 𝑉♯ ⊕ 𝑉♯
0 is one of skew-

Hermitian B-spaces.

Proposition 5.10. Let H be the subgroup of GSU𝐸 (V) given by

𝐻 = GSU𝐸 (V) ∩ G(U𝐸 (V1) × U𝐸 (V2)).

Then 𝜉 restricts to an isogeny

𝐻 → G(U𝐵 (𝑉♯) × U𝐵 (𝑉♯
0 ))

0, (5.12)

with kernel {±1}.

Proof. Let 𝑔1 ∈ GU𝐸 (V1), 𝑔2 ∈ GU𝐸 (V2) be such that 𝑔 = (𝑔1, 𝑔2) ∈ 𝐻. Then ∧2𝑔 acts as right
multiplication by det(𝑔𝑖) on ∧2V𝑖 and by 𝑔1 ⊗ 𝑔2 on V1 ⊗ V2. Since H is connected, this shows that 𝜉
maps H into the subgroup G(U𝐵 (𝑉♯) × U𝐵 (𝑉♯

0 ))
0 of GU𝐵 (�̃�)0. On the other hand, we have

dim𝐻 = dim G(U𝐸 (V1) × U𝐸 (V2)) − 1
= dim U𝐸 (V1) + dim U𝐸 (V2)
= 22 + 22 = 8,

dim G(U𝐵 (𝑉♯) × U𝐵 (𝑉♯
0 )) = dim U𝐵 (𝑉♯) + dim U𝐵 (𝑉♯

0 ) + 1
= 2(2 · 2 − 1) + 1(2 · 1 − 1) + 1 = 8.

Hence, the image of H under 𝜉 is G(U𝐵 (𝑉♯) × U𝐵 (𝑉♯
0 ))

0. �

Likewise, one has an analogous result for subgroups in the context of Proposition 5.7.

Proposition 5.11. The map 𝜉 restricts to an isomorphism

G(U𝐸 (V1) × U𝐸 (V2))/𝐸× � G(U𝐵 (𝑉♯) × U𝐵 (𝑉♯
0 ))

0/𝐹×. (5.13)
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Proof. Let 𝑔 = (𝑔1, 𝑔2) ∈ G(U𝐸 (V1) × U𝐸 (V2)). As in the previous proposition, the map ∧2𝑔 clearly
preserves the decomposition Ṽ = V♯ ⊕ V♯

0, hence so does 𝛽 · ∧2𝑔. Since 𝛽 · ∧2𝑔 lies in GU𝐵 (�̃�), it
must in fact lie in G(U𝐵 (𝑉♯) × U𝐵 (𝑉♯

0 )). This gives the map (5.13), which must be injective since 𝜉 is
injective. From dimension considerations, it must be an isomorphism. �

It is useful to write down explicitly the maps in equations (5.12) and (5.13). First for 𝑖 = 1, 2, we
define a quaternion algebra 𝐵𝑖 such that V𝑖 is naturally a right 𝐵𝑖-module and is equipped with a
𝐵𝑖-Hermitian form whose projection to E recovers the Hermitian form. Let us outline for 𝑖 = 1, the case
𝑖 = 2 being exactly similar. The Hermitian form on V1 gives an E-conjugate linear isomorphism

𝜑1 : V1 � V∗1,

where V∗1 as usual is the E-linear dual of V1. Let us fix an isomorphism

𝑑1 : ∧2V1 � 𝐸.

For definiteness, we let 𝑑1(v1 ∧ v2) = 1. This gives a bilinear pairing

V1 × V1 → 𝐸, (𝑥, 𝑦) ↦→ 𝑑1(𝑥 ∧ 𝑦)

and thus gives an E-linear isomorphism

𝜓1 : V1 � V∗1, 𝜓1(𝑥) (𝑦) = 𝑑1(𝑥 ∧ 𝑦).

Define 𝐿1 ∈ End𝐹 (V1) by

𝐿1 = 𝜓−1
1 ◦ 𝜑1.

Explicitly, we see that 𝐿1 acts on V1 by

v1 ↦→ −𝑎1v2, (5.14)

v2 ↦→ 𝑎2v1 (5.15)

so that 𝐿2
1 = −𝑎1𝑎2 = − vol(V1, 𝑑1). Let

𝐽1 = − vol(V1, 𝑑1),

and define 𝐵1 by

𝐵1 = 𝐸 + 𝐸j1, j2
1 = 𝐽1, 𝛼j1 = j1𝛼

𝜌

for all 𝛼 ∈ 𝐸 . Then the right E-action on V1 extends to a right 𝐵1-action defined by

𝑥 · j1 = 𝐿1 (𝑥).

When we want to think of V1 as a 𝐵1-space, we simply denote it 𝑉1.

Lemma 5.12. For 𝑥, 𝑦 ∈ V1, we have

(i) (𝑥j1, 𝑦) = −(𝑦j1, 𝑥).
(ii) (𝑥j1, 𝑦j1)𝜌 = −𝐽1 (𝑥, 𝑦).

Proof. We have for 𝑥, 𝑦 ∈ V1,

(𝑥j1, 𝑦) = 𝜑1(𝑥j1) (𝑦) = 𝜓1𝐿1 (𝑥j1) (𝑦) = 𝜓1𝐿
2
1 (𝑥) (𝑦) = 𝐽1𝜓1 (𝑥) (𝑦) = 𝐽1𝑑1(𝑥 ∧ 𝑦),
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and likewise (𝑦j1, 𝑥) = 𝐽1𝑑1(𝑦 ∧ 𝑥). It follows from this that (𝑥j1, 𝑦) = −(𝑦j1, 𝑥) which proves (i). Now,
(ii) follows from (i) since

(𝑥j1, 𝑦j1) = −(𝑦j1 · j1, 𝑥) = −𝐽1 (𝑦, 𝑥) = −𝐽1 (𝑥, 𝑦)𝜌 . �

Using the lemma, we find that

〈𝑥, 𝑦〉 := (𝑥, 𝑦) − 1
𝐽1

j1(𝑥j1, 𝑦)

defines a 𝐵1-Hermitian form on 𝑉1 such that pr ◦〈·, ·〉 = (·, ·). Thus, there is a natural embedding

GU𝐵1 (𝑉1) ↩→ GU𝐸 (V1)

which we can make explicit as follows. Pick a 𝐵1-basis x1 for𝑉1. Then𝑉1 = x1𝐵1 and for 𝑔 ∈ GU𝐵1 (𝑉1),
let 𝛽𝑔 be defined by

𝑔x1 = x1𝛽𝑔 .

The assignment 𝑔 ↦→ 𝛽𝑔 gives an identification GU𝐵1 (𝑉1) � 𝐵×1 . Indeed, this map is injective; it is also
surjective since for any 𝛽 ∈ 𝐵×1 and 𝛼, 𝛼′ ∈ 𝐵1, we have

〈x1𝛽𝛼, x1𝛽𝛼
′〉 = (𝛽𝛼)𝜌〈x1, x1〉𝛽𝛼′ = 𝛼𝜌𝛽𝜌〈x1, x1〉𝛽𝛼′ = 𝜈(𝛽)𝛼𝜌〈x1, x1〉𝛼′ = 𝜈(𝛽)〈x1𝛼, x1𝛼

′〉.

Here we have used that 〈x1, x1〉 lies in F, the form 〈·, ·〉 being 𝐵1-Hermitian. Then

GU𝐸 (V1) � (𝐵×1 × 𝐸
×)/𝐹×,

where the 𝐵×1 corresponds to the GU𝐵1 (𝑉1) action described above, the 𝐸×-action is given by 𝛼 ↦→
(right)-multiplication by 𝛼−1 for 𝛼 ∈ 𝐸× and the embedding of 𝐹× in 𝐵×1 × 𝐸

× is just the diagonal
embedding 𝑡 ↦→ (𝑡, 𝑡). All of the above discussion carries over verbatim to the case 𝑖 = 2 so that after
picking a 𝐵2-basis x2 of 𝑉2, the map GU𝐵2 (𝑉2) ↩→ GU𝐸 (V2) is identified with the embedding

𝐵×2 ↩→ (𝐵×2 × 𝐸
×)/𝐹×.

Next, we explicate the groups on the right of the map (5.12). First, we note that

GU𝐵 (𝑉♯
0 )

0 � 𝐸×.

Indeed, let x be any nonzero vector in ∧2V1 so that 𝑉♯
0 = x𝐵. Then for 𝛼 ∈ 𝐸×, the map

x𝛽 ↦→ x𝛼𝛽

gives an element of GU𝐵 (𝑉♯
0 ). By dimension considerations, this gives an isomorphism 𝐸× �

GU𝐵 (𝑉♯
0 )

0. More precisely, it is easy to see that for any 𝑔 ∈ GU𝐵 (𝑉♯
0 ), we have 𝑔 · x = x𝛾𝑔 for a unique

𝛾𝑔 ∈ 𝐵× and the assignment 𝑔 ↦→ 𝛾𝑔 gives an isomorphism of GU𝐵 (𝑉♯
0 ) with the semidirect product

𝐸× � 〈j〉, where j acts on 𝐸× by conjugation in 𝐵×. Note that the induced isomorphism GU𝐵 (𝑉♯
0 )

0 � 𝐸×
is independent of the choice of x ∈ ∧2V1.

As for 𝑉♯, we have the following proposition.

Proposition 5.13. There is an isomorphism

GU𝐵 (𝑉♯)0 � (𝐵×1 × 𝐵
×
2 )/𝐹

×,

depending on the choice of a basis vector for 𝑉1 (as 𝐵1-space) and for 𝑉2 (as 𝐵2-space).
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Proof. First, note that the restriction of the Hermitian form (·, ·)Ṽ to V1 ⊗ V2 is just the tensor product
of the Hermitian forms on V1 and V2. Also, from equations (5.14) and (5.15), right multiplication by j1
and j2 on V1 and V2 is given explicitly by

v1j1 = −𝑎1v2, v2j1 = 𝑎2v1, v3j2 = −𝑎3v4, v4j2 = 𝑎4v3.

From this and the explicit formula for the action of 𝐿 = j on Ṽ, we see that (right)-multiplication by j
on V1 ⊗ V2 is the same as (right)-multiplication by j1 ⊗ j2.

Choose a 𝐵1-basis x1 for𝑉1 and a 𝐵2-basis x2 for𝑉2. Then there is an action of 𝐵×1 ×𝐵
×
2 on V1 ⊗𝐸 V2

which on pure tensors is given by

(𝛽1, 𝛽2) · (x1𝛼1 ⊗ x2𝛼2) = x1𝛽1𝛼1 ⊗ x2𝛽2𝛼2,

for any 𝛼1 ∈ 𝐵1, 𝛼2 ∈ 𝐵2. This action is clearly E-linear and also j-linear since j acts as right
multiplication by j1 ⊗ j2, hence is in fact B-linear.

Now,

(x1𝛽1𝛼1 ⊗ x2𝛽2𝛼2, x1𝛽1𝛼
′
1 ⊗ x2𝛽2𝛼

′
2) = i · (x1𝛽1𝛼1, x1𝛽1𝛼

′
1)V1 (x2𝛽2𝛼2, x2𝛽2𝛼

′
2)V2

= i · 𝜈(𝛽1)𝜈(𝛽2) · (x1𝛼1, x1𝛼
′
1)V1 (x2𝛼2, x2𝛼

′
2)V2

= 𝜈(𝛽1)𝜈(𝛽2) (x1𝛼1 ⊗ x2𝛼2, x1𝛼
′
1 ⊗ x2𝛼

′
2),

which shows that (𝛽1, 𝛽2) gives an element in GU𝐸 (V♯). Since the action of (𝛽1, 𝛽2) commutes with j,
we see from the formula (5.6) that it in fact defines an element of GU𝐵 (𝑉♯). This gives a map

𝐵×1 × 𝐵
×
2 → GU𝐵 (𝑉♯)

whose kernel is the diagonal 𝐹× in 𝐵×1 × 𝐵
×
2 , embedded as 𝑡 ↦→ (𝑡, 𝑡−1). By dimension considerations,

we see that this gives an isomorphism (𝐵×1 × 𝐵
×
2 )/𝐹

× � GU𝐵 (𝑉♯)0. �

Now, we can write down the map (5.12) explicitly. Let ℎ = (ℎ1, ℎ2) ∈ 𝐻 with ℎ1 ∈ GU𝐸 (V1) and
ℎ2 ∈ GU𝐸 (V2). Then

𝜈(ℎ1) = 𝜈(ℎ2)

and

det(ℎ1) det(ℎ2) = 𝜈(ℎ1)2 = 𝜈(ℎ2)2.

Moreover, N(det ℎ𝑖) = 𝜈(ℎ𝑖)2 by Proposition 5.1 so that det(ℎ2) = det(ℎ1)𝜌. Now, ∧2ℎ acts as (right)-
multiplication by det(ℎ1) on ∧2V1 and by det(ℎ2) on ∧2V2 = ∧2V1 · j, and thus acts on 𝑉♯

0 as the
element det(ℎ1) ∈ 𝐸× = GU𝐵 (𝑉♯

0 )
0.

Fix a basis vector x1 for 𝑉1 and x2 for 𝑉2 as above. This gives identifications

GU𝐸 (V1) = (𝐵×1 × 𝐸
×)/𝐹×, GU𝐸 (V2) = (𝐵×2 × 𝐸

×)/𝐹×.

Let 𝑔1 = [𝑏1, 𝛼1] ∈ GU𝐸 (V1) and 𝑔2 = [𝑏2, 𝛼2] ∈ GU𝐸 (V2). Then

𝜈(𝑔1) = 𝜈(𝑏1)N(𝛼1)−1, det(𝑔1) = 𝜈(𝑏1) · 𝛼−2
1 ,

and

𝜈(𝑔2) = 𝜈(𝑏2)N(𝛼2)−1, det(𝑔2) = 𝜈(𝑏2) · 𝛼−2
2 .
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Let 𝑔 = (𝑔1, 𝑔2) ∈ G(U𝐸 (V1) × U𝐸 (V2)) viewed as an element in GU𝐸 (V). Then

𝜈(𝑔) = 𝜈(𝑔1) = 𝜈(𝑔2) = 𝜈(𝑏1)N(𝛼1)−1 = 𝜈(𝑏2)N(𝛼2)−1

while

det(𝑔) = 𝜈(𝑏1) · 𝛼−2
1 · 𝜈(𝑏2) · 𝛼−2

2 .

Thus,

𝑔 ∈ GSU𝐸 (V) ⇐⇒ det(𝑔) = 𝜈(𝑔)2

⇐⇒ 𝜈(𝑏1) · 𝛼−2
1 · 𝜈(𝑏2) · 𝛼−2

2 = 𝜈(𝑏1)N(𝛼1)−1 · 𝜈(𝑏2)N(𝛼2)−1

⇐⇒ 𝛼1𝛼2 = 𝛼
𝜌
1𝛼

𝜌
2

⇐⇒ 𝛼1𝛼2 ∈ 𝐹×.

We conclude that

𝐻 =
{
([𝑏1, 𝛼1], [𝑏2, 𝛼2]) | 𝜈(𝑏1)N(𝛼1)−1 = 𝜈(𝑏2)N(𝛼2)−1, 𝛼1𝛼2 ∈ 𝐹×

}
.

The action of ℎ = ([𝑏1, 𝛼1], [𝑏2, 𝛼2]) on V1 ⊗𝐸 V2 is then given by

x1𝛽1 ⊗ x2𝛽2 ↦→ x1𝑏1𝛽1𝛼
−1
1 ⊗ x2𝑏2𝛽2𝛼

−1
2 = x1𝑏1𝛽1𝛼

−1
1 𝛼−1

2 ⊗ x2𝑏2𝛽2 = x1𝑏1(𝛼1𝛼2)−1𝛽1 ⊗ x2𝑏2𝛽2

so that the map (5.12) is given explicitly by

ℎ ↦→
(
[𝑏1 (𝛼1𝛼2)−1, 𝑏2], 𝜈(𝑏1)𝛼−2

1

)
∈ G((𝐵×1 × 𝐵

×
2 )/𝐹

×) × 𝐸×).

Likewise, we can make equation (5.13) explicit. Let 𝑔 = (𝑔1, 𝑔2) ∈ G(U𝐸 (V1) × U𝐸 (V2)), with
𝑔1 = [𝑏1, 𝛼1] and 𝑔2 = [𝑏2, 𝛼2]. Then

𝜈(𝑔)2
det(𝑔) =

𝜈(𝑏1)N(𝛼1)−1𝜈(𝑏2)N(𝛼2)−1

𝜈(𝑏1)𝜈(𝑏2)𝛼−2
1 𝛼−2

2
=

𝛼1𝛼2
(𝛼1𝛼2)𝜌

,

so we may take 𝛽 = 𝛼1𝛼2 in the definition of 𝜉 (𝑔). Then the map (5.13) is given by

𝑔 ↦→ ([𝑏1, 𝑏2], det(𝑔1)𝛼1𝛼2) .

Example 5.14. This is the case that is of most interest to us. Instead of starting with the spaces V or V1
or V2, we start with two quaternion algebras 𝐵1 and 𝐵2 over F containing E. Suppose that

𝐵1 = 𝐸 + 𝐸j1, 𝐵2 = 𝐸 + 𝐸j2,

with j2
1 = 𝐽1 and j2

2 = 𝐽2. Let V𝑖 = 𝐵𝑖 considered as a (right)-E-Hermitian space with the same form as
in [30, §2.2], that is,

(𝑎 + j𝑖𝑏, 𝑐 + j𝑖𝑑)𝑖 = 𝑎𝜌𝑐 − 𝐽𝑖𝑏𝜌𝑑.

We specialize the setup above to the case

V = V1 ⊕ V2,

with Hermitian form (·, ·)V given by the direct sum of (·, ·)1 and (·, ·)2. In the basis

v1 = (1, 0), v2 = (j1, 0), v3 = (0, 1), v4 = (0, j2),
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this form is diagonal with matrix

�����
𝑎1

𝑎2
𝑎3

𝑎4

����� =
�����
1
−𝐽1

1
−𝐽2

����� .
Let us pick 𝑑 : ∧4V � 𝐸 such that

𝑑 (v1 ∧ v2 ∧ v3 ∧ v4) = −1

as in the proof of Proposition 5.3. Then 𝐽 = vol((·, ·)V, 𝑑) is equal to 𝐽1𝐽2.
With respect to the bases (v1 ∧ v2, v3 ∧ v4) of V♯

0 and (v1 ⊗ v3, v2 ⊗ v3, v1 ⊗ v4, v2 ⊗ v4) of V♯, the
matrices of these Hermitian forms are given by

(
−𝐽1
−𝐽2

)
and

�����
1
−𝐽1
−𝐽2

𝐽

����� ,
respectively. Thus, V♯ is the tensor product of V1 and V2 as Hermitian spaces. The action of j on V♯

can be read off from the formulas in the proof of Proposition 5.3 and is given by

(v1 ⊗ v3) · j = v2 ⊗ v4,

(v2 ⊗ v3) · j = 𝐽1 · v1 ⊗ v4,

(v1 ⊗ v4) · j = 𝐽2 · v2 ⊗ v3,

(v2 ⊗ v4) · j = 𝐽 · v1 ⊗ v3.

This shows that 𝑉♯ with its B-action and B-skew-Hermitian form is exactly the same as the space V
occurring in [30, §2.2].

5.3.2. The sum of a three-dimensional and a one-dimensional space
In this section (which is not used in this paper), we suppose that V is an orthogonal direct sum of the
form V = V3 ⊕ V4 with dim𝐸 V3 = 3 and dim𝐸 V4 = 1. Then there is an inclusion

G(U𝐸 (V3) × U𝐸 (V4)) ↩→ GU𝐸 (V),

and so we can ask for a description of how this relates to the maps 𝜉, 𝜉.
Note that

∧2V = ∧2V3 ⊕ (V3 ⊗ V4)

as a sum of (skew)-Hermitian spaces. We may assume that the basis vectors v𝑖 are chosen such that
(v1, v2, v3) forms a basis for V3 while v4 is a basis for V4. The explicit formula for L shows that L
interchanges ∧2V3 and V3 ⊗ V4. Thus, letting W := V3 ⊗ V4, we have

�̃� = W ⊗𝐸 𝐵, (5.16)

at least as B-spaces. The formula (5.6) shows that the restriction of the B-skew-Hermitian form 〈·, ·〉
to W is the same as the restriction of the E-skew-Hermitian form (·, ·) (from Ṽ) to W, from which it
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follows that the form 〈·, ·〉 on �̃� is just the B-linear extension of (·, ·) via the isomorphism (5.16). Thus,
there is a canonical inclusion

GU𝐸 (W) → GU𝐵 (�̃�),

which must land inside GU𝐵 (�̃�)0 since GU𝐸 (W) is connected.

Proposition 5.15. The map 𝜉 restricts to an isomorphism

G(U𝐸 (V3) × U𝐸 (V4))/𝐸× � GU𝐸 (W)/𝐹×.

Proof. It is clear that 𝜉 restricts to an injective map between the given source and target. That it is an
isomorphism follows from dimension considerations and since the target is connected. �

6. The local exceptional isomorphism

In this section, we study the local exceptional isomorphism between the (projectivized) unitary group
attached to the four-dimensional Hermitian space V and the identity component of the (projectivized)
quaternionic unitary group attached to the three-dimensional quaternionic skew-Hermitian space �̃� . For
later use, we need to consider the localizations at almost all (finite) places and at real places.

6.1. Setup

Let F be a local field of characteristic zero and E an étale quadratic algebra over F. We denote by 𝜌 the
nontrivial automorphism of E over F and by N = N𝐸/𝐹 the norm map from E to F. Fix a trace zero
element i ∈ 𝐸×, and put 𝑢 = i2 ∈ 𝐹×.

We recall the construction in §5. Let V be a four-dimensional E-space equipped with a Hermitian
form (·, ·)V. (We considered a right E-space V earlier but regard it as a left E-space by setting 𝛼𝑣 = 𝑣𝛼
for 𝛼 ∈ 𝐸 and 𝑣 ∈ V.) Fix an E-linear isomorphism 𝑑 : ∧4V → 𝐸 . Then we have a six-dimensional
E-space Ṽ = ∧2V equipped with a skew-Hermitian form

(𝑥1 ∧ 𝑥2, 𝑦1 ∧ 𝑦2) = i · det
(
(𝑥1, 𝑦1)V (𝑥1, 𝑦2)V
(𝑥2, 𝑦1)V (𝑥2, 𝑦2)V

)
and a conjugate E-linear automorphism

𝐿 = 𝜓−1 ◦ 𝜄 ◦ ∧2𝜑,

where

• 𝜑 : V→ V∗ is the conjugate E-linear isomorphism induced by (·, ·)V;
• 𝜄 : ∧2 (V∗) → (∧2V)∗ is the natural E-linear isomorphism;
• 𝜓 : ∧2V→ (∧2V)∗ is the E-linear isomorphism relative to d.

Note that 𝐿2 is the scalar multiplication by some 𝐽 ∈ 𝐹×. This gives rise to a quaternion F-algebra
𝐵 = 𝐸 + 𝐸j with a trace zero element j ∈ 𝐵× such that j2 = 𝐽 and a three-dimensional right B-space
�̃� = Ṽ equipped with a skew-Hermitian form

〈𝑥, 𝑦〉 = (𝑥, 𝑦) − j−1 · (𝐿(𝑥), 𝑦).

Moreover, we have a natural isomorphism

𝜉 : PGU𝐸 (V)
�−→ PGU𝐵 (�̃�)0

by Proposition 5.7. Since B and �̃� do not depend on the choice of d, we can make a convenient choice
in the following computation.

https://doi.org/10.1017/fmp.2023.20 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.20


Forum of Mathematics, Pi 39

6.2. The split case

In this section, we assume that V is split. Fix a basis v1, . . . , v4 of V such that

(v𝑖 , v 𝑗 )V =

{
1 if (𝑖, 𝑗) = (1, 3), (2, 4), (3, 1), (4, 2),
0 otherwise.

Let e1, . . . , e4 be its dual basis of V∗. We take an isomorphism 𝑑 : ∧4V→ 𝐸 such that

𝑑 (v1 ∧ v2 ∧ v3 ∧ v4) = 1.

Let T be the maximal torus of GU𝐸 (V) consisting of elements t such that

𝑡v1 = 𝑡1v1, 𝑡v2 = 𝑡2v2, 𝑡v3 = 𝜈(𝑡𝜌1 )
−1v3, 𝑡v4 = 𝜈(𝑡𝜌2 )

−1v4

for some 𝑡𝑖 ∈ 𝐸× and 𝜈 ∈ 𝐹×. We identify T with (𝐸×)2 × 𝐹× via the map 𝑡 ↦→ (𝑡1, 𝑡2, 𝜈). Then the
center of GU𝐸 (V) is equal to 𝐸× embedded into T by 𝑧 ↦→ (𝑧, 𝑧,N(𝑧)).

We take a basis {v𝑖 𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 4} of Ṽ given by v𝑖 𝑗 = v𝑖 ∧ v 𝑗 . Let {e𝑖 𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 4} be its
dual basis of Ṽ∗. Since

𝜑(v1) = e3, 𝜑(v2) = e4, 𝜑(v3) = e1, 𝜑(v4) = e2,

we have

(𝜄 ◦ ∧2𝜑) (v12) = e34, (𝜄 ◦ ∧2𝜑) (v34) = e12,

(𝜄 ◦ ∧2𝜑) (v13) = −e13, (𝜄 ◦ ∧2𝜑) (v24) = −e24,

(𝜄 ◦ ∧2𝜑) (v14) = −e23, (𝜄 ◦ ∧2𝜑) (v23) = −e14.

Also, we have

𝜓(v12) = e34, 𝜓(v34) = e12,

𝜓(v13) = −e24, 𝜓(v24) = −e13,

𝜓(v14) = e23, 𝜓(v23) = e14.

Hence, we have

𝐿(v12) = v12, 𝐿(v34) = v34,

𝐿(v13) = v24, 𝐿(v24) = v13,

𝐿(v14) = −v14, 𝐿(v23) = −v23.

In particular, 𝐽 = 1. Moreover, (v𝑖 𝑗 , v𝑖′ 𝑗′ ) and 〈v𝑖 𝑗 , v𝑖′ 𝑗′ 〉 are given by the following tables:

(·, ·) v12 v34 v13 v24 v14 v23
v12 0 i 0 0 0 0
v34 i 0 0 0 0 0
v13 0 0 −i 0 0 0
v24 0 0 0 −i 0 0
v14 0 0 0 0 0 −i
v23 0 0 0 0 −i 0
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〈·, ·〉 v12 v34 v13 v24 v14 v23
v12 0 i + ij 0 0 0 0
v34 i + ij 0 0 0 0 0
v13 0 0 −i −ij 0 0
v24 0 0 −ij −i 0 0
v14 0 0 0 0 0 −i + ij
v23 0 0 0 0 −i + ij 0

We take a basis �̃�1, �̃�2, �̃�3 of �̃� over B given by

�̃�1 = v12 + v14, �̃�2 = v34 + v23, �̃�3 = v13

so that

(〈�̃�𝑖 , �̃� 𝑗〉) =
���

0 2ij 0
2ij 0 0
0 0 −i

��� .
Let 𝔦 : 𝐵→ M2(𝐹) be an isomorphism defined by

𝔦(𝑎 + 𝑏i + 𝑐j + 𝑑ij) =
(

𝑎 + 𝑐 𝑏 − 𝑑
(𝑏 + 𝑑)𝑢 𝑎 − 𝑐

)
.

Put

𝑒 =
1
2
(1 + j), 𝑒′ =

1
2
(i − ij), 𝑒′′ =

1
2𝑢
(i + ij), 𝑒∗ =

1
2
(1 − j)

so that

𝔦(𝑒) =
(
1 0
0 0

)
, 𝔦(𝑒′) =

(
0 1
0 0

)
, 𝔦(𝑒′′) =

(
0 0
1 0

)
, 𝔦(𝑒∗) =

(
0 0
0 1

)
.

Put �̃�† = �̃�𝑒. Then, by Morita theory (see [30, §C.2] for details), �̃�† is a six-dimensional F-space
equipped with a symmetric bilinear form 〈·, ·〉† determined by

1
2
〈𝑥, 𝑦〉 = 〈𝑥, 𝑦〉† · 𝑒′′

for 𝑥, 𝑦 ∈ �̃�† such that the restriction to �̃�† induces an isomorphism GU𝐵 (�̃�)0 � GSO(�̃�†) (see [30,
Lemma C.2.1]). We take a basis 𝑣1, . . . , 𝑣6 of �̃�† over F given by

𝑣1 = �̃�1𝑒 = v12, 𝑣2 = �̃�1𝑒
′′ =

i
𝑢
· v14,

𝑣3 = �̃�2𝑒 = v34, 𝑣4 = �̃�2𝑒
′′ =

i
𝑢
· v23,

𝑣5 = �̃�3𝑒 =
1
2
(v13 + v24), 𝑣6 = �̃�3𝑒

′′ =
i

2𝑢
(v13 − v24)

so that

(〈𝑣𝑖 , 𝑣 𝑗〉†) =

���������

0 0 𝑢 0 0 0
0 0 0 1 0 0
𝑢 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 −𝑢2 0
0 0 0 0 0 1

2

���������
.
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Let 𝑇 be the maximal torus of GSO(�̃�†) consisting of elements 𝑡 such that

𝑡𝑣1 = 𝑡1𝑣1, 𝑡𝑣2 = 𝑡2𝑣2,

𝑡𝑣3 = �̃�𝑡−1
1 𝑣3, 𝑡𝑣4 = �̃�𝑡−1

2 𝑣4,

𝑡𝑣5 = 𝑎𝑣5 + 𝑏𝑢𝑣6, 𝑡𝑣6 = 𝑏𝑣5 + 𝑎𝑣6

for some 𝑡𝑖 ∈ 𝐹× and 𝑎, 𝑏 ∈ 𝐹 such that �̃� = 𝑎2 − 𝑏2𝑢 ≠ 0. We identify 𝑇 with (𝐹×)2 × 𝐸× via the map
𝑡 ↦→ (𝑡1, 𝑡2, 𝑎 + 𝑏i). Then the center of GSO(�̃�†) is equal to 𝐹× embedded into 𝑇 by 𝑧 ↦→ (𝑧, 𝑧, 𝑧).

Lemma 6.1. The isomorphism 𝜉 restricts to an isomorphism

𝑇/𝐸× �−→ 𝑇/𝐹×,

given by

(𝑡1, 𝑡2, 𝜈) ↦−→ (N(𝑡1𝑡2), 𝜈N(𝑡1), 𝜈𝑡1𝑡𝜌2 ).

Proof. Let 𝑡 = (𝑡1, 𝑡2, 𝜈) ∈ 𝑇 � (𝐸×)2 × 𝐹×. Since

𝜈(𝑡) = 𝜈, det 𝑡 =
𝜈2𝑡1𝑡2

𝑡
𝜌
1 𝑡

𝜌
2
,

𝜈(𝑡)2
det 𝑡

=
𝑡
𝜌
1 𝑡

𝜌
2

𝑡1𝑡2
,

the image of t under the homomorphism GU𝐸 (V) → PGU𝐵 (�̃�) in the proof of Proposition 5.7 is equal
to the image of

𝑡 = 𝑡
𝜌
1 𝑡

𝜌
2 · ∧

2𝑡

in PGU𝐵 (�̃�). Put

𝑡1 = N(𝑡1𝑡2), 𝑡2 = 𝜈N(𝑡1), 𝑎 + 𝑏i = 𝜈𝑡1𝑡
𝜌
2 , �̃� = 𝑎2 − 𝑏2𝑢 = 𝜈2N(𝑡1𝑡2).

Then

𝑡𝑣1 = 𝑡v12 = N(𝑡1𝑡2)v12 = 𝑡1𝑣1,

𝑡𝑣2 =
i
𝑢
· 𝑡v14 =

i
𝑢
· 𝜈N(𝑡1)v14 = 𝑡2𝑣2,

𝑡𝑣3 = 𝑡v34 = 𝜈2v34 = �̃�𝑡−1
1 𝑣3,

𝑡𝑣4 =
i
𝑢
· 𝑡v23 =

i
𝑢
· 𝜈N(𝑡2)v23 = �̃�𝑡−1

2 𝑣4,

𝑡𝑣5 =
1
2
(𝑡v13 + 𝑡v24) =

1
2
(𝜈𝑡1𝑡𝜌2 v13 + 𝜈𝑡𝜌1 𝑡2v24)

=
𝑎

2
(v13 + v24) +

𝑏i
2
(v13 − v24) = 𝑎𝑣5 + 𝑏𝑢𝑣6,

𝑡𝑣6 =
i

2𝑢
(𝑡v13 − 𝑡v24) =

i
2𝑢
(𝜈𝑡1𝑡𝜌2 v13 − 𝜈𝑡𝜌1 𝑡2v24)

=
𝑏

2
(v13 + v24) +

𝑎i
2𝑢
(v13 − v24) = 𝑏𝑣5 + 𝑎𝑣6.

Hence, the assertion follows. �
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6.3. The real case

In this section, we assume that 𝐹 = R and 𝐸 = C. Write

i = 𝑢0 · 𝑖

with 𝑢0 ∈ R× so that 𝑢 = −𝑢2
0. We further assume that the signature of V is either (2, 2) or (4, 0). Fix a

basis v1, . . . , v4 of V such that

(v𝑖 , v 𝑗 )V =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if (𝑖, 𝑗) = (1, 1), (2, 2),
𝜁 if (𝑖, 𝑗) = (3, 3), (4, 4),
0 otherwise,

where 𝜁 = ±1. Let e1, . . . , e4 be its dual basis of V∗. We take an isomorphism 𝑑 : ∧4V→ 𝐸 such that

𝑑 (v1 ∧ v2 ∧ v3 ∧ v4) = 1.

Let T be the maximal torus of GU𝐸 (V) consisting of elements t such that

𝑡v1 = 𝑟𝑧1v1, 𝑡v2 = 𝑟𝑧2v2, 𝑡v3 = 𝑟𝑧3v3, 𝑡v4 = 𝑟𝑧4v4

for some 𝑟 ∈ R×+ and 𝑧𝑖 ∈ C1. We identify T with (C1)4 × R×+ via the map 𝑡 ↦→ (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑟). Then
the center of GU𝐸 (V) is equal to

{(𝑧, 𝑧, 𝑧, 𝑧, 𝑟) | 𝑧 ∈ C1, 𝑟 ∈ R×+ } � C×.

We take a basis {v𝑖 𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 4} of Ṽ given by v𝑖 𝑗 = v𝑖 ∧ v 𝑗 . Let {e𝑖 𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 4} be its
dual basis of Ṽ∗. Since

𝜑(v1) = e1, 𝜑(v2) = e2, 𝜑(v3) = 𝜁e3, 𝜑(v4) = 𝜁e4,

we have

(𝜄 ◦ ∧2𝜑) (v12) = e12, (𝜄 ◦ ∧2𝜑) (v34) = e34,

(𝜄 ◦ ∧2𝜑) (v13) = 𝜁e13, (𝜄 ◦ ∧2𝜑) (v24) = 𝜁e24,

(𝜄 ◦ ∧2𝜑) (v14) = 𝜁e14, (𝜄 ◦ ∧2𝜑) (v23) = 𝜁e23.

Also, we have

𝜓(v12) = e34, 𝜓(v34) = e12,

𝜓(v13) = −e24, 𝜓(v24) = −e13,

𝜓(v14) = e23, 𝜓(v23) = e14.

Hence, we have

𝐿(v12) = v34, 𝐿(v34) = v12,

𝐿(v13) = −𝜁v24, 𝐿(v24) = −𝜁v13,

𝐿(v14) = 𝜁v23, 𝐿(v23) = 𝜁v14.
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In particular, 𝐽 = 1. Moreover, (v𝑖 𝑗 , v𝑖′ 𝑗′ ) and 〈v𝑖 𝑗 , v𝑖′ 𝑗′ 〉 are given by the following tables:

(·, ·) v12 v34 v13 v24 v14 v23
v12 i 0 0 0 0 0
v34 0 i 0 0 0 0
v13 0 0 𝜁 i 0 0 0
v24 0 0 0 𝜁 i 0 0
v14 0 0 0 0 𝜁 i 0
v23 0 0 0 0 0 𝜁 i
〈·, ·〉 v12 v34 v13 v24 v14 v23
v12 i ij 0 0 0 0
v34 ij i 0 0 0 0
v13 0 0 𝜁 i −ij 0 0
v24 0 0 −ij 𝜁 i 0 0
v14 0 0 0 0 𝜁 i ij
v23 0 0 0 0 ij 𝜁 i

We take a basis �̃�1, �̃�2, �̃�3 of �̃� over B given by

�̃�1 = v13, �̃�2 = v14, �̃�3 = v12

so that

(〈�̃�𝑖 , �̃� 𝑗〉) =
���
𝜁 i 0 0
0 𝜁 i 0
0 0 i

��� .
Let 𝔦 : 𝐵→ M2(𝐹) be an isomorphism defined by

𝔦(𝑎 + 𝑏i + 𝑐j + 𝑑ij) =
(

𝑎 + 𝑐 𝑏 − 𝑑
(𝑏 + 𝑑)𝑢 𝑎 − 𝑐

)
.

Put

𝑒 =
1
2
(1 + j), 𝑒′ =

1
2
(i − ij), 𝑒′′ =

1
2𝑢
(i + ij), 𝑒∗ =

1
2
(1 − j)

so that

𝔦(𝑒) =
(
1 0
0 0

)
, 𝔦(𝑒′) =

(
0 1
0 0

)
, 𝔦(𝑒′′) =

(
0 0
1 0

)
, 𝔦(𝑒∗) =

(
0 0
0 1

)
.

Put �̃�† = �̃�𝑒. Then, by Morita theory (see [30, §C.2] for details), �̃�† is a six-dimensional F-space
equipped with a symmetric bilinear form 〈·, ·〉† determined by

1
2
〈𝑥, 𝑦〉 = 〈𝑥, 𝑦〉† · 𝑒′′

for 𝑥, 𝑦 ∈ �̃�† such that the restriction to �̃�† induces an isomorphism, GU𝐵 (�̃�)0 � GSO(�̃�†) (see [30,
Lemma C.2.1]). We take a basis 𝑣1, . . . , 𝑣6 of �̃�† over F given by

𝑣1 =

√
2

𝑢0
· �̃�1𝑒 =

1
√

2𝑢0
(v13 − 𝜁v24), 𝑣2 =

√
2 · �̃�1𝑒

′′ = − 𝑖
√

2𝑢0
(v13 + 𝜁v24),
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𝑣3 =

√
2

𝑢0
· �̃�2𝑒 =

1
√

2𝑢0
(v14 + 𝜁v23), 𝑣4 =

√
2 · �̃�2𝑒

′′ = − 𝑖
√

2𝑢0
(v14 − 𝜁v23),

𝑣5 =

√
2

𝑢0
· �̃�3𝑒 =

1
√

2𝑢0
(v12 + v34), 𝑣6 =

√
2 · �̃�3𝑒

′′ = − 𝑖
√

2𝑢0
(v12 − v34)

so that

(〈𝑣𝑖 , 𝑣 𝑗〉†) =

���������

−𝜁 0 0 0 0 0
0 −𝜁 0 0 0 0
0 0 −𝜁 0 0 0
0 0 0 −𝜁 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

���������
.

Let 𝑇 be the maximal torus of GSO(�̃�†) consisting of elements 𝑡 such that

𝑡𝑣1 = 𝑟 (𝑎1𝑣1 − 𝑏1𝑣2), 𝑡𝑣2 = 𝑟 (𝑏1𝑣1 + 𝑎1𝑣2),
𝑡𝑣3 = 𝑟 (𝑎2𝑣3 − 𝑏2𝑣4), 𝑡𝑣4 = 𝑟 (𝑏2𝑣3 + 𝑎2𝑣4),
𝑡𝑣5 = 𝑟 (𝑎3𝑣5 − 𝑏3𝑣6), 𝑡𝑣6 = 𝑟 (𝑏3𝑣5 + 𝑎3𝑣6)

for some 𝑟 ∈ R×+ and 𝑎𝑖 , 𝑏𝑖 ∈ R such that 𝑧𝑖 = 𝑎𝑖 + 𝑏𝑖𝑖 ∈ C1. We identify 𝑇 with (C1)3 ×R×+ via the map
𝑡 ↦→ (𝑧1, 𝑧2, 𝑧3, 𝑟). Then the center of GSO(�̃�†) is equal to

{(𝑧, 𝑧, 𝑧, 𝑟) | 𝑧 = ±1, 𝑟 ∈ R×+ } � R×.

Lemma 6.2. The isomorphism 𝜉 restricts to an isomorphism

𝑇/C× �−→ 𝑇/R×,

given by

(𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑟) ↦−→
(
𝑦1𝑦3
𝑦2𝑦4

,
𝑦1𝑦4
𝑦2𝑦3

,
𝑦1𝑦2
𝑦3𝑦4

, 𝑟2
)
,

where we choose 𝑦𝑖 ∈ C1 such that 𝑧𝑖 = 𝑦2
𝑖 .

Proof. Let 𝑡 = (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑟) ∈ 𝑇 � (C1)4 × R×+ and choose 𝑦𝑖 ∈ C1 such that 𝑧𝑖 = 𝑦2
𝑖 . Since

𝜈(𝑡) = 𝑟2, det 𝑡 = 𝑟4𝑧1𝑧2𝑧3𝑧4,
𝜈(𝑡)2
det 𝑡

=
1

𝑧1𝑧2𝑧3𝑧4
,

the image of t under the homomorphism GU𝐸 (V) → PGU𝐵 (�̃�) in the proof of Proposition 5.7 is equal
to the image of

𝑡 =
1

𝑦1𝑦2𝑦3𝑦4
· ∧2𝑡

in PGU𝐵 (�̃�). Put 𝑣′𝑖 =
√

2𝑢0 · 𝑣𝑖 , and write

𝑦1𝑦3
𝑦2𝑦4

= 𝑎1 + 𝑏1𝑖,
𝑦1𝑦4
𝑦2𝑦3

= 𝑎2 + 𝑏2𝑖,
𝑦1𝑦2
𝑦3𝑦4

= 𝑎3 + 𝑏3𝑖
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with 𝑎𝑖 , 𝑏𝑖 ∈ R. Then

1
𝑟2 · 𝑡𝑣

′
1 =

1
𝑟2 (𝑡v13 − 𝜁𝑡v24) =

𝑦1𝑦3
𝑦2𝑦4

· v13 −
𝑦2𝑦4
𝑦1𝑦3

· 𝜁v24

= 𝑎1 (v13 − 𝜁v24) + 𝑏1𝑖(v13 + 𝜁v24) = 𝑎1𝑣
′
1 − 𝑏1𝑣

′
2,

1
𝑟2 · 𝑡𝑣

′
2 = − 𝑖

𝑟2 (𝑡v13 + 𝜁𝑡v24) = −
𝑦1𝑦3
𝑦2𝑦4

· 𝑖v13 −
𝑦2𝑦4
𝑦1𝑦3

· 𝜁𝑖v24

= 𝑏1 (v13 − 𝜁v24) − 𝑎1𝑖(v13 + 𝜁v24) = 𝑏1𝑣
′
1 + 𝑎1𝑣

′
2,

1
𝑟2 · 𝑡𝑣

′
3 =

1
𝑟2 (𝑡v14 + 𝜁𝑡v23) =

𝑦1𝑦4
𝑦2𝑦3

· v14 +
𝑦2𝑦3
𝑦1𝑦4

· 𝜁v23

= 𝑎2 (v14 + 𝜁v23) + 𝑏2𝑖(v14 − 𝜁v23) = 𝑎2𝑣
′
3 − 𝑏2𝑣

′
4,

1
𝑟2 · 𝑡𝑣

′
4 = − 𝑖

𝑟2 (𝑡v14 − 𝜁𝑡v23) = −
𝑦1𝑦4
𝑦2𝑦3

· 𝑖v14 +
𝑦2𝑦3
𝑦1𝑦4

· 𝜁𝑖v23

= 𝑏2 (v14 + 𝜁v23) − 𝑎2𝑖(v14 − 𝜁v23) = 𝑏2𝑣
′
3 + 𝑎2𝑣

′
4,

1
𝑟2 · 𝑡𝑣

′
5 =

1
𝑟2 (𝑡v12 + 𝑡v34) =

𝑦1𝑦2
𝑦3𝑦4

· v12 +
𝑦3𝑦4
𝑦1𝑦2

· v34

= 𝑎3 (v12 + v34) + 𝑏3𝑖(v12 − v34) = 𝑎3𝑣
′
5 − 𝑏3𝑣

′
6,

1
𝑟2 · 𝑡𝑣

′
6 = − 𝑖

𝑟2 (𝑡v12 − 𝑡v34) = −
𝑦1𝑦2
𝑦3𝑦4

· 𝑖v12 +
𝑦3𝑦4
𝑦1𝑦2

· 𝑖v34

= 𝑏3 (v12 + v34) − 𝑎3𝑖(v12 − v34) = 𝑏3𝑣
′
5 + 𝑎3𝑣

′
6.

Hence, the assertion follows. �

Let 𝑋∗(𝑇/C×) and 𝑋∗(𝑇/R×) be the weight lattices of 𝑇/C× and 𝑇/R×, respectively. Then we have

𝑋∗(𝑇/C×) � {(𝑘1, 𝑘2, 𝑘3, 𝑘4) ∈ Z4 | 𝑘1 + 𝑘2 + 𝑘3 + 𝑘4 = 0},
𝑋∗(𝑇/R×) � {(𝑙1, 𝑙2, 𝑙3) ∈ Z3 | 𝑙1 + 𝑙2 + 𝑙3 ≡ 0 mod 2},

where (𝑘1, 𝑘2, 𝑘3, 𝑘4) and (𝑙1, 𝑙2, 𝑙3) on the right-hand sides correspond to the characters

(𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑟) ↦−→ 𝑧𝑘1
1 𝑧𝑘2

2 𝑧𝑘3
3 𝑧𝑘4

4 and (𝑧1, 𝑧2, 𝑧3, 𝑟) ↦−→ 𝑧𝑙11 𝑧
𝑙2
2 𝑧

𝑙3
3 ,

respectively. As an immediate consequence of Lemma 6.2, we have:

Corollary 6.3. The isomorphism 𝜉 induces an isomorphism

𝑋∗(𝑇/R×) �−→ 𝑋∗(𝑇/C×),

given by

(𝑙1, 𝑙2, 𝑙3) ↦−→
(
𝑙1 + 𝑙2 + 𝑙3

2
,
−𝑙1 − 𝑙2 + 𝑙3

2
,
𝑙1 − 𝑙2 − 𝑙3

2
,
−𝑙1 + 𝑙2 − 𝑙3

2

)
under the above identifications.

7. Cohomological representations

In this section, we recall various facts about cohomological representations for real groups, with the
goal of constructing cohomology classes on the Shimura variety attached to the group G̃𝐵 = GU𝐵 (�̃�)
of the previous section. Since
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G̃𝐵 (R) �
∏
𝑣 ∈Σ

GSO(4, 2) ×
∏
𝑣∉Σ

GSO(0, 6),

we will be particularly interested in the orthogonal groups O(4, 2) and O(0, 6).

7.1. Cohomological representations

Let G be a connected real reductive group and K a maximal compact subgroup of G. We assume that
rank𝐺 = rank𝐾 and that 𝐺/𝐾 is a Hermitian symmetric domain. Let 𝔤0 and 𝔨0 be the Lie algebras
of G and K, respectively. Let 𝜃 be the Cartan involution of G associated to K. Then we have a Cartan
decomposition

𝔤0 = 𝔨0 ⊕ 𝔭0,

where 𝔭0 is the (−1)-eigenspace of 𝜃. Let J be the complex structure on 𝔭0, that is, the automorphism of
𝔭0 given by the multiplication by i on the tangent space of 𝐺/𝐾 at the origin. Fix a Cartan subalgebra 𝔱0
of 𝔨0. Let 𝔤, 𝔨, 𝔭, 𝔱 be the complexifications of 𝔤0, 𝔨0, 𝔭0, 𝔱0, respectively. Let 𝔭± be the (±𝑖)-eigenspace
of J in 𝔭 so that

𝔤 = 𝔨 ⊕ 𝔭+ ⊕ 𝔭−.

For any subspace 𝔣 of 𝔤 stable under the adjoint action of 𝔱, we denote by Δ (𝔣) the set of roots of 𝔱 in 𝔣.
We consider an irreducible unitary (𝔤, 𝐾)-module 𝜋 such that the relative Lie algebra cohomology

𝐻∗(𝔤, 𝐾; 𝜋 ⊗ 𝐹)

is nonzero for some irreducible finite-dimensional representation F of G. Such (𝔤, 𝐾)-modules are
called cohomological and classified by Vogan–Zuckerman [65]. We also consider each piece of the
Hodge decomposition

𝐻𝑖 (𝔤, 𝐾; 𝜋 ⊗ 𝐹) =
⊕
𝑝+𝑞=𝑖

𝐻 𝑝,𝑞 (𝔤, 𝐾; 𝜋 ⊗ 𝐹).

Let 𝔮 be a 𝜃-stable parabolic subalgebra of 𝔤, that is, 𝔮 is the sum of nonnegative eigenspaces of
ad(𝑥) for some 𝑥 ∈ 𝑖𝔱0. Then we have a Levi decomposition

𝔮 = 𝔩 ⊕ 𝔲,

where 𝔩 is the centralizer of x and 𝔲 is the unipotent radical of 𝔮. Note that 𝔩 is the complexification of
𝔩0 = 𝔮 ∩ 𝔤0 and contains 𝔱. Fix a positive system Δ+(𝔩 ∩ 𝔨) of Δ (𝔩 ∩ 𝔨), and choose a positive system
Δ+(𝔩) of Δ (𝔩) containing Δ+(𝔩 ∩ 𝔨). Then

Δ+(𝔨) = Δ+(𝔩 ∩ 𝔨) ∪ Δ (𝔲 ∩ 𝔨) and Δ+(𝔤) = Δ+(𝔩) ∪ Δ (𝔲)

are positive systems of Δ (𝔨) and Δ (𝔤), respectively. Put

𝜌 =
1
2

∑
𝛼∈Δ+ (𝔤)

𝛼, 𝜌(𝔲 ∩ 𝔭) = 1
2

∑
𝛼∈Δ (𝔲∩𝔭)

𝛼.

Let L be the centralizer of x in G so that its Lie algebra is 𝔩0. Let 𝜆 ∈ 𝔩∗ be the differential of a unitary
character of L such that 〈𝛼, 𝜆 |𝔱〉 ≥ 0 for all 𝛼 ∈ Δ (𝔲). Then, by [65, Theorem 5.3] (see also [36]), there
exists a unique irreducible unitary (𝔤, 𝐾)-module 𝐴𝔮 (𝜆) such that
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• 𝐴𝔮 (𝜆) has infinitesimal character 𝜆 |𝔱 + 𝜌;
• 𝐴𝔮 (𝜆) contains the K-type with highest weight 𝜆 |𝔱 + 2𝜌(𝔲 ∩ 𝔭);
• any K-type contained in 𝐴𝔮 (𝜆) has highest weight of the form

𝜆 |𝔱 + 2𝜌(𝔲 ∩ 𝔭) +
∑

𝛼∈Δ (𝔲∩𝔭)
𝑛𝛼𝛼

for some nonnegative integers 𝑛𝛼.
Let F be an irreducible finite-dimensional representation of G with highest weight 𝛾. Then

𝐻𝑖 (𝔤, 𝐾; 𝐴𝔮 (𝜆) ⊗ 𝐹∗) � Hom𝐾 (∧𝑖𝔭, 𝐴𝔮 (𝜆) ⊗ 𝐹∗)

if 𝛾 = 𝜆 |𝔱 and

𝐻𝑖 (𝔤, 𝐾; 𝐴𝔮 (𝜆) ⊗ 𝐹∗) = 0

otherwise (see [10]). Now, suppose that 𝛾 = 𝜆 |𝔱 . Then, by [65, Proposition 6.19], we have

𝐻𝑖+𝑅+ ,𝑖+𝑅− (𝔤, 𝐾; 𝐴𝔮 (𝜆) ⊗ 𝐹∗) � Hom𝐿∩𝐾 (∧2𝑖 (𝔩 ∩ 𝔭),C),

where 𝑅± = dim(𝔲 ∩ 𝔭±), and

𝐻 𝑝,𝑞 (𝔤, 𝐾; 𝐴𝔮 (𝜆) ⊗ 𝐹∗) = 0

if 𝑝 − 𝑞 ≠ 𝑅+ − 𝑅−.

7.2. Local theta lifts

Let the notation be as in §8 below. In particular,𝐺 � O(𝑝, 𝑞) and𝐺 ′ � SL2 (R). Let𝐺0 be the topological
identity component of G. Let𝜔 be the Weil representation of𝐺×𝐺 ′ (relative to the character 𝑥 ↦→ 𝑒2𝜋𝑖𝑥

of R). For any irreducible (𝔤′, 𝐾 ′)-module 𝜋, the maximal 𝜋∨-isotypic quotient of 𝜔 is of the form

Θ(𝜋) � 𝜋∨

for some admissible (𝔤, 𝐾)-module Θ(𝜋). If Θ(𝜋) is nonzero, then it has a unique irreducible quotient
𝜃 (𝜋) by the Howe duality [28].

Now, suppose that 𝜋 is a holomorphic discrete series representation of 𝐺 ′ of weight 𝑘 + 1 (i.e., with
Harish-Chandra parameter k), where k is an integer with

𝑘 ≥ 2.

For our applications, we consider the theta lifts 𝜃 (𝜋) and 𝜃 (𝜋∨) when

(𝑝, 𝑞) = (4, 2) or (0, 6).

7.2.1. The case ( 𝒑, 𝒒) = (4, 2)
In this case, by the result of J.-S. Li [48, Theorem 6.2], we have

𝜃 (𝜋) |𝐺0 = 𝐴𝔮0 (𝜆0), 𝜃 (𝜋∨)|𝐺0 = 𝐴𝔮1 (𝜆1),

where 𝔮𝑖 = 𝔩𝑖 ⊕ 𝔲𝑖 is the 𝜃-stable parabolic subalgebra of 𝔤 with

𝔩0 � 𝔰𝔬(4) ⊕ 𝔰𝔬(2), 𝔲0 = C𝑋−𝜀1+𝜀3 ⊕ C𝑋−𝜀2+𝜀3 ⊕ C𝑋𝜀1+𝜀3 ⊕ C𝑋𝜀2+𝜀3 ,

𝔩1 � 𝔰𝔬(2) ⊕ 𝔰𝔬(2, 2), 𝔲1 = C𝑋𝜀1−𝜀2 ⊕ C𝑋𝜀1−𝜀3 ⊕ C𝑋𝜀1+𝜀2 ⊕ C𝑋𝜀1+𝜀3
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(where 𝑋±𝜀𝑖±𝜀 𝑗 is a root vector for ±𝜀𝑖 ± 𝜀 𝑗 ), and

𝜆0 = (0, 0, 𝑘 − 2), 𝜆1 = (𝑘 − 2, 0, 0).

Since 𝔩0 = 𝔨 and 𝔲0 = 𝔭+, 𝐴𝔮0 (𝜆0) is a holomorphic discrete series representation of 𝐺0. Also, we have

𝔲1 ∩ 𝔭+ = C𝑋𝜀1+𝜀3 , 𝔲1 ∩ 𝔭− = C𝑋𝜀1−𝜀3

so that 2𝜌(𝔲1 ∩ 𝔭) = 2𝜀1. Hence, the minimal 𝐾0-type of 𝐴𝔮1 (𝜆1) has highest weight

(𝑘, 0, 0).

Moreover, since 𝔩1 ∩ 𝔨 � 𝔰𝔬(2) ⊕ 𝔰𝔬(2) ⊕ 𝔰𝔬(2) and

𝔩1 ∩ 𝔭 = C𝑋𝜀2−𝜀3 ⊕ C𝑋−𝜀2+𝜀3 ⊕ C𝑋𝜀2+𝜀3 ⊕ C𝑋−𝜀2−𝜀3 ,

we have

dim𝐻𝑖, 𝑗 (𝔤, 𝐾0; 𝐴𝔮1 (𝜆1) ⊗ 𝐹) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if (𝑖, 𝑗) = (1, 1), (3, 3),
2 if (𝑖, 𝑗) = (2, 2),
0 otherwise,

where F is the irreducible finite-dimensional representation of 𝐺0 with highest weight 𝜆1. Note that F
is self-dual.

7.2.2. The case ( 𝒑, 𝒒) = (0, 6)
In this case, 𝜃 (𝜋) |𝐺0 is the irreducible finite-dimensional representation of 𝐺0 with highest weight

𝜆 = (𝑘 − 2, 0, 0)

and 𝜃 (𝜋∨) is zero (see, e.g., [1, Proposition 6.5]).

8. Kudla–Millson theory

In the previous section, we studied certain cohomological representations for 𝐺 = O(𝑝, 𝑞) with (𝑝, 𝑞) =
(4, 2) or (0, 6). In this section, we recall the explicit construction of (𝔤, 𝐾)-cohomology classes attached
to these representations using the Weil representation à la Kudla–Millson. While the original papers of
Kudla and Millson considered the case of the trivial local system, the case of more general local systems
was discussed in Funke–Millson. We also study the restriction of these explicit (𝔤, 𝐾)-cohomology
classes to the subgroup O(2, 2) × O(2, 0) and O(0, 4) × O(0, 2) of O(4, 2) and O(0, 6), respectively.

8.1. Groups and Lie algebras

Let V be an m-dimensional quadratic space over R of signature (𝑝, 𝑞), where p and q are nonnegative
integers such that 𝑝 + 𝑞 = 𝑚. Namely, V is equipped with a nondegenerate symmetric bilinear form
〈·, ·〉 : 𝑉 ×𝑉 → R and an orthogonal basis {𝑒𝑖 | 1 ≤ 𝑖 ≤ 𝑚} such that

〈𝑒𝑖 , 𝑒𝑖〉 =
{
+1 if 1 ≤ 𝑖 ≤ 𝑝,

−1 if 𝑝 + 1 ≤ 𝑖 ≤ 𝑚.

We assume that p and q are even. Let 𝐺 = O(𝑉) � O(𝑝, 𝑞) be the orthogonal group of V. Put

𝑉+ = R𝑒1 + · · · + R𝑒𝑝 , 𝑉− = R𝑒𝑝+1 + · · · + R𝑒𝑚
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so that 𝑉 = 𝑉+ ⊕ 𝑉−. We define a Cartan involution 𝜃 of G by

𝜃 (𝑔) = 𝐼𝑉 · 𝑔 · 𝐼𝑉 ,

where 𝐼𝑉 = id𝑉+ ⊕ (−id𝑉−). Let K be the maximal compact subgroup of G with respect to 𝜃. Then
𝐾 = O(𝑉+) × O(𝑉−) � O(𝑝) × O(𝑞). We define a maximal torus T of G by

𝑇 = SO(𝑉1) × · · · × SO(𝑉𝑟 ) � SO(2)𝑟 ,

where 𝑉𝑖 = R𝑒2𝑖−1 + R𝑒2𝑖 and 𝑟 = 𝑚
2 .

Let 𝔤0 be the Lie algebra of G. Then we have a G-equivariant isomorphism 𝜌 : ∧2𝑉 → 𝔤0 given by

𝜌(𝑢 ∧ 𝑣) (𝑤) = 〈𝑢, 𝑤〉𝑣 − 〈𝑣, 𝑤〉𝑢.

We take a basis {𝑋𝑖 𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑚} of 𝔤0 given by 𝑋𝑖 𝑗 = 𝜌(𝑒𝑖 ∧ 𝑒 𝑗 ). Let {𝜔𝑖 𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑚} be its
dual basis of 𝔤∗0. We have a Cartan decomposition

𝔤0 = 𝔨0 ⊕ 𝔭0,

where 𝔨0 and 𝔭0 are the (+1)-eigenspace and (−1)-eigenspace of 𝜃, respectively. Note that 𝔨0 is the Lie
algebra of K. Via the isomorphism 𝜌, we have

𝔨0 � ∧2𝑉+ ⊕ ∧2𝑉−, 𝔭0 � 𝑉+ ⊗ 𝑉−.

Let 𝔱0 be the Lie algebra of T. Let 𝔤, 𝔨,𝔭, 𝔱 be the complexifications of 𝔤0, 𝔨0,𝔭0, 𝔱0, respectively. If 𝑞 = 2,
then we have a complex structure id𝑉+ ⊗ 𝐽𝑉− on 𝔭0 and hence a decomposition

𝔤 = 𝔨 ⊕ 𝔭+ ⊕ 𝔭−,

where 𝐽𝑉− is defined by

𝐽𝑉− (𝑒𝑚−1) = −𝑒𝑚, 𝐽𝑉− (𝑒𝑚) = 𝑒𝑚−1,

and 𝔭+ and 𝔭− are the (+𝑖)-eigenspace and (−𝑖)-eigenspace of id𝑉+ ⊗ 𝐽𝑉− in 𝔭, respectively.
Let W be a two-dimensional symplectic space over R. Namely, W is equipped with a nondegenerate

skew-symmetric bilinear form 〈·, ·〉 : 𝑊 ×𝑊 → R and a basis {𝑒, 𝑓 } such that

〈𝑒, 𝑒〉 = 〈 𝑓 , 𝑓 〉 = 0, 〈𝑒, 𝑓 〉 = 1.

Let 𝐺 ′ = Sp(𝑊) � SL2 (R) be the symplectic group of W. Let 𝐾 ′ � U(1) be the standard maximal
compact subgroup of 𝐺 ′, where U(1) is embedded into SL2(R) by 𝑎 + 𝑏𝑖 ↦→

(
𝑎 𝑏
−𝑏 𝑎

)
. Let 𝔤′0 be the Lie

algebra of 𝐺 ′ and 𝔤′ its complexification.

8.2. Finite-dimensional representations of G

Let {𝜀𝑖 | 1 ≤ 𝑖 ≤ 𝑟} be the basis of 𝔱∗0 given by 𝜀𝑖 (𝑡) = 𝑡𝑖 for

𝑡 =

((
𝑡1

−𝑡1

)
, . . . ,

(
𝑡𝑟

−𝑡𝑟

))
.

We identify 𝔱∗ with C𝑟 via this basis. Under this identification, the weight lattice is given by Z𝑟 . We take

{𝜀𝑖 − 𝜀𝑖+1 | 1 ≤ 𝑖 < 𝑟} ∪ {𝜀𝑟−1 + 𝜀𝑟 }
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as a set of simple roots. Then 𝜆 = (𝜆1, . . . , 𝜆𝑟 ) ∈ Z𝑟 is dominant if and only if

𝜆1 ≥ · · · ≥ 𝜆𝑟−1 ≥ |𝜆𝑟 |.

Now, assume that 𝑟 ≥ 2. We only consider dominant weights 𝜆 of the form

𝜆 = (ℓ, 0, . . . , 0)

for some nonnegative integer ℓ. In particular, we have S𝜆𝑉 = Symℓ𝑉 , where S𝜆 is the Schur functor
associated to 𝜆. Put Sℓ𝑉 = Symℓ𝑉 ⊗ C and equip it with a nondegenerate G-invariant bilinear pairing
〈·, ·〉 : Sℓ𝑉 × Sℓ𝑉 → C given by

〈𝑣1 · · · 𝑣ℓ , 𝑤1 · · ·𝑤ℓ〉 =
∑
𝜎∈𝔖ℓ

〈𝑣1, 𝑤𝜎 (1) 〉 · · · 〈𝑣ℓ , 𝑤𝜎 (ℓ) 〉,

where 𝔖ℓ is the symmetric group of degree ℓ. We denote by ℋℓ𝑉 the kernel of the contraction
Sℓ𝑉 → Sℓ−2𝑉 given by

𝑣1 · · · 𝑣ℓ ↦−→
∑
𝑖< 𝑗

〈𝑣𝑖 , 𝑣 𝑗〉 · 𝑣1 · · · �̂�𝑖 · · · �̂� 𝑗 · · · 𝑣ℓ .

Then, by [18, §19.5], ℋℓ𝑉 is the irreducible finite-dimensional representation of G with highest weight
𝜆, whose highest weight vector is given by

(𝑒1 + 𝑖𝑒2)ℓ .

Also, the pairing 〈·, ·〉 induces a G-equivariant orthogonal projection

Sℓ𝑉 −→ℋℓ𝑉. (8.1)

8.3. Weil representations

We recall the Schrödinger model S (𝑉) of the Weil representation 𝜔 of 𝐺 ×𝐺 ′ (relative to the character
𝑥 ↦→ 𝑒2𝜋𝑖𝑥 of R), where S (𝑉) is the space of Schwartz functions on V. By [40, §5], the action of G is
given by

𝜔(𝑔)𝜑(𝑥) = 𝜑(𝑔−1𝑥),

and the action of 𝐺 ′ is given by

𝜔

(
𝑎
𝑎−1

)
𝜑(𝑥) = 𝑎

𝑚
2 𝜑(𝑎𝑥),

𝜔

(
1 𝑏

1

)
𝜑(𝑥) = 𝜑(𝑥)𝑒𝜋𝑖𝑏 〈𝑥,𝑥 〉 ,

𝜔

(
−1

1

)
𝜑(𝑥) = 𝑖

𝑞−𝑝
2

∫
𝑉
𝜑(𝑦)𝑒−2𝜋𝑖 〈𝑥,𝑦〉 𝑑𝑦.

Let 𝑥1, . . . , 𝑥𝑚 be the coordinates on V with respect to the basis {𝑒1, . . . , 𝑒𝑚}. We denote by 𝑆(𝑉) the
subspace of S (𝑉) consisting of functions of the form 𝑝 · 𝜑0, where p is a polynomial function and 𝜑0 is
the Gaussian defined by

𝜑0 (𝑥1, . . . , 𝑥𝑚) = 𝑒−𝜋 (𝑥
2
1+···+𝑥

2
𝑚) .
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We also recall the Fock model 𝒫(C𝑚) of the Weil representation 𝜔 of 𝔤 × 𝔤′ (relative to 𝜆 = 2𝜋𝑖),
where𝒫(C𝑚) is the space of polynomial functions onC𝑚. We refer the reader to [42, §7], [19, Appendix
A] for details. Let 𝑧1, . . . , 𝑧𝑚 be the coordinates on C𝑚. Then, by [19, Lemma A.3], we have a 𝔤 × 𝔤′-
equivariant isomorphism 𝜄 : 𝑆(𝑉) � 𝒫(C𝑚) such that 𝜄(𝜑0) = 1 and such that

𝜄

(
𝑥𝛼 −

1
2𝜋

𝜕

𝜕𝑥𝛼

)
𝜄−1 =

1
2𝜋𝑖

𝑧𝛼, 𝜄

(
𝑥𝛼 +

1
2𝜋

𝜕

𝜕𝑥𝛼

)
𝜄−1 = 2𝑖

𝜕

𝜕𝑧𝛼
,

𝜄

(
𝑥𝜇 −

1
2𝜋

𝜕

𝜕𝑥𝜇

)
𝜄−1 = − 1

2𝜋𝑖
𝑧𝜇, 𝜄

(
𝑥𝜇 +

1
2𝜋

𝜕

𝜕𝑥𝜇

)
𝜄−1 = −2𝑖

𝜕

𝜕𝑧𝜇

(8.2)

for 1 ≤ 𝛼 ≤ 𝑝 and 𝑝 + 1 ≤ 𝜇 ≤ 𝑚.

8.4. Schwartz forms

We now recall the Schwartz forms constructed by Kudla–Millson [41] in the case of trivial coefficients
and Funke–Millson [19] in general. Let ℓ be a nonnegative integer. Recall that the signature of V is
(𝑝, 𝑞). If 𝑝 ≥ 1, then as in [19, §6.2], we define

𝜑𝑞,ℓ ∈ 𝒫(C𝑚) ⊗ ∧𝑞𝔭∗ ⊗ Sℓ𝑉

by

𝜑𝑞,ℓ =

(
1

4𝜋𝑖

)ℓ+𝑞 ∑
𝛼

∑
𝛽

𝑧𝛼𝑧𝛽 ⊗ 𝜔𝛼 ⊗ 𝑒𝛽 ,

where the sums run over 𝛼 = (𝛼1, . . . , 𝛼𝑞) ∈ {1, . . . , 𝑝}𝑞 and 𝛽 = (𝛽1, . . . , 𝛽ℓ) ∈ {1, . . . , 𝑝}ℓ , and

𝑧𝛼 = 𝑧𝛼1 · · · 𝑧𝛼𝑞 , 𝑧𝛽 = 𝑧𝛽1 · · · 𝑧𝛽ℓ ,
𝜔𝛼 = 𝜔𝛼1 𝑝+1 ∧ · · · ∧ 𝜔𝛼𝑞 𝑝+𝑞 , 𝑒𝛽 = 𝑒𝛽1 · · · 𝑒𝛽ℓ .

(Note that we scale the Schwartz form given in [19, §6.2] by 2−
𝑞
2 and take its image under the projection

𝑉 ⊗ℓ ⊗ C→ Sℓ𝑉 .) Then we define

𝜑′𝑞,ℓ ∈ 𝒫(C
𝑚) ⊗ ∧𝑞𝔭∗ ⊗ℋℓ𝑉

as the image of 𝜑𝑞,ℓ under the G-equivariant projection Sℓ𝑉 → ℋℓ𝑉 as in equation (8.1). Via the
isomorphism 𝜄, we also regard 𝜑′𝑞,ℓ as an element in 𝑆(𝑉) ⊗ ∧𝑞𝔭∗ ⊗ℋℓ𝑉 . By [19, Theorem 5.6], 𝜑′𝑞,ℓ
is invariant under the diagonal action of K and

(𝜔(𝑡) ⊗ 1 ⊗ 1)𝜑′𝑞,ℓ = 𝑡ℓ+
𝑚
2 𝜑′𝑞,ℓ

for 𝑡 ∈ 𝐾 ′ � U(1). By [19, Theorem 5.7], 𝜑′𝑞,ℓ defines a closed differential form on 𝐺/𝐾 . Namely,
𝑑𝜑′𝑞,ℓ = 0, where

𝑑 : (𝒫(C𝑚) ⊗ ∧𝑞𝔭∗ ⊗ℋℓ𝑉)𝐾 −→ (𝒫(C𝑚) ⊗ ∧𝑞+1𝔭∗ ⊗ℋℓ𝑉)𝐾

is the differential as in [19, §5.1].
Similarly, if 𝑝 = 0, then we define

𝜑ℓ ∈ 𝒫(C𝑚) ⊗ Sℓ𝑉
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by

𝜑ℓ =

(
1

4𝜋𝑖

)ℓ ∑
𝛽

𝑧𝛽 ⊗ 𝑒𝛽 ,

where the sum runs over 𝛽 = (𝛽1, . . . , 𝛽ℓ) ∈ {1, . . . , 𝑚}ℓ . Then we define

𝜑′ℓ ∈ 𝒫(C
𝑚) ⊗ℋℓ𝑉

as the image of 𝜑ℓ under the G-equivariant projection Sℓ𝑉 → ℋℓ𝑉 as in equation (8.1). Via the
isomorphism 𝜄, we also regard 𝜑′ℓ as an element in 𝑆(𝑉) ⊗ℋℓ𝑉 . Then 𝜑′ℓ is invariant under the diagonal
action of G and

(𝜔(𝑡) ⊗ 1)𝜑′ℓ = 𝑡−ℓ−
𝑚
2 𝜑′ℓ

for 𝑡 ∈ 𝐾 ′ � U(1).

8.5. Restrictions and contractions

For our applications, we consider a six-dimensional quadratic space �̃� over R of signature (𝑝, 𝑞), where

(𝑝, 𝑞) = (4, 2) or (0, 6).

Let �̃� = O(�̃�) be the orthogonal group of �̃� . As in §8.1, we take a basis {𝑒1, . . . , 𝑒6} of �̃� and define a
Cartan involution 𝜃 of �̃�. Let �̃� be the maximal compact subgroup of �̃� with respect to 𝜃. Let �̃� = 𝔨 ⊕ �̃�
be the complexified Lie algebra of �̃�, where 𝔨 and �̃� are (+1)-eigenspace and (−1)-eigenspace of 𝜃,
respectively.

Put

𝑉 = R𝑒1 + R𝑒2 + R𝑒5 + R𝑒6, 𝑉0 = R𝑒3 + R𝑒4

so that �̃� = 𝑉 ⊕ 𝑉0. Let 𝐺 = O(𝑉) be the orthogonal group of V, and regard it as a subgroup of �̃�. The
natural inclusion 𝑉 ↩→ �̃� induces a commutative diagram

Sℓ𝑉

��

�� Sℓ�̃�

��
Sℓ−2𝑉 �� Sℓ−2�̃� ,

(where the horizontal maps are the inclusions and the vertical maps are the contractions) and hence a
G-equivariant inclusion

ℋℓ𝑉 ↩→ℋℓ�̃� .

Also, the natural projection �̃� � 𝑉 induces a projection Sℓ�̃� � Sℓ𝑉 . Composing this with the inclusion
ℋℓ�̃� ↩→ Sℓ�̃� and the projection Sℓ𝑉 �ℋℓ𝑉 , we obtain a G-equivariant projection

ℋℓ�̃� �ℋℓ𝑉, (8.3)

which restricts to the identity on ℋℓ𝑉 .

https://doi.org/10.1017/fmp.2023.20 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.20


Forum of Mathematics, Pi 53

8.5.1. The case ( 𝒑, 𝒒) = (4, 2)
In this case, �̃�∗ is equipped with a basis {𝜔𝑖 𝑗 | 1 ≤ 𝑖 ≤ 4, 5 ≤ 𝑗 ≤ 6} as in §8.1. Let �̃�∗ � 𝔭∗ be the
K-equivariant projection induced by the natural inclusion 𝔭 ↩→ �̃�. This together with equation (8.3)
gives rise to a 𝐾 × 𝐺 ′-equivariant map

Res : 𝑆(�̃�) ⊗ ∧2�̃�∗ ⊗ℋℓ�̃� −→ 𝑆(�̃�) ⊗ ∧2𝔭∗ ⊗ℋℓ𝑉.

Here, K acts diagonally on all three factors, while𝐺 ′ acts only on the first factor. Choose an isomorphism
∧4𝔭∗ � C so that 𝜔15∧𝜔25∧𝜔16∧𝜔26 ↦→ 1. This induces a nondegenerate K-invariant bilinear pairing
· ∧ · : ∧2𝔭∗ × ∧2𝔭∗ → ∧4𝔭∗ � C. For 𝝎 ∈ ∧2𝔭∗ and 𝒗 ∈ Sℓ𝑉 , we define a contraction

C𝝎,𝒗 : 𝑆(�̃�) ⊗ ∧2𝔭∗ ⊗ Sℓ𝑉 −→ 𝑆(�̃�)

by C𝝎,𝒗 = 1 ⊗ (· ∧ 𝝎) ⊗ 〈·, 𝒗〉.
Let 𝜑′2,ℓ ∈ 𝑆(�̃�) ⊗ ∧

2�̃�∗ ⊗ℋℓ�̃� be the Schwartz form as in §8.4. We shall compute C𝝎,𝒗 (Res(𝜑′2,ℓ))
for 𝝎 and 𝒗 given as follows. Put

𝜔++ = 𝜔15 + 𝑖𝜔25 + 𝑖𝜔16 − 𝜔26,

𝜔+− = 𝜔15 + 𝑖𝜔25 − 𝑖𝜔16 + 𝜔26,

𝜔−+ = 𝜔15 − 𝑖𝜔25 + 𝑖𝜔16 + 𝜔26,

𝜔−− = 𝜔15 − 𝑖𝜔25 − 𝑖𝜔16 − 𝜔26.

Then for 𝑡 = (𝑡1, 𝑡2) ∈ 𝑇 � U(1)2 (where we identify U(1) with SO(2) by 𝑎 + 𝑏𝑖 ↦→
(
𝑎 𝑏
−𝑏 𝑎

)
), we have

𝑡 · 𝜔𝜖1 𝜖2 = 𝑡 𝜖1
1 𝑡 𝜖2

2 𝜔𝜖1 𝜖2 .

In particular,

(𝔭+)∗ = C𝜔++ + C𝜔−+, (𝔭−)∗ = C𝜔+− + C𝜔−−.

Hence, we obtain a basis of ∧2𝔭∗ given by

𝜔++ ∧ 𝜔−+ ∈ ∧2(𝔭+)∗, 𝜔++ ∧ 𝜔−−, 𝜔−+ ∧ 𝜔+− ∈ (𝔭+)∗ ∧ (𝔭−)∗,
𝜔+− ∧ 𝜔−− ∈ ∧2(𝔭−)∗, 𝜔++ ∧ 𝜔+−, 𝜔−+ ∧ 𝜔−− ∈ (𝔭+)∗ ∧ (𝔭−)∗.

Note that in the context of the introduction, the above elements in ∧2 (𝔭+)∗, (𝔭+)∗ ∧ (𝔭−)∗, ∧2(𝔭−)∗
correspond to those in

𝐻2,0 (𝑋1 × 𝑋2), 𝐻1,1 (𝑋1 × 𝑋2), 𝐻0,2 (𝑋1 × 𝑋2),

respectively, where 𝑋1 and 𝑋2 are quaternionic Shimura varieties. Also, the elements in (𝔭+)∗ ∧ (𝔭−)∗
in the first row correspond to those in

𝐻1,1 (𝑋1) ⊗ 𝐻0,0 (𝑋2), 𝐻0,0(𝑋1) ⊗ 𝐻1,1(𝑋2),

respectively, whereas the elements in (𝔭+)∗ ∧ (𝔭−)∗ in the second row (which are the most relevant for
us) correspond to those in

𝐻1,0 (𝑋1) ⊗ 𝐻0,1 (𝑋2), 𝐻0,1(𝑋1) ⊗ 𝐻1,0(𝑋2),

respectively. From the representation-theoretic viewpoint, the former corresponds to the contribution
of the trivial representation, whereas the latter corresponds to the contribution of holomorphic and
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antiholomorphic vectors in the discrete series representation. Put

𝝎+ = − 1
2𝑖
· 𝜔++ ∧ 𝜔+− = (𝜔15 + 𝑖𝜔25) ∧ (𝜔16 + 𝑖𝜔26),

𝝎− = − 1
2𝑖
· 𝜔−+ ∧ 𝜔−− = (𝜔15 − 𝑖𝜔25) ∧ (𝜔16 − 𝑖𝜔26),

and

𝒗+ =
1
ℓ!
· (𝑒1 + 𝑖𝑒2)ℓ , 𝒗− =

1
ℓ!
· (𝑒1 − 𝑖𝑒2)ℓ .

Proposition 8.1. For 𝜖 = ±, we have

C𝝎𝜖 ,𝒗𝜖 (Res(𝜑′2,ℓ )) (𝑥) = (𝑥1 + 𝜖𝑖𝑥2)ℓ+2 · 𝜑0 (𝑥).

Proof. Consider the diagram

Sℓ�̃�
𝑝

��

𝑟 �� Sℓ𝑉
𝑞

��
ℋℓ�̃� 𝑠

�� ℋℓ𝑉

,

where 𝑝, 𝑞, 𝑟, 𝑠 are the projections. By [18, §19.5], we have

Sℓ�̃� � 𝜏(ℓ,0,0) ⊕ 𝜏(ℓ−2,0,0) ⊕ · · · ⊕ 𝜏(ℓ−2𝑘,0,0) , Sℓ𝑉 � 𝜏(ℓ,0) ⊕ 𝜏(ℓ−2,0) ⊕ · · · ⊕ 𝜏(ℓ−2𝑘,0) ,

ℋℓ�̃� � 𝜏(ℓ,0,0) , ℋℓ𝑉 � 𝜏(ℓ,0) ,

where 𝜏𝜆 denotes the irreducible representation with highest weight 𝜆 and 𝑘 = [ ℓ2 ]. Also, by [18, §25.3],
we have

𝜏( 𝑗 ,0,0) |𝐺 � 𝜏( 𝑗 ,0) ⊕ 𝜏⊕2
( 𝑗−1,0) ⊕ · · · ⊕ 𝜏

⊕ 𝑗+1
(0,0) .

Hence, if 𝑝(𝑥) = 0 for 𝑥 ∈ Sℓ�̃� , then (𝑞◦𝑟) (𝑥) = 0. This implies that the above diagram is commutative.
Since q is the orthogonal projection and 𝒗 𝜖 ∈ℋℓ𝑉 , we have

〈(𝑠 ◦ 𝑝) (𝑥), 𝒗 𝜖 〉 = 〈(𝑞 ◦ 𝑟) (𝑥), 𝒗 𝜖 〉 = 〈𝑟 (𝑥), 𝒗 𝜖 〉

and hence

C𝝎𝜖 ,𝒗𝜖 (Res(𝜑′2,ℓ)) = C𝝎𝜖 ,𝒗𝜖 (R̃es(𝜑2,ℓ)),

where

R̃es : 𝑆(�̃�) ⊗ ∧2�̃�∗ ⊗ Sℓ�̃� −→ 𝑆(�̃�) ⊗ ∧2𝔭∗ ⊗ Sℓ𝑉

is the natural projection. By definition, we have

C𝝎𝜖 ,𝒗𝜖 (R̃es(𝜑2,ℓ)) =
(

1
4𝜋𝑖

)ℓ+2 ∑
𝛼

∑
𝛽

𝑧𝛼𝑧𝛽 (𝜔𝛼 ∧ 𝝎𝜖 )〈𝑒𝛽 , 𝒗 𝜖 〉
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in 𝒫(C6), where the sums run over 𝛼 = (𝛼1, 𝛼2) ∈ {1, 2}2 and 𝛽 = (𝛽1, . . . , 𝛽ℓ) ∈ {1, 2}ℓ . It is easy to
see that ∑

𝛼

𝑧𝛼 (𝜔𝛼 ∧ 𝝎𝜖 ) = (𝑧1 + 𝜖𝑖𝑧2)2,
∑
𝛽

𝑧𝛽 〈𝑒𝛽 , 𝒗 𝜖 〉 = (𝑧1 + 𝜖𝑖𝑧2)ℓ

so that

C𝝎𝜖 ,𝒗𝜖 (R̃es(𝜑2,ℓ )) =
(

1
4𝜋𝑖

)ℓ+2
(𝑧1 + 𝜖𝑖𝑧2)ℓ+2.

This combined with equation (8.2) gives the desired formula. �

8.5.2. The case ( 𝒑, 𝒒) = (0, 6)
In this case, we have �̃� = �̃� and �̃�∗ = {0}. As above, equation (8.3) gives rise to a 𝐺 × 𝐺 ′-equivariant
map,

Res : 𝑆(�̃�) ⊗ℋℓ�̃� −→ 𝑆(�̃�) ⊗ℋℓ𝑉.

Here, G acts diagonally on both factors, while 𝐺 ′ acts only on the first factor. For 𝒗 ∈ Sℓ𝑉 , we define a
contraction

C𝒗 : 𝑆(�̃�) ⊗ Sℓ𝑉 −→ 𝑆(�̃�)

by C𝒗 = 1 ⊗ 〈·, 𝒗〉.
Let 𝜑′ℓ ∈ 𝑆(�̃�) ⊗ℋ

ℓ�̃� be the Schwartz form as in §8.4. Then, as in Proposition 8.1, we have:

Proposition 8.2. For 𝜖 = ±, we have

C𝒗𝜖 (Res(𝜑′ℓ)) (𝑥) = (−1)ℓ · (𝑥1 + 𝜖𝑖𝑥2)ℓ · 𝜑0 (𝑥),

where 𝒗 𝜖 = 1
ℓ! · (𝑒1 + 𝜖𝑖𝑒2)ℓ .

9. Theta lifting

In this section, we study global theta lifts for some quaternionic dual pairs. The material in this section
will be needed in §10 to globalize the construction of the Kudla–Millson cohomology classes from the
previous section to the group G̃𝐵 = GU𝐵 (�̃�)0 and to show the nonvanishing of their restriction to a
suitable subgroup. Moreover, we will also use it in §11 to study their associated Galois representations
and to show that they lie in the C-span of the Hodge classes.

9.1. Setup

Let F be a number field and A = A𝐹 the ring of adèles of F. Let B be a quaternion division algebra
over F and ∗ the main involution on B. Let E be a quadratic extension of F which embeds into B. Fix a
trace zero element i ∈ 𝐸× and write N = N𝐸/𝐹 for the norm map from E to F. Let 𝜉𝐸 be the quadratic
character of A×/𝐹× associated to 𝐸/𝐹 by class field theory.

Let V be an m-dimensional right B-space equipped with a skew-Hermitian form 〈·, ·〉 : 𝑉 × 𝑉 → 𝐵.
Let 𝑊 = 𝐵 be a one-dimensional left B-space equipped with a Hermitian form 〈·, ·〉 : 𝑊 ×𝑊 → 𝐵
given by

〈𝑥, 𝑦〉 = 𝑥 · 𝑦∗.
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Then GU(𝑊) � 𝐵×. Put

𝐺 = GU(𝑉)0, 𝐺1 = U(𝑉)0,
𝐻 = GU(𝑊), 𝐻1 = U(𝑊),

and

𝑅 = {(𝑔, ℎ) ∈ 𝐺 × 𝐻 | 𝜈(𝑔) = 𝜈(ℎ)},

where 𝜈 denotes the similitude character. Let 𝑍𝐺 � 𝐹× and 𝑍𝐻 � 𝐹× be the centers of GU(𝑉) and
GU(𝑊), respectively. Put

(A×)+ = 𝜈(𝐺 (A)) ∩ 𝜈(𝐻 (A))

and

𝐺 (A)+ = {𝑔 ∈ 𝐺 (A) | 𝜈(𝑔) ∈ (A×)+}, 𝐺 (𝐹)+ = 𝐺 (𝐹) ∩ 𝐺 (A)+,
𝐻 (A)+ = {ℎ ∈ 𝐻 (A) | 𝜈(ℎ) ∈ (A×)+}, 𝐻 (𝐹)+ = 𝐻 (𝐹) ∩ 𝐻 (A)+.

Let V = 𝑉 ⊗𝐵 𝑊 be a 4𝑚-dimensional F-space equipped with a symplectic form

〈〈·, ·〉〉 = 1
2

tr𝐵/𝐹 (〈·, ·〉 ⊗ 〈·, ·〉∗) .

Let Mp(V)A be the metaplectic group

1 −→ C1 −→ Mp(V)A −→ Sp(V) (A) −→ 1.

Fix a complete polarization V = X ⊕ Y. Then we can realize the Weil representation 𝜔𝜓 of Mp(V)A
(relative to a nontrivial additive character 𝜓 of A/𝐹) on the Schwartz space S (X(A)). Assume that
there exists a homomorphism 𝚤 : 𝑅(A) → Mp(V)A such that the diagram

𝑅(𝐹) �
� ��

��

𝑅(A)

𝚤

��
Sp(V) (𝐹) 𝑖 �� Mp(V)A

is commutative, where i is the canonical splitting. Then for any 𝜑 ∈ S (X(A)), we may form a theta
function on 𝑅(A):

Θ𝜑 (𝑔, ℎ) =
∑
𝑥∈X

𝜔𝜓 (𝚤(𝑔, ℎ))𝜑(𝑥).

9.2. Theta lifts from 𝑬× to 𝑩×

Let 𝑉 = 𝐵 be a one-dimensional right B-space equipped with a skew-Hermitian form

〈𝑥, 𝑦〉 = 𝑥∗ · 𝜅i · 𝑦

for some 𝜅 ∈ 𝐹×. Then GU(𝑉)0 � 𝐸× so that (A×)+ = N(A×𝐸 ) and 𝐺 (A)+ = 𝐺 (A). In Appendix A,
we define a splitting 𝚤 : 𝑅(A) → Mp(V)A as above. Let 𝜂 be a character of A×𝐸/𝐸

×. We regard 𝜂 as an
automorphic character of 𝐺 (A). For 𝜑 ∈ S (X(A)) and ℎ ∈ 𝐻 (A)+, put

𝜃𝜑 (𝜂) (ℎ) =
∫
𝐺1 (𝐹 )\𝐺1 (A)

Θ𝜑 (𝑔1𝑔, ℎ)𝜂(𝑔1𝑔) 𝑑𝑔1,
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where we choose 𝑔 ∈ 𝐺 (A) such that 𝜈(𝑔) = 𝜈(ℎ). Since 𝐹× ∩N(A×𝐸 ) = N(𝐸×) and hence 𝜈(𝐻 (𝐹)+) =
𝜈(𝐺 (𝐹)), this integral defines an automorphic form 𝜃𝜑 (𝜂) on 𝐻 (A)+. Since [𝐻 (A) : 𝐻 (𝐹)𝐻 (A)+] =
[A× : 𝐹×N(A×𝐸 )] = 2, we may extend 𝜃𝜑 (𝜂) to an automorphic form on 𝐻 (A) by the natural embedding

𝐻 (𝐹)+\𝐻 (A)+ ↩→ 𝐻 (𝐹)\𝐻 (A)

and extension by zero. Let 𝜃 (𝜂) be the automorphic representation of 𝐻 (A) generated by 𝜃𝜑 (𝜂) for all
𝜑 ∈ S (X(A)).

Lemma 9.1. Assume that:

• 𝐵𝑣 is split for all Archimedean places v of F;
• 𝜂𝑣 does not factor through the norm map for any place v of F such that 𝐵𝑣 is ramified.

Then we have

𝜃 (𝜂) = 𝜋(𝜂)𝐵,

where 𝜋(𝜂) is the automorphic induction of 𝜂 from GL1 (A𝐸 ) to GL2(A) and 𝜋(𝜂)𝐵 is its Jacquet–
Langlands transfer to 𝐵×(A).

Proof. Suppose that 𝜃 (𝜂) is nonzero. Let v be a place of F. If 𝐵𝑣 is split, then by §A.13, the splitting
𝚤 : 𝑅(𝐹𝑣 ) → Mp(V𝑣 ) agrees with the standard one for symplectic-orthogonal dual pairs. Hence, it
follows from the local theta correspondence for unramified representations that for any irreducible
component 𝜋 of 𝜃 (𝜂), we have 𝜋𝑣 � 𝜋(𝜂𝑣 ) for almost all v, where 𝜋(𝜂𝑣 ) is the automorphic induction
of 𝜂𝑣 from GL1(𝐸𝑣 ) to GL2(𝐹𝑣 ). By the strong multiplicity one theorem, 𝜃 (𝜂) is irreducible and
𝜃 (𝜂) = 𝜋(𝜂)𝐵.

Thus, it remains to show that 𝜃 (𝜂) is nonzero. Let V and W be the one-dimensional Hermitian E-space
and the two-dimensional skew-Hermitian E-space, respectively, as in §A.4. Then GU(𝑉)0 = GU(V)
and GU(𝑊) ↩→ GU(W). By §A.9, the splitting 𝚤 : 𝑅(A) → Mp(V)A agrees with the restriction of
the standard one G(U(V) × U(W)) (A) → Mp(V)A for unitary dual pairs. Hence, it suffices to show
that the global theta lift of 𝜒 := 𝜂 |A1

𝐸
(regarded as an automorphic character of U(V) (A)) to U(W) (A)

is nonzero. By assumption, we have 𝜒 ≠ 1 so that the standard L-function 𝐿(𝑠, 𝜒) is holomorphic
and nonzero at 𝑠 = 1. This together with the Rallis inner product formula [29, 21, 71] implies that the
nonvanishing of the global theta lift 𝜃 (𝜒) to U(W) (A) is equivalent to the nonvanishing of the local theta
lift 𝜃 (𝜒𝑣 ) to U(W𝑣 ) for all v. If 𝐵𝑣 is split, then 𝜃 (𝜒𝑣 ) is nonzero since the dual pair (U(V𝑣 ),U(W𝑣 ))
is in the stable range [47]. Suppose that 𝐵𝑣 is ramified so that v is non-Archimedean. Let 𝑟+(𝜒𝑣 ) and
𝑟−(𝜒𝑣 ) be the first occurrence indices

𝑟+(𝜒𝑣 ) = min{𝑟 | the theta lift of 𝜒𝑣 to U(H⊕𝑟𝑣 ) is nonzero},
𝑟−(𝜒𝑣 ) = min{𝑟 | the theta lift of 𝜒𝑣 to U(W𝑣 ⊕ H⊕𝑟−1

𝑣 ) is nonzero},

where H𝑣 is the hyperbolic plane over 𝐸𝑣 . Since 𝜒𝑣 ≠ 1 by assumption, we have 𝑟+(𝜒𝑣 ) = 1. On the
other hand, we have

𝑟+(𝜒𝑣 ) + 𝑟−(𝜒𝑣 ) = 2

by the conservation relation [63]. Hence, we have 𝑟−(𝜒𝑣 ) = 1 so that 𝜃 (𝜒𝑣 ) is nonzero. This completes
the proof. �

9.3. Theta lifts from 𝑩×
1 × 𝑩×

2 to 𝑩×

Let 𝑉 = 𝐵1 ⊗𝐸 𝐵2 be the two-dimensional skew-Hermitian right B-space as in [30, §2.2], where 𝐵1 and
𝐵2 are quaternion algebras over F such that E embeds into 𝐵1 and 𝐵2 and such that 𝐵1 · 𝐵2 = 𝐵 in the
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Brauer group. Then GU(𝑉)0 � (𝐵×1 × 𝐵
×
2 )/𝐹

× so that (A×)+ consists of elements 𝑎 ∈ A× with 𝑎𝑣 > 0
for all infinite places v such that 𝐵1,𝑣 or 𝐵2,𝑣 or 𝐵𝑣 is ramified. In [30, Appendix C], we have defined
a splitting 𝚤 : 𝑅(A) → Mp(V)A as above. Let 𝜎1 and 𝜎2 be irreducible unitary cuspidal automorphic
representations of 𝐵×1 (A) and 𝐵×2 (A), respectively. We assume that they have the same central character
so that we may regard 𝜎1�𝜎2 as an automorphic representation of𝐺 (A). For 𝜑 ∈ S (X(A)), 𝑓 ∈ 𝜎1�𝜎2
and ℎ ∈ 𝐻 (A)+, put

𝜃𝜑 ( 𝑓 ) (ℎ) =
∫
𝐺1 (𝐹 )\𝐺1 (A)

Θ𝜑 (𝑔1𝑔, ℎ) 𝑓 (𝑔1𝑔) 𝑑𝑔1,

where we choose 𝑔 ∈ 𝐺 (A)+ such that 𝜈(𝑔) = 𝜈(ℎ). Since 𝜈(𝐻 (𝐹)+) = 𝐹× ∩ (A×)+ = 𝜈(𝐺 (𝐹)+)
by Eichler’s norm theorem, this integral defines an automorphic form 𝜃𝜑 ( 𝑓 ) on 𝐻 (A)+. Since
𝐻 (𝐹)𝐻 (A)+ = 𝐻 (A), we may extend 𝜃𝜑 ( 𝑓 ) to an automorphic form on 𝐻 (A). Let 𝜃 (𝜎1 � 𝜎2) be
the automorphic representation of 𝐻 (A) generated by 𝜃𝜑 ( 𝑓 ) for all 𝜑 ∈ S (X(A)) and 𝑓 ∈ 𝜎1 � 𝜎2.
Lemma 9.2. Let 𝜋𝑖 be the Jacquet–Langlands transfer of 𝜎𝑖 to GL2(A).
(i) If 𝜋1 ≠ 𝜋2, then 𝜃 (𝜎1 � 𝜎2) = 0.

(ii) If 𝜋1 = 𝜋2, then 𝜃 (𝜎1 � 𝜎2) is the Jacquet–Langlands transfer of 𝜋𝑖 to 𝐵×(A) (which exists).
Proof. Let 𝜎 be an irreducible unitary cuspidal automorphic representation of 𝐵×(A) and 𝜋 its Jacquet–
Langlands transfer to GL2(A). For 𝜑 ∈ S (X(A)), 𝑓 ∈ 𝜎1 � 𝜎2 and 𝑓 ′ ∈ �̄� (where �̄� is the complex
conjugate of 𝜎), we have a seesaw identity∫

𝑍𝐻 (A)𝐻 (𝐹 )\𝐻 (A)
𝜃𝜑 ( 𝑓 ) (ℎ) · 𝑓 ′(ℎ) 𝑑ℎ =

∫
𝑍𝐺 (A)𝐺 (𝐹 )\𝐺 (A)

𝑓 (𝑔) · 𝜃𝜑 ( 𝑓 ′) (𝑔) 𝑑𝑔,

where 𝜃𝜑 ( 𝑓 ′) is the theta lift of 𝑓 ′ to 𝐺 (A) as in [30, §4]. Since the theta lift of �̄� to 𝐺 (A) is �̄�𝐵1 � �̄�𝐵2

by [30, Proposition 4.2.3], where 𝜋𝐵𝑖 is the Jacquet–Langlands transfer of 𝜋 to 𝐵×𝑖 (A) (if it exists), this
integral vanishes unless 𝜎𝑖 = 𝜋𝐵𝑖 . In particular, (i) follows. Moreover, if 𝜎𝑖 = 𝜋𝐵𝑖 , then we can find 𝜑,
f, and 𝑓 ′ such that the integral is nonzero. This implies that

𝜃 (𝜎1 � 𝜎2) = 𝜎

so that (ii) follows. �

9.4. Theta lifts from 𝑩× to an inner form of GSO(4, 2)

Let V be the three-dimensional skew-Hermitian right B-space as in §5.2. Then (A×)+ = N(A×𝐸 ) and
𝐺 (A)+ = 𝐺 (A). In Appendix A, we define a splitting 𝚤 : 𝑅(A) → Mp(V)A as above. Let 𝜏 be an
irreducible unitary automorphic representation of 𝐻 (A)+. For 𝜑 ∈ S (X(A)), 𝜙 ∈ 𝜏, and 𝑔 ∈ 𝐺 (A), put

𝜃𝜑 (𝜙) (𝑔) =
∫
𝐻1 (𝐹 )\𝐻1 (A)

Θ𝜑 (𝑔, ℎ1ℎ)𝜙(ℎ1ℎ) 𝑑ℎ1,

where we choose ℎ ∈ 𝐻 (A)+ such that 𝜈(ℎ) = 𝜈(𝑔). This integral defines an automorphic form 𝜃𝜑 (𝜙)
on 𝐺 (A). Let 𝜃 (𝜏) be the automorphic representation of 𝐺 (A) generated by 𝜃𝜑 (𝜙) for all 𝜑 ∈ S (X(A))
and 𝜙 ∈ 𝜏.

In the rest of this section, we assume that 𝜃 (𝜏) is nonzero and cuspidal. Note that 𝜃 (𝜏) is automatically
cuspidal if U(𝑉) is anisotropic. Then:
Lemma 9.3. The global theta lift 𝜃 (𝜏) is irreducible and

𝜃 (𝜏) � ⊗𝑣𝜃 (𝜏𝑣 ),

where 𝜃 (𝜏𝑣 ) is the local theta lift of 𝜏𝑣 (see the proof for its definition).
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Proof. As in [44, Corollary 7.1.3], the assertion follows from the Howe duality, which we describe
below. For this, we fix a place v of F and suppress the subscript v from the notation. Also, we work with
the category of Harish-Chandra modules if F is Archimedean.

Consider the compact induction

Ω = ind𝐺×𝐻
+

𝑅 𝜔,

where 𝜔 is the Weil representation of R (relative to a fixed nontrivial character of F and a fixed splitting
over R). For any irreducible representation 𝜏 of 𝐻+, the maximal 𝜏∨-isotypic quotient of Ω is of the form

Θ(𝜏) � 𝜏∨

for some representation Θ(𝜏) of G. Then the Howe duality asserts that
(i) Θ(𝜏) is of finite length;

(ii) Θ(𝜏) is zero or has a unique irreducible quotient 𝜃 (𝜏);
(iii) for any irreducible representations 𝜏 and 𝜏′ of 𝐻+ which occur as quotients of Ω, we have

𝜃 (𝜏) � 𝜃 (𝜏′) =⇒ 𝜏 � 𝜏′.

This can be deduced from the Howe duality [28, 68, 23, 22] for (U(𝑉),U(𝑊)) as follows.
We first show that the Howe duality for (U(𝑉)0,U(𝑊)) follows from the Howe duality for

(U(𝑉),U(𝑊)). If B is ramified, then there is nothing to prove since U(𝑉)0(𝐹) = U(𝑉) (𝐹). If B is
split, then we have U(𝑉) � O(𝑉†) and U(𝑊) � Sp(𝑊†), where 𝑉† and 𝑊† are the six-dimensional
quadratic F-space and the two-dimensional symplectic F-space, respectively, associated to V and W by
Morita theory. For brevity, we write G = O(𝑉†) and G0 = SO(𝑉†). Let 𝜎0 be an irreducible represen-
tation of G0. Then 𝜎0 is an irreducible component of 𝜎 |G0 for some irreducible representation 𝜎 of G.
Note that 𝜎 is not necessarily uniquely determined. Namely, 𝜎0 is also an irreducible component of
(𝜎 ⊗ sgn) |G0 , where sgn denotes the unique nontrivial character of G trivial on G0. Fix 𝜀 ∈ G \G0, and
put 𝜎𝜀

0 (𝑔) = 𝜎0(𝜀𝑔𝜀−1) for 𝑔 ∈ G0. We have

𝜎0 � 𝜎𝜀
0 ⇐⇒ 𝜎 � 𝜎 ⊗ sgn,

and
• if 𝜎 � 𝜎 ⊗ sgn, then

𝜎 |G0 = 𝜎0, IndG
G0 𝜎0 = 𝜎 ⊕ (𝜎 ⊗ sgn);

• if 𝜎 � 𝜎 ⊗ sgn, then

𝜎 |G0 = 𝜎0 ⊕ 𝜎𝜀
0 , IndG

G0 𝜎0 = 𝜎.

Then, by the conservation relation [63], we have
• if 𝜎 � 𝜎 ⊗ sgn, then at most one of 𝜎 and 𝜎 ⊗ sgn occurs as a quotient of 𝜔;
• if 𝜎 � 𝜎 ⊗ sgn, then 𝜎 does not occur as a quotient of 𝜔.
This reduces the Howe duality for (U(𝑉)0,U(𝑊)) to the Howe duality for (U(𝑉),U(𝑊)).

Finally, as in [61], [24, §3] (noting that the projections 𝑅 → 𝐺 and 𝑅 → 𝐻+ are surjective), the Howe
duality for (GU(𝑉)0,GU(𝑊)+) follows from the Howe duality for (U(𝑉)0,U(𝑊)). This completes the
proof. �

Now, we explicate the local theta lift 𝜃 (𝜏𝑣 ) in the unramified case. Fix a non-Archimedean place v
of F such that:
• 𝐹𝑣 is of odd residual characteristic;
• 𝐸𝑣 is unramified over 𝐹𝑣 ;
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• 𝐵𝑣 is split over 𝐹𝑣 ;
• 𝑉†𝑣 has a self-dual O𝐹𝑣 -lattice;
• 𝜓𝑣 is of order zero;
• 𝜏𝑣 is unramified.

Here, 𝑉†𝑣 is the six-dimensional quadratic 𝐹𝑣 -space associated to 𝑉𝑣 . For the moment, we suppress the
subscript v from the notation. We may take a trace zero element i ∈ 𝐸× such that 𝑢 = i2 ∈ O×𝐹 and
identify G with the group

{𝑔 ∈ GL6 (𝐹) | 𝑡𝑔Q𝑔 = 𝜈(𝑔) ·Q, det 𝑔 = 𝜈(𝑔)3},

where

Q =

���������

1
1

1
−𝑢

1
1

���������
.

Let 𝐵𝐺 be a Borel subgroup of G and T a maximal torus of G given by

𝐵𝐺 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

���������

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗
∗

���������

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
⊃ 𝑇 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

���������

∗
∗
∗ ∗
∗ ∗
∗
∗

���������

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Then we have an isomorphism 𝑇 � (𝐹×)2 × 𝐸× defined by

(𝑡1, 𝑡2, 𝑎 + 𝑏i) ↦−→

���������

𝑡1
𝑡2

𝑎 𝑏𝑢
𝑏 𝑎

𝜈𝑡−1
2

𝜈𝑡−1
1

���������
,

where 𝜈 = 𝑎2 − 𝑏2𝑢. Also, we may identify H with GL2(𝐹) so that

𝐻+ = {ℎ ∈ GL2(𝐹) | det ℎ ∈ N(𝐸×)}.

Let 𝐵𝐻 be the Borel subgroup of H consisting of upper triangular matrices. Recall that 𝜏 is an irreducible
unramified representation of 𝐻+. Then 𝜏 is an irreducible component of

Ind𝐻𝐵𝐻
(𝜒1 ⊗ 𝜒2) |𝐻+

for some unramified characters 𝜒1, 𝜒2 of 𝐹×. Note that 𝜒1, 𝜒2 are not necessarily uniquely determined.
Namely, 𝜏 is also an irreducible component of Ind𝐻𝐵𝐻

(𝜒1𝜉𝐸 ⊗ 𝜒2𝜉𝐸 ) |𝐻+ . Then:

Lemma 9.4. The local theta lift 𝜃 (𝜏) is an irreducible component of

Ind𝐺𝐵𝐺
(𝜒1𝜒

−1
2 𝜉𝐸 ⊗ | · | ⊗ (𝜒2 | · |−

1
2 ) ◦ N).
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Proof. By §A.13, the splitting 𝚤 : 𝑅 → Mp(V) agrees with the standard one for symplectic-orthogonal
dual pairs. Hence, the assertion follows from the standard unramified computation. We omit the
details. �

Suppose again that F is a number field. We further assume that 𝐵𝑣 is split for all Archimedean
places v of F and that U(𝑉) is anisotropic over F. Then we show that the near equivalence class of 𝜃 (𝜏)
consists of automorphic representations 𝜃 (𝜏′), where 𝜏′ runs over automorphic representations in the
near equivalence class of 𝜏. Namely, we have:

Proposition 9.5. Let 𝜋 be an irreducible unitary automorphic representation of 𝐺 (A) such that 𝜋𝑣 �
𝜃 (𝜏𝑣 ) for almost all v. Then there exists an irreducible automorphic representation 𝜏′ of 𝐻 (A)+ such
that 𝜏′𝑣 � 𝜏𝑣 for almost all v and such that

𝜋 = 𝜃 (𝜏′).

To prove this proposition, we consider the theta lift in the opposite direction. For 𝜑 ∈ S (X(A)),
𝑓 ∈ 𝜋 and ℎ ∈ 𝐻 (A)+, put

𝜃𝜑 ( 𝑓 ) (ℎ) =
∫
𝐺1 (𝐹 )\𝐺1 (A)

Θ𝜑 (𝑔1𝑔, ℎ) 𝑓 (𝑔1𝑔) 𝑑𝑔1,

where we choose 𝑔 ∈ 𝐺 (A) such that 𝜈(𝑔) = 𝜈(ℎ). This integral defines an automorphic form 𝜃𝜑 ( 𝑓 ) on
𝐻 (A)+. Let 𝜃 (�̄�) be the automorphic representation of 𝐻 (A)+ generated by 𝜃𝜑 ( 𝑓 ) for all 𝜑 ∈ S (X(A))
and 𝑓 ∈ 𝜋.

Lemma 9.6. We have

𝜃 (�̄�) ≠ 0.

Now, Proposition 9.5 is an immediate consequence of Lemma 9.6. Indeed, as in Lemma 9.3, it follows
from the Howe duality that 𝜃 (�̄�) is irreducible and 𝜃 (�̄�) � ⊗𝑣𝜃 (�̄�𝑣 ), where 𝜃 (�̄�𝑣 ) is the local theta lift
of �̄�𝑣 . Since 𝜋𝑣 � 𝜃 (𝜏𝑣 ) for almost all v by assumption, we have

𝜃 (�̄�𝑣 ) � 𝜏𝑣

for almost all v. Hence, 𝜏′ = 𝜃 (�̄�) satisfies the desired condition.
Lemma 9.6 can be deduced from the Rallis inner product formula as follows.

9.5. Proof of Lemma 9.6

9.5.1. Doubled spaces
Let 𝑉� = 𝑉 ⊕𝑉 and V� = V ⊕V = 𝑉� ⊗𝐵𝑊 be the doubled spaces as in §A.3. Let 𝜄 : U(𝑉) ×U(𝑉) ↩→
U(𝑉�) be the natural embedding. Let V� = X� ⊕ Y� = V� ⊕ V� be complete polarizations defined by

X� = X ⊕ X, V� = 𝑉 � ⊗𝐵 𝑊, 𝑉 � = {(𝑣,−𝑣) | 𝑣 ∈ 𝑉},
Y� = Y ⊕ Y, V� = 𝑉 � ⊗𝐵 𝑊, 𝑉 � = {(𝑣, 𝑣) | 𝑣 ∈ 𝑉}.

Let 𝜔�𝜓 be the Weil representation of U(𝑉�) (A) × U(𝑊) (A) relative to 𝜓 realized on the Schwartz
space S (V�(A)) as in [40, §5]. Then for any 𝜑 ∈ S (V�(A)), we may form a theta function on
U(𝑉�) (A) × U(𝑊) (A):

Θ�𝜑 (𝑔, ℎ) =
∑

𝑥∈V� (𝐹 )
𝜔�𝜓 (𝑔, ℎ)𝜑(𝑥).
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We define a partial Fourier transform,

F : S (X� (A)) = S (X(A)) ⊗ S (X(A)) −→ S (V�(A)),

as in [30, §4.1.1]. It follows from the definition of 𝚤, combined with the analog of [27, Proposition 2.2]
for (U(𝑉),U(𝑊)), that F induces an isomorphism

(𝜔𝜓 ◦ 𝚤) ⊗ (�̄�𝜓 ◦ 𝚤) � 𝜔�𝜓 ◦ (𝜄 ⊗ id)

as representations of 𝐺1 (A) × 𝐺1 (A) × 𝐻1 (A). Hence, we have

Θ�𝜑 (𝜄(𝑔1, 𝑔2), ℎ) = Θ𝜑1 (𝑔1, ℎ)Θ𝜑2 (𝑔2, ℎ) (9.1)

for 𝜑 = F (𝜑1 ⊗ �̄�2) with 𝜑1, 𝜑2 ∈ S (X(A)), 𝑔1, 𝑔2 ∈ 𝐺1(A) and ℎ ∈ 𝐻1 (A).

9.5.2. Degenerate principal series representations
Write

U(𝑉�) =
{
𝑔 ∈ GL6(𝐵)

!!!! 𝑔 (
13

−13

)
𝑡𝑔∗ =

(
13

−13

) }
as in §A.3, and put

𝐺�1 = U(𝑉�)0.

Let P be the Siegel parabolic subgroup of 𝐺�1 stabilizing 𝑉 �:

𝑃 =

{ (
𝑎 ∗
(𝑡𝑎∗)−1

) !!!! 𝑎 ∈ GL3 (𝐵)
}
.

For 𝑠 ∈ C, let I (𝑠) be the degenerate principal series representation of 𝐺�1 (A) consisting of smooth
functions F on 𝐺�1 (A) which satisfy

F
((
𝑎 ∗
(𝑡𝑎∗)−1

)
𝑔

)
= |𝜈(𝑎) |𝑠+

5
2 · F (𝑔).

For a holomorphic section F = F (·, 𝑠) of I (𝑠), we define an Eisenstein series 𝐸 (𝑠,F) on 𝐺�1 (A) by
(the meromorphic continuation of)

𝐸 (𝑔, 𝑠,F) =
∑

𝛾∈𝑃 (𝐹 )\𝐺�1 (𝐹 )
F (𝛾𝑔, 𝑠).

For each place v of F, let I𝑣 (𝑠) be the degenerate principal series representation of 𝐺�1,𝑣 given
similarly as above. We define an intertwining operator

𝑀𝑣 (𝑠) : I𝑣 (𝑠) −→ I𝑣 (−𝑠)

by (the meromorphic continuation of)

(𝑀𝑣 (𝑠)F) (𝑔,−𝑠) =
∫
𝑈𝑣

F
((

−13
13

)
𝑢𝑔, 𝑠

)
𝑑𝑢,

https://doi.org/10.1017/fmp.2023.20 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.20


Forum of Mathematics, Pi 63

where U is the unipotent radical of P. Let

𝑀∗𝑣 (𝑠) =
𝑏𝑣 (𝑠)
𝑎𝑣 (𝑠)

· 𝑀𝑣 (𝑠)

be the normalized intertwining operator, where

𝑎𝑣 (𝑠) = 𝜁𝑣 (2𝑠)𝜁𝑣 (2𝑠 − 2)𝜁𝑣 (2𝑠 − 4),
𝑏𝑣 (𝑠) = 𝜁𝑣 (2𝑠 + 1)𝜁𝑣 (2𝑠 + 3)𝜁𝑣 (2𝑠 + 5).

By [70, Proposition 4.11(2)], 𝑀∗𝑣 (𝑠) is holomorphic for Re 𝑠 ≥ 0.
Recall the Weil representation 𝜔�𝜓𝑣

of U(𝑉�𝑣 ) ×U(𝑊𝑣 ) relative to 𝜓𝑣 realized on the Schwartz space
S (V�𝑣 ). For 𝜑 ∈ S (V�𝑣 ), we define F𝜑 ∈ I𝑣 (− 3

2 ) by

F𝜑 (𝑔) = 𝜔�𝜓𝑣
(𝑔)𝜑(0).

We denote by R(𝑊𝑣 ) the subspace of I𝑣 (− 3
2 ) spanned by F𝜑 for all 𝜑 ∈ S (V�𝑣 ).

Lemma 9.7. We have

Im 𝑀∗𝑣 ( 3
2 ) = R(𝑊𝑣 ).

Proof. If 𝐵𝑣 is ramified (so that v is non-Archimedean by assumption and U(𝑉�𝑣 ) = U(𝑉�𝑣 )0), then the
assertion is proved in [69, Theorem 1.3]. Assume that 𝐵𝑣 is split. Let �̃�𝑣 be the unique four-dimensional
Hermitian left 𝐵𝑣 -space and define the subspace R(�̃�𝑣 ) of I𝑣 ( 3

2 ) similarly as above. Then we have

R(�̃�𝑣 ) = I𝑣 ( 3
2 ), 𝑀∗𝑣 ( 3

2 )R(�̃�𝑣 ) = R(𝑊𝑣 )

by [69, Theorem 1.6], [50, Appendix A], [70, Proposition 4.11(3)]. We remark that, in these references,
the results are stated for the degenerate principal series representation of U(𝑉�𝑣 ), but the above equalities
can be deduced by restriction to U(𝑉�𝑣 )0. This completes the proof. �

9.5.3. The doubling method
We denote by Res𝐺𝐺1

(𝜋) the restriction of 𝜋 to 𝐺1 (A) as functions. Fix an irreducible component 𝜎 of
Res𝐺𝐺1

(𝜋). Note that 𝜎𝑣 is the irreducible unramified component of

Ind𝐺1,𝑣
𝐵𝐺1,𝑣

(𝜒1,𝑣 𝜒
−1
2,𝑣𝜉𝐸𝑣 ⊗ | · |𝑣 ⊗ 1) (9.2)

for almost all v, where 𝐵𝐺1,𝑣 is a Borel subgroup of 𝐺1,𝑣 with Levi component 𝐹×𝑣 × 𝐹×𝑣 × 𝐸1
𝑣 . Let 〈·, ·〉

be the Petersson inner product on 𝜎 given by

〈 𝑓1, 𝑓2〉 =
∫
𝐺1 (𝐹 )\𝐺1 (A)

𝑓1(𝑔) 𝑓2(𝑔) 𝑑𝑔,

where 𝑑𝑔 is the Tamagawa measure on 𝐺1(A). Fix decompositions 〈·, ·〉 =
∏

𝑣 〈·, ·〉𝑣 and 𝑑𝑔 =
∏

𝑣 𝑑𝑔𝑣 ,
where 〈·, ·〉𝑣 is an invariant Hermitian inner product on 𝜎𝑣 and 𝑑𝑔𝑣 is a Haar measure on 𝐺1,𝑣 .

We now consider the doubling zeta integral of Piatetski-Shapiro and Rallis [57, 49, 46, 33] given by

𝑍 (𝑠,F , 𝑓1, 𝑓2) =
∫
𝐺1 (𝐹 )\𝐺1 (A)

∫
𝐺1 (𝐹 )\𝐺1 (A)

𝐸 (𝜄(𝑔1, 𝑔2), 𝑠,F) 𝑓1(𝑔1) 𝑓2(𝑔2) 𝑑𝑔1 𝑑𝑔2
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for a holomorphic section F = ⊗𝑣F𝑣 of I (𝑠) and 𝑓1 = ⊗𝑣 𝑓1,𝑣 , 𝑓2 = ⊗𝑣 𝑓2,𝑣 ∈ 𝜎. Recalling equation
(9.2), we have

𝑍 (𝑠,F , 𝑓1, 𝑓2) =
𝐿𝑆 (𝑠 + 1

2 , ad 𝜏 × 𝜉𝐸 )𝜁𝑆 (𝑠 + 3
2 )𝜁

𝑆 (𝑠 + 1
2 )𝜁

𝑆 (𝑠 − 1
2 )

𝜁𝑆 (2𝑠 + 1)𝜁𝑆 (2𝑠 + 3)𝜁𝑆 (2𝑠 + 5)
·
∏
𝑣 ∈𝑆

𝑍𝑣 (𝑠,F𝑣 , 𝑓1,𝑣 , 𝑓2,𝑣 ), (9.3)

where S is a sufficiently large finite set of places of F and 𝑍𝑣 (𝑠,F𝑣 , 𝑓1,𝑣 , 𝑓2,𝑣 ) is the local zeta integral
given by

𝑍𝑣 (𝑠,F𝑣 , 𝑓1,𝑣 , 𝑓2,𝑣 ) =
∫
𝐺1,𝑣

F𝑣 (𝜄(𝑔𝑣 , 1), 𝑠)〈𝜎𝑣 (𝑔𝑣 ) 𝑓1,𝑣 , 𝑓2,𝑣〉𝑣 𝑑𝑔𝑣 .

Moreover, as in [43, Theorem 3.2.2], [44, Proposition 7.2.1], we can prove the following.

Lemma 9.8. There exist a holomorphic section F𝑣 of I𝑣 (𝑠) and 𝑓1,𝑣 , 𝑓2,𝑣 ∈ 𝜎𝑣 such that
𝑍𝑣 (𝑠,F𝑣 , 𝑓1,𝑣 , 𝑓2,𝑣 ) is holomorphic and nonzero at 𝑠 = 3

2 .

9.5.4. The Rallis inner product formula
By equation (9.3) and Lemma 9.8, there exist a holomorphic section F = ⊗𝑣F𝑣 of I (𝑠) and 𝑓1 =
⊗𝑣 𝑓1,𝑣 , 𝑓2 = ⊗𝑣 𝑓2,𝑣 ∈ 𝜎 such that

Res𝑠= 3
2
𝑍 (𝑠,F , 𝑓1, 𝑓2) ≠ 0.

In fact, 𝐸 (𝑠,F) has a simple pole at 𝑠 = 3
2 by [70, Theorem 3.1] and its residue can be described as

follows. By Lemma 9.7, we have 𝑀∗𝑣 ( 3
2 )F𝑣 = F𝜑𝑣 for some 𝜑𝑣 ∈ S (V�𝑣 ). Put 𝜑 = ⊗𝑣𝜑𝑣 ∈ S (V�(A)).

We define an automorphic form 𝐼 (𝜑) on 𝐺�1 (A) by

𝐼 (𝑔, 𝜑) =
∫
𝐻1 (𝐹 )\𝐻1 (A)

Θ�𝜑 (𝑔, ℎ) 𝑑ℎ.

Then, by the Siegel–Weil formula [70, Theorem 7.11], we have

Res𝑠= 3
2
𝐸 (𝑠,F) = 𝐼 (𝜑)

up to a nonzero constant. Hence, we have∫
𝐺1 (𝐹 )\𝐺1 (A)

∫
𝐺1 (𝐹 )\𝐺1 (A)

𝐼 (𝜄(𝑔1, 𝑔2), 𝜑) 𝑓1(𝑔1) 𝑓2(𝑔2) 𝑑𝑔1 𝑑𝑔2 ≠ 0.

We may further assume that 𝜑 = F (𝜑1 ⊗ �̄�2) for some 𝜑1, 𝜑2 ∈ S (X(A)). Then, by equation (9.1), the
left-hand side is equal to∫

𝐺1 (𝐹 )\𝐺1 (A)

∫
𝐺1 (𝐹 )\𝐺1 (A)

∫
𝐻1 (𝐹 )\𝐻1 (A)

Θ𝜑1 (𝑔1, ℎ)Θ𝜑2 (𝑔2, ℎ) 𝑓1(𝑔1) 𝑓2(𝑔2) 𝑑ℎ 𝑑𝑔1 𝑑𝑔2

=
∫
𝐻1 (𝐹 )\𝐻1 (A)

𝜃𝜑1 ( ¯̃𝑓1) (ℎ)𝜃𝜑2 ( ¯̃𝑓2) (ℎ) 𝑑ℎ,

where we choose 𝑓𝑖 ∈ 𝜋 such that 𝑓𝑖 |𝐺1 (A) = 𝑓𝑖 . Hence, we have 𝜃𝜑𝑖 ( ¯̃𝑓𝑖) ≠ 0. This completes the proof
of Lemma 9.6 and hence of Proposition 9.5.
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10. Construction of the cohomology class and nonvanishing of its restriction

Notation

For any reductive algebraic group G over a number field F, we denote by A (𝐺) the space of automorphic
forms on 𝐺 (A).

10.1. Groups

Let F be a totally real number field. We denote byA = A𝐹 andA 𝑓 = A𝐹, 𝑓 the rings of adèles and finite
adèles of F, respectively. Let B be a quaternion division algebra over F. We assume that 𝐵𝑣 is split for
all real places v of F. Let E be a totally imaginary quadratic extension of F which embeds into B. We
write 𝐸 = 𝐹 + 𝐹i and 𝐵 = 𝐸 + 𝐸j for some trace zero elements i ∈ 𝐸× and j ∈ 𝐵×. Put 𝑢 = i2 ∈ 𝐹× and
𝐽 = j2 ∈ 𝐹×. Let �̃� = 𝑉♯ ⊕𝑉♯

0 be the three-dimensional skew-Hermitian right B-space as in §5.2, where
𝑉♯ and 𝑉♯

0 are the two- and one-dimensional subspaces as in §5.3.1, respectively. To ease notation, we
write 𝑉 = 𝑉♯ and 𝑉0 = 𝑉♯

0 . Recall from Example 5.14 and [30, §2.2] that we may write 𝑉 = 𝐵1 ⊗𝐸 𝐵2
for some quaternion algebras 𝐵1 and 𝐵2 over F such that 𝐵1 · 𝐵2 = 𝐵 in the Brauer group and such that
E embeds into 𝐵1 and 𝐵2. In particular, 𝐵1 and 𝐵2 act on V by left multiplication. Put

�̃� = GU(�̃�)0, 𝐺 = GU(𝑉)0 � (𝐵×1 × 𝐵
×
2 )/𝐹

×, 𝐺0 = GU(𝑉0)0 � 𝐸×.

Let �̃� � 𝐹× and 𝑍 � 𝐹× be the centers of �̃� and G, respectively. We define a subgroup G of 𝐺 ×𝐺0 by

G = G(U(𝑉) × U(𝑉0))0 = {(𝑔, 𝛼) | 𝜈(𝑔) = N(𝛼)},

where 𝜈 is the similitude character and N = N𝐸/𝐹 is the norm map. We also regard G as a subgroup of
�̃� via the natural embedding. Let Z ⊂ 𝑍 × 𝐺0 be the center of G:

Z � {(𝑧, 𝛼) | 𝑧2 = N(𝛼)}.

Then we have a natural embedding �̃� ↩→ Z and an exact sequence

1 −→ �̃� −→ Z
p
−→ 𝐸1 −→ 1,

where p(𝑧, 𝛼) = 𝑧−1𝛼.
Let W be the one-dimensional Hermitian left B-space as in §9.1. Put

𝐻 = GU(𝑊) � 𝐵×.

Let 𝑍𝐻 � 𝐹× be the center of H.

10.2. Weil representations

Let Ṽ = V ⊕ V0 be the 12-dimensional symplectic F-space given by

Ṽ = �̃� ⊗𝐵 𝑊, V = 𝑉 ⊗𝐵 𝑊, V0 = 𝑉0 ⊗𝐵 𝑊.

As in §A.1, we take complete polarizations

Ṽ = X̃ ⊕ Ỹ, V = X ⊕ Y, V0 = X0 ⊕ Y0

such that

X̃ = X ⊕ X0, Ỹ = Y ⊕ Y0.
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By Appendix A and [30, Appendix C], we may define Weil representations 𝜔 (relative to the standard
additive character 𝜓 of A/𝐹) of

G(U(�̃�) × U(𝑊))0(A), G(U(𝑉) × U(𝑊))0(A), G(U(𝑉0) × U(𝑊))0(A)

on

S (X̃(A)), S (X(A)), S (X0 (A)),

respectively, satisfying various compatibilities.

10.3. Real groups

Let Σ∞ be the set of real places of F and Σ the subset of 𝑣 ∈ Σ∞ such that 𝐵1,𝑣 and 𝐵2,𝑣 are split. We
assume that Σ ≠ Σ∞. Put 𝑑 = |Σ |. For any 𝑣 ∈ Σ∞, we may write 𝐽 = 𝑡2𝑣 for some 𝑡𝑣 ∈ 𝐹×𝑣 since 𝐵𝑣 is
split. We define an isomorphism 𝔦𝑣 : 𝐵𝑣 → M2(𝐹𝑣 ) of quaternion 𝐹𝑣 -algebras by

𝔦𝑣 (𝑎 + 𝑏i + 𝑐j + 𝑑ij) =
(

𝑎 + 𝑐𝑡𝑣 𝑏 − 𝑑𝑡𝑣
(𝑏 + 𝑑𝑡𝑣 )𝑢 𝑎 − 𝑐𝑡𝑣

)
.

Put

𝑒𝑣 =
1
2
+ 𝑡𝑣

2𝐽
j, 𝑒′𝑣 =

1
2

i − 𝑡𝑣
2𝐽

ij, 𝑒′′𝑣 =
1

2𝑢
i + 𝑡𝑣

2𝑢𝐽
ij, 𝑒∗𝑣 =

1
2
− 𝑡𝑣

2𝐽
j

so that

𝔦𝑣 (𝑒𝑣 ) =
(
1 0
0 0

)
, 𝔦𝑣 (𝑒′𝑣 ) =

(
0 1
0 0

)
, 𝔦𝑣 (𝑒′′𝑣 ) =

(
0 0
1 0

)
, 𝔦𝑣 (𝑒∗𝑣 ) =

(
0 0
0 1

)
.

Note that [
𝑒𝑣 · 𝑥
𝑒′𝑣 · 𝑥

]
= 𝔦𝑣 (𝑥) ·

[
𝑒𝑣
𝑒′𝑣

]
for 𝑥 ∈ 𝐵𝑣 .

Let 𝑣 ∈ Σ∞. Let �̃�†𝑣 = 𝑉†𝑣 ⊕𝑉†0,𝑣 be the six-dimensional quadratic 𝐹𝑣 -space as in [30, §C.2] associated
to the 𝐵𝑣 -space �̃�𝑣 = 𝑉𝑣 ⊕ 𝑉0,𝑣 . By §6.3, the signature of �̃�†𝑣 is equal to{

(4, 2) if 𝑣 ∈ Σ;
(0, 6) if 𝑣 ∈ Σ∞ \ Σ.

As in §8.1, we take a basis of �̃�†𝑣 so that we have identifications

�̃�𝑣 = GSO(4, 2), 𝐺𝑣 = GSO(2, 2), 𝐺0,𝑣 = GSO(2, 0)

if 𝑣 ∈ Σ and

�̃�𝑣 = GSO(0, 6), 𝐺𝑣 = GSO(0, 4), 𝐺0,𝑣 = GSO(0, 2)

if 𝑣 ∈ Σ∞ \ Σ. Here,

GSO(𝑝, 𝑞) = {𝑔 ∈ GL𝑝+𝑞 (R) | 𝑡𝑔𝐼𝑝,𝑞𝑔 = 𝜈(𝑔) · 𝐼𝑝,𝑞 , det 𝑔 = 𝜈(𝑔)
𝑝+𝑞

2 }
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with

𝐼𝑝,𝑞 =

(
1𝑝
−1𝑞

)
if 𝑝 + 𝑞 is even. Let �̃�𝑣 = 𝔨𝑣 ⊕ �̃�𝑣 and 𝔤𝑣 = 𝔨𝑣 ⊕ 𝔭𝑣 be the complexified Lie algebra of �̃�𝑣 and 𝐺𝑣 ,
respectively, where 𝔨𝑣 and 𝔨𝑣 (resp. �̃�𝑣 and 𝔭𝑣 ) are the (+1)-eigenspaces (resp. the (−1)-eigenspaces)
of the Cartan involutions as in §8.1. Put

�̃� =
∏
𝑣 ∈Σ

�̃�𝑣 , 𝔭 =
∏
𝑣 ∈Σ

𝔭𝑣 .

Let

𝜄𝑣 : C× × C× � 𝐸×𝑣 × 𝐸×𝑣 −→ (𝐵×1,𝑣 × 𝐵
×
2,𝑣 )/𝐹

×
𝑣 � 𝐺𝑣

be a map induced by the isomorphism 𝐸𝑣 � C given by 𝑎 + 𝑏i ↦→ 𝑎 + 𝑏 |𝑢 |
1
2
𝐹𝑣
𝑖 for 𝑎, 𝑏 ∈ 𝐹𝑣 = R and

the fixed embeddings 𝜄1 : 𝐸 ↩→ 𝐵1 and 𝜄2 : 𝐸 ↩→ 𝐵2. We explicate 𝜄𝑣 below. Recall from Example 5.14
that 𝑉 = e1𝐵 + e2𝐵 is equipped with a skew-Hermitian form

〈e1𝑥1 + e2𝑥2, e1𝑦1 + e2𝑦2〉 = 𝑥∗1 · i · 𝑦1 − 𝑥∗2 · 𝐽1i · 𝑦2,

where e1 = 1 ⊗ 1 and e2 = j1 ⊗ 1. We take a basis

𝑒1,𝑣 =
√

2 · |𝑢𝐽1 |
− 1

2
𝐹𝑣
· e2𝑒𝑣 , 𝑒2,𝑣 =

√
2 · |𝐽1 |

− 1
2

𝐹𝑣
· e2𝑒

′′
𝑣 ,

𝑒3,𝑣 =
√

2 · |𝑢 |−
1
2

𝐹𝑣
· e1𝑒𝑣 , 𝑒4,𝑣 =

√
2 · e1𝑒

′′
𝑣

of 𝑉†𝑣 so that

(〈𝑒𝑖,𝑣 , 𝑒 𝑗 ,𝑣 〉†) =
{
𝐼2,2 if 𝑣 ∈ Σ;
𝐼0,4 if 𝑣 ∈ Σ∞ \ Σ.

Since

𝜄1 (i)e1 = e1i, 𝜄1 (i)e2 = −e2i,
𝜄2 (i)e1 = e1i, 𝜄2 (i)e2 = e2i

and

i𝑒𝑣 = 𝑢𝑒′′𝑣 , i𝑒′′𝑣 = 𝑒𝑣 ,

we have

𝜄1 (𝑖)𝑒1,𝑣 = 𝑒2,𝑣 , 𝜄1 (𝑖)𝑒2,𝑣 = −𝑒1,𝑣 , 𝜄1 (𝑖)𝑒3,𝑣 = −𝑒4,𝑣 , 𝜄1 (𝑖)𝑒4,𝑣 = 𝑒3,𝑣 ,

𝜄2 (𝑖)𝑒1,𝑣 = −𝑒2,𝑣 , 𝜄2 (𝑖)𝑒2,𝑣 = 𝑒1,𝑣 , 𝜄2 (𝑖)𝑒3,𝑣 = −𝑒4,𝑣 , 𝜄2 (𝑖)𝑒4,𝑣 = 𝑒3,𝑣 ,
(10.1)

where 𝑖 = |𝑢 |−
1
2

𝐹𝑣
· i. Hence,

𝜄𝑣 (𝑎1 + 𝑏1𝑖, 𝑎2 + 𝑏2𝑖) =
�����
𝑎1 −𝑏1
𝑏1 𝑎1

𝑎1 𝑏1
−𝑏1 𝑎1

�����
�����
𝑎2 𝑏2
−𝑏2 𝑎2

𝑎2 𝑏2
−𝑏2 𝑎2

����� .
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Also, let𝑊†𝑣 be the two-dimensional symplectic 𝐹𝑣 -space as in [30, §C.2] associated to the 𝐵𝑣 -space
𝑊𝑣 . Using a basis 𝑒𝑣 , 𝑒′𝑣 of 𝑊†𝑣 , we identify 𝐻𝑣 with GL2 (R). We embed C× into 𝐻𝑣 = GL2 (R) by

𝑎 + 𝑏𝑖 ↦−→
(
𝑎 𝑏
−𝑏 𝑎

)
.

Since Ṽ𝑣 = �̃�†𝑣 ⊗𝐹𝑣 𝑊
†
𝑣 , etc., we have identifications

X̃𝑣 = �̃�†𝑣 , X𝑣 = 𝑉†𝑣 , X0,𝑣 = 𝑉†0,𝑣 .

For any 𝑣 ∈ Σ∞ and any nonnegative integer ℓ, we put Sℓ�̃�𝑣 = Symℓ�̃�†𝑣 ⊗𝐹𝑣 �̄�𝑣 and denote by ℋℓ�̃�𝑣
the kernel of the contraction Sℓ�̃�𝑣 → Sℓ−2�̃�𝑣 (see §8.2). We define Sℓ𝑉𝑣 and ℋℓ𝑉𝑣 similarly.

10.4. Construction

For 𝑣 ∈ Σ∞, let 𝑘𝑣 ≥ 2 be a positive even integer and put ℓ𝑣 = 𝑘𝑣 − 2. Put ℓ = (ℓ𝑣 )𝑣 ∈Σ∞ and

ℋℓ�̃� =
⊗
𝑣 ∈Σ∞

ℋℓ𝑣 �̃�𝑣 , ℋℓ𝑉 =
⊗
𝑣 ∈Σ∞

ℋℓ𝑣𝑉𝑣 .

We consider a Schwartz form

�̃� = ⊗𝑣 �̃�𝑣 ∈ S (X̃(A)) ⊗ ∧2𝑑�̃�∗ ⊗ℋℓ�̃�

such that

�̃�𝑣 =

{
𝜑′2,ℓ𝑣 if 𝑣 ∈ Σ;
𝜑′ℓ𝑣 if 𝑣 ∈ Σ∞ \ Σ

(see §8.4; note that
⊗

𝑣 ∈Σ ∧2�̃�∗𝑣 ⊂ ∧2𝑑�̃�∗). Then we have a theta form

Θ�̃� (�̃�, ℎ) =
∑

𝑥∈X̃(𝐹 )

(𝜔(�̃�, ℎ) ⊗ 1 ⊗ 1)�̃�(𝑥),

on G(U(�̃�) ×U(𝑊))0(A), where we regard �̃� as a ∧2𝑑�̃�∗ ⊗ℋℓ�̃�-valued function on X̃(A). Let 𝜏 be an
irreducible unitary automorphic representation of 𝐻 (A)+ with central character 𝜉𝐸 such that:

• 𝜏𝑣 is the antiholomorphic discrete series representation of GL2(R)+ of weight −𝑘𝑣 − 1 if 𝑣 ∈ Σ;
• 𝜏𝑣 is the holomorphic discrete series representation of GL2 (R)+ of weight 𝑘𝑣 + 1 if 𝑣 ∈ Σ∞ \ Σ,

where

𝐻 (A)+ = {ℎ ∈ 𝐻 (A) | 𝜈(ℎ) ∈ N(A×𝐸 )},
GL2(R)+ = {ℎ ∈ GL2 (R) | det ℎ > 0}.

Let 𝜙 = ⊗𝑣𝜙𝑣 ∈ 𝜏 be a nonzero vector such that

𝜏𝑣 (𝑧)𝜙𝑣 =

{
𝑧−𝑘𝑣−1 · 𝜙𝑣 if 𝑣 ∈ Σ;
𝑧𝑘𝑣+1 · 𝜙𝑣 if 𝑣 ∈ Σ∞ \ Σ

for 𝑧 ∈ C1, where we embed C× into GL2(R) as in §10.3. We define a theta lift

𝜃 �̃� (𝜙) ∈ A (�̃�) ⊗ ∧2𝑑�̃�∗ ⊗ℋℓ�̃�
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by

𝜃 �̃� (𝜙) (�̃�) =
∫

U(𝑊 ) (𝐹 )\U(𝑊 ) (A)
Θ�̃� (�̃�, ℎ1ℎ)𝜙(ℎ1ℎ) 𝑑ℎ1

for �̃� ∈ �̃� (A), where we choose ℎ ∈ 𝐻 (A)+ such that 𝜈(ℎ) = 𝜈(�̃�) but the integral is independent of the
choice of h. By Proposition A.1, 𝜃 �̃� (𝜙) has trivial central character.

Next, we take the image Ξ̃ := res(𝜃 �̃� (𝜙)) of 𝜃 �̃� (𝜙) under the map

res : A (�̃�) ⊗ ∧2𝑑�̃�∗ ⊗ℋℓ�̃� −→ A (G) ⊗ ∧2𝑑𝔭∗ ⊗ℋℓ𝑉

induced by the restriction A (�̃�) → A (G) and the projections ∧2𝑑�̃�∗ → ∧2𝑑𝔭∗ and ℋℓ�̃� → ℋℓ𝑉
(see §8.5). For any character 𝜂 of A×𝐸/𝐸

× such that 𝜂 |A× = 1, we define the 𝜂-component

Ξ̃𝜂 ∈ A (G) ⊗ ∧2𝑑𝔭∗ ⊗ℋℓ𝑉

of Ξ̃ by

Ξ̃𝜂 (g) =
∫
�̃� (A)Z(𝐹 )\Z(A)

Ξ̃(zg) · (𝜂 ◦ p) (z) 𝑑z,

where the Haar measure 𝑑z is normalized so that vol(�̃� (A)Z(𝐹)\Z(A)) = 1. Furthermore, we define
its pushforward

pr∗(Ξ̃𝜂) ∈ A (𝐺) ⊗ ∧2𝑑𝔭∗ ⊗ℋℓ𝑉

by the first projection pr : G(A) → 𝐺 (A) as follows. Let 𝐺 (A)+ be the image of pr, that is,

𝐺 (A)+ = {𝑔 ∈ 𝐺 (A) | 𝜈(𝑔) ∈ N(A×𝐸 )}.

Note that 𝑍 (A) ⊂ 𝐺 (A)+ and [𝐺 (A) : 𝐺 (𝐹)𝐺 (A)+] = [A× : 𝐹×N(A×𝐸 )] = 2. For 𝑔 ∈ 𝐺 (A)+, choose
𝛼𝑔 ∈ A×𝐸 such that 𝜈(𝑔) = N(𝛼𝑔) and put

pr∗(Ξ̃𝜂) (𝑔) = Ξ̃𝜂 (𝑔, 𝛼𝑔) · 𝜂(𝛼𝑔),

which is independent of the choice of𝛼𝑔. Then we extend pr∗(Ξ̃𝜂) to a∧2𝑑𝔭∗⊗ℋℓ𝑉-valued automorphic
form on 𝐺 (A) by the natural embedding

𝐺 (𝐹)+\𝐺 (A)+ ↩→ 𝐺 (𝐹)\𝐺 (A)

and extension by zero, where 𝐺 (𝐹)+ = 𝐺 (𝐹) ∩ 𝐺 (A)+. Note that pr∗(Ξ̃𝜂) has trivial central character.
Finally, for any open compact subgroup K of 𝑍 (A 𝑓 )\𝐺 (A 𝑓 ), we define the K-invariant projection

ΞK ∈ A (𝐺) ⊗ ∧2𝑑𝔭∗ ⊗ℋℓ𝑉

of Ξ := pr∗(Ξ̃𝜂) by

ΞK (𝑔) =
∫
K
Ξ(𝑔𝑘) 𝑑𝑘,

where the Haar measure 𝑑𝑘 is normalized so that vol(K) = 1.
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10.5. Nonvanishing

Let 𝜋 be an irreducible unitary cuspidal automorphic representation of GL2(A) with trivial central
character such that:

• 𝜋𝑣 is the discrete series representation of GL2(R) of even weight 𝑘𝑣 if 𝑣 ∈ Σ∞.

We assume that 𝜋 has the Jacquet–Langlands transfers 𝜋𝐵1 and 𝜋𝐵2 to 𝐵×1 (A) and 𝐵×2 (A), respectively.
We regard 𝜋𝐵1 � 𝜋𝐵2 as an irreducible unitary automorphic representation of 𝐺 (A) with trivial central
character.

For 𝜖 = (𝜖𝑣 )𝑣 ∈Σ∞ with 𝜖𝑣 = ±, let

𝑓 𝜖1 =
( ⊗
𝑣 ∈Σ∞

𝑓 𝜖𝑣1,𝑣

)
⊗

( ⊗
𝑣∉Σ∞

𝑓1,𝑣

)
∈ 𝜋𝐵1 , 𝑓 𝜖2 =

( ⊗
𝑣 ∈Σ∞

𝑓 𝜖𝑣2,𝑣

)
⊗

( ⊗
𝑣∉Σ∞

𝑓2,𝑣

)
∈ 𝜋𝐵2

be nonzero vectors such that:

• if 𝑣 ∈ Σ, then

𝜋𝐵1 ,𝑣 (𝑧) 𝑓
𝜖𝑣

1,𝑣 = 𝑧𝜖𝑣 𝑘𝑣 · 𝑓 𝜖𝑣1,𝑣 , 𝜋𝐵2 ,𝑣 (𝑧) 𝑓
𝜖𝑣

2,𝑣 = 𝑧−𝜖𝑣 𝑘𝑣 · 𝑓 𝜖𝑣2,𝑣 (10.2)

for 𝑧 ∈ C1 (such 𝑓 𝜖𝑣𝑖,𝑣 is unique up to scalars);
• if 𝑣 ∈ Σ∞ \ Σ, then

𝜋𝐵1 ,𝑣 (𝑧) 𝑓
𝜖𝑣

1,𝑣 = 𝑧𝜖𝑣 (𝑘𝑣−2) · 𝑓 𝜖𝑣1,𝑣 , 𝜋𝐵2 ,𝑣 (𝑧) 𝑓
𝜖𝑣

2,𝑣 = 𝑧−𝜖𝑣 (𝑘𝑣−2) · 𝑓 𝜖𝑣2,𝑣 (10.3)

for 𝑧 ∈ C1 (such 𝑓 𝜖𝑣𝑖,𝑣 is unique up to scalars);
• if 𝑣 ∉ Σ∞, then 𝑓𝑖,𝑣 does not depend on 𝜖 .

Here, for 𝑣 ∈ Σ∞, we embed C× into 𝐵×𝑖,𝑣 via the isomorphism C � 𝐸𝑣 as in §10.3 and the fixed
embedding 𝐸 ↩→ 𝐵𝑖 . We regard 𝑓 𝜖 := 𝑓 𝜖1 � 𝑓 𝜖2 as an automorphic form on 𝐺 (A) with trivial central
character. Put

𝒇 𝜖 = 𝑓 𝜖 ⊗ 𝝎𝜖 ⊗ 𝒗 𝜖 ∈ A (𝐺) ⊗ ∧2𝑑𝔭∗ ⊗ℋℓ𝑉

with

𝝎𝜖 =
⊗
𝑣 ∈Σ

𝝎𝜖𝑣
𝑣 , 𝒗 𝜖 =

⊗
𝑣 ∈Σ∞

𝒗 𝜖𝑣𝑣 ,

where ℓ = (ℓ𝑣 )𝑣 ∈Σ∞ with ℓ𝑣 = 𝑘𝑣 − 2, and 𝝎𝜖𝑣
𝑣 ∈ ∧2𝔭∗𝑣 and 𝒗 𝜖𝑣𝑣 ∈ℋℓ𝑣𝑉𝑣 are as in §8.5.

Finally, let (·, ·) be the nondegenerate bilinear pairing on ∧2𝑑𝔭∗ ⊗ℋℓ𝑉 induced by

• the bilinear pairing · ∧ · : ∧2𝔭∗𝑣 × ∧2𝔭∗𝑣 → ∧4𝔭∗𝑣 � C as in §8.5;
• the bilinear pairing 〈·, ·〉 : Sℓ𝑣𝑉𝑣 × Sℓ𝑣𝑉𝑣 → C as in §8.2.

Proposition 10.1. Suppose that 𝑓 𝜖1 and 𝑓 𝜖2 as above are given. Let K =
∏

𝑣 K𝑣 be an open compact
subgroup of 𝑍 (A 𝑓 )\𝐺 (A 𝑓 ) such that 𝑓1,𝑣 � 𝑓2,𝑣 is K𝑣 -fixed for all 𝑣 ∉ Σ∞. Assume further that there
exists a finite place 𝑣0 of F such that

(i) 𝐸𝑣0/𝐹𝑣0 is ramified;
(ii) 𝐵1,𝑣0 and 𝐵2,𝑣0 are split;

(iii) K𝑣0 is a hyperspecial maximal compact subgroup of 𝑍𝑣0\𝐺𝑣0 .
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Then there exist �̃�, 𝜏, 𝜙, 𝜂 as in §10.4 such that

(ΞK, 𝒇
𝜖 ) :=

∫
𝑍 (A)𝐺 (𝐹 )\𝐺 (A)

(ΞK (𝑔), 𝒇 𝜖 (𝑔)) 𝑑𝑔 ≠ 0

for all 𝜖 , where Ξ = pr∗(Ξ̃𝜂) with Ξ̃ = res(𝜃 �̃� (𝜙)) and 𝒇 𝜖 = 𝑓 𝜖 ⊗ 𝝎𝜖 ⊗ 𝒗 𝜖 with 𝑓 𝜖 = 𝑓 𝜖1 � 𝑓 𝜖2 .
The rest of this section is devoted to the proof of Proposition 10.1.

10.6. Reduction to triple product integrals

Let �̃� = ⊗𝑣 �̃�𝑣 be a Schwartz form as in §10.4. For any finite place v of F, we assume that �̃�𝑣 ∈ S (X̃𝑣 )
is a Schwartz function of the form

�̃�𝑣 = 𝜑𝑣 ⊗ 𝜑0,𝑣

for some 𝜑𝑣 ∈ S (X𝑣 ) and 𝜑0,𝑣 ∈ S (X0,𝑣 ). For any real place v of F, we define Schwartz functions
𝜑𝜖𝑣𝑣 ∈ S (X𝑣 ) and 𝜑0,𝑣 ∈ S (X0,𝑣 ) by

𝜑𝜖𝑣𝑣 (𝑥1, 𝑥2, 𝑥5, 𝑥6) =
{
(𝑥1 + 𝜖𝑣 𝑖𝑥2)𝑘𝑣 · 𝑒−𝜋 (𝑥

2
1+𝑥

2
2+𝑥

2
5+𝑥

2
6 ) if 𝑣 ∈ Σ;

(𝑥1 + 𝜖𝑣 𝑖𝑥2)𝑘𝑣−2 · 𝑒−𝜋 (𝑥2
1+𝑥

2
2+𝑥

2
5+𝑥

2
6 ) if 𝑣 ∈ Σ∞ \ Σ,

(10.4)

𝜑0,𝑣 (𝑥3, 𝑥4) = 𝑒−𝜋 (𝑥
2
3+𝑥

2
4 ) , (10.5)

where 𝑥1, . . . , 𝑥6 are the coordinates on X̃𝑣 = �̃�†𝑣 as in §8.5. Put

𝜑𝜖 =
( ⊗
𝑣 ∈Σ∞

𝜑𝜖𝑣𝑣

)
⊗

( ⊗
𝑣∉Σ∞

𝜑𝑣

)
∈ S (X(A)), 𝜑0 =

⊗
𝑣

𝜑0,𝑣 ∈ S (X0 (A))

so that 𝜑𝜖 ⊗ 𝜑0 ∈ S (X̃(A)).
Lemma 10.2. We have

(ΞK, 𝒇
𝜖 ) =

∫
�̃� (A)G(𝐹 )\G(A)

𝜃𝜑 𝜖 ⊗𝜑0 (𝜙) (g) · ( 𝑓 𝜖 � 𝜂) (g) 𝑑g, (10.6)

where 𝜃𝜑 𝜖 ⊗𝜑0 (𝜙) is the theta lift as defined in §9.4 and 𝑓 𝜖 � 𝜂 is regarded as an automorphic form on
G(A).
Proof. If 𝑣 ∈ Σ, then by Proposition 8.1, we have

C𝑣,𝝎𝜖𝑣
𝑣 ,𝒗𝜖𝑣𝑣

(Res𝑣 (�̃�𝑣 )) = 𝜑𝜖𝑣𝑣 ⊗ 𝜑0,𝑣 ,

where

Res𝑣 : 𝑆(X̃𝑣 ) ⊗ ∧2�̃�∗𝑣 ⊗ℋℓ�̃�𝑣 −→ 𝑆(X̃𝑣 ) ⊗ ∧2𝔭∗𝑣 ⊗ℋℓ𝑉𝑣 ,

C𝑣,𝝎𝜖𝑣
𝑣 ,𝒗𝜖𝑣𝑣

: 𝑆(X̃𝑣 ) ⊗ ∧2𝔭∗𝑣 ⊗ Sℓ𝑉𝑣 −→ 𝑆(X̃𝑣 )

are the restriction and the contraction as in §8.5.1. Also, if 𝑣 ∈ Σ∞ \Σ, then by Proposition 8.2, we have

C𝑣,𝒗𝜖𝑣𝑣
(Res𝑣 (�̃�𝑣 )) = 𝜑𝜖𝑣𝑣 ⊗ 𝜑0,𝑣 ,

where

Res𝑣 : 𝑆(X̃𝑣 ) ⊗ℋℓ�̃�𝑣 −→ 𝑆(X̃𝑣 ) ⊗ℋℓ𝑉𝑣 ,

C𝑣,𝒗𝜖𝑣𝑣
: 𝑆(X̃𝑣 ) ⊗ Sℓ𝑉𝑣 −→ 𝑆(X̃𝑣 )
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are the restriction and the contraction as in §8.5.2. This implies that

(Res(Θ�̃� (�̃�, ℎ)),𝝎𝜖 ⊗ 𝒗 𝜖 ) = Θ𝜑 𝜖 ⊗𝜑0 (�̃�, ℎ),

where

Res : ∧2𝑑�̃�∗ ⊗ℋℓ�̃� −→ ∧2𝑑𝔭∗ ⊗ℋℓ𝑉

is the projection. Hence, we have

(Res(𝜃 �̃� (𝜙) (�̃�)),𝝎𝜖 ⊗ 𝒗 𝜖 ) = 𝜃𝜑 𝜖 ⊗𝜑0 (𝜙) (�̃�)

so that the right-hand side of equation (10.6) is equal to∫
�̃� (A)G(𝐹 )\G(A)

(Ξ̃(g),𝝎𝜖 ⊗ 𝒗 𝜖 ) · ( 𝑓 𝜖 � 𝜂) (g) 𝑑g.

This integral is equal to∫
Z(A)G(𝐹 )\G(A)

∫
�̃� (A)Z(𝐹 )\Z(A)

(Ξ̃(zg),𝝎𝜖 ⊗ 𝒗 𝜖 ) · ( 𝑓 𝜖 � 𝜂) (zg) 𝑑z 𝑑g

=
∫

Z(A)G(𝐹 )\G(A)
(Ξ̃𝜂 (g),𝝎𝜖 ⊗ 𝒗 𝜖 ) · ( 𝑓 𝜖 � 𝜂) (g) 𝑑g

=
∫
𝑍 (A)𝐺 (𝐹 )+\𝐺 (A)+

(pr∗(Ξ̃𝜂) (𝑔),𝝎𝜖 ⊗ 𝒗 𝜖 ) · 𝑓 𝜖 (𝑔) 𝑑𝑔

=
∫
𝑍 (A)𝐺 (𝐹 )\𝐺 (A)

(pr∗(Ξ̃𝜂) (𝑔),𝝎𝜖 ⊗ 𝒗 𝜖 ) · 𝑓 𝜖 (𝑔) 𝑑𝑔

=
∫
𝑍 (A)𝐺 (𝐹 )\𝐺 (A)

(Ξ(𝑔), 𝒇 𝜖 (𝑔)) 𝑑𝑔

=
∫
𝑍 (A)𝐺 (𝐹 )\𝐺 (A)

(ΞK (𝑔), 𝒇 𝜖 (𝑔)) 𝑑𝑔,

noting that pr∗(Ξ̃𝜂) is supported in 𝐺 (𝐹)𝐺 (A)+ and 𝒇 𝜖 is K-fixed. �

We now consider the seesaw diagram

GU(�̃�)0







G(U(𝑊) × U(𝑊))

����
����

����
��

G(U(𝑉) × U(𝑉0))0 GU(𝑊)

.

Then the seesaw identity (combined with Lemma 10.2) says that

(ΞK, 𝒇
𝜖 ) =

∫
�̃� (A)G(𝐹 )\G(A)

𝜃𝜑 𝜖 ⊗𝜑0 (𝜙) (g) · ( 𝑓 𝜖 � 𝜂) (g) 𝑑g

=
∫
𝑍𝐻 (A)𝐻 (𝐹 )+\𝐻 (A)+

𝜃𝜑 𝜖 ( 𝑓 𝜖 ) (ℎ) · 𝜃𝜑0 (𝜂) (ℎ) · 𝜙(ℎ) 𝑑ℎ,
(10.7)

where 𝐻 (𝐹)+ = 𝐻 (𝐹) ∩𝐻 (A)+, and 𝜃𝜑 𝜖 ( 𝑓 𝜖 ) and 𝜃𝜑0 (𝜂) are the theta lifts as defined in §9.3 and §9.2,
respectively. Hence, to prove Proposition 10.1, it suffices to find 𝜑𝜖 , 𝜑0, 𝜂, 𝜏, 𝜙 such that the right-hand
side of equation (10.7) is nonzero for all 𝜖 .
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10.7. Choosing 𝝋𝝐

Let 𝜋𝐵 be the Jacquet–Langlands transfer of 𝜋 to 𝐵×(A) (which exists since 𝜋𝐵1 and 𝜋𝐵2 exist by
assumption and 𝐵1 · 𝐵2 = 𝐵 in the Brauer group). Note that:

• 𝜋𝐵 has trivial central character;
• 𝜋𝐵,𝑣 is the discrete series representation of GL2 (R) of weight 𝑘𝑣 if 𝑣 ∈ Σ∞.

By Lemma 9.2, we have a nonzero equivariant map

𝜃 : S (X(A)) ⊗ (𝜋𝐵1 � 𝜋𝐵2 ) −→ 𝜋𝐵

given by 𝜑 ⊗ 𝑓 ↦→ 𝜃𝜑 ( 𝑓 ).

Lemma 10.3. Let 𝜑𝜖 =
(⊗

𝑣 ∈Σ∞ 𝜑
𝜖𝑣
𝑣

)
⊗

(⊗
𝑣∉Σ∞

𝜑𝑣

)
∈ S (X(A)) be a Schwartz function such that

𝜑𝜖𝑣𝑣 is as in equation (10.4) for all 𝑣 ∈ Σ∞. Then

𝜋𝐵,𝑣 (𝑧)𝜃𝜑 𝜖 ( 𝑓 𝜖 ) =
{
𝑧𝑘𝑣 · 𝜃𝜑 𝜖 ( 𝑓 𝜖 ) if 𝑣 ∈ Σ;
𝑧−𝑘𝑣 · 𝜃𝜑 𝜖 ( 𝑓 𝜖 ) if 𝑣 ∈ Σ∞ \ Σ

(10.8)

for 𝑧 ∈ C1. Moreover, 𝜃𝜑 𝜖 ( 𝑓 𝜖 ) is nonzero for some such 𝜑𝜖 .

Proof. We have

𝜔𝑣 (𝑡, 𝑧)𝜑𝜖𝑣𝑣 =

{
𝑡 𝜖𝑣 𝑘𝑣1 · 𝑧𝑘𝑣 · 𝜑𝜖𝑣𝑣 if 𝑣 ∈ Σ;
𝑡 𝜖𝑣 (𝑘𝑣−2)
1 · 𝑧−𝑘𝑣 · 𝜑𝜖𝑣𝑣 if 𝑣 ∈ Σ∞ \ Σ

(10.9)

for 𝑡 = (𝑡1, 𝑡2) ∈ U(𝑉𝑣 )0 with 𝑡𝑖 ∈ SO(2) � C1 and 𝑧 ∈ U(𝑊𝑣 ) with 𝑧 ∈ C1. This proves equation (10.8).
By the Howe duality for (GU(𝑉𝑣 )0,GU(𝑊𝑣 )+) (see the proof of Lemma 9.3), we have a decompo-

sition

𝜃 =
⊗
𝑣

𝜃𝑣 ,

where

𝜃𝑣 : S (X𝑣 ) ⊗ (𝜋𝐵1 ,𝑣 � 𝜋𝐵2 ,𝑣 ) −→ 𝜋𝐵,𝑣

is the unique (up to scalars) nonzero G(U(𝑉𝑣 ) × U(𝑊𝑣 ))0-equivariant map. Since 𝜋𝐵1 ,𝑣 � 𝜋𝐵2 ,𝑣 is
irreducible, we may choose 𝜑𝑣 so that 𝜃𝑣 (𝜑𝑣 ⊗ ( 𝑓1,𝑣 � 𝑓2,𝑣 )) ≠ 0 for 𝑣 ∉ Σ∞.

It remains to show that 𝜃𝑣 (𝜑𝜖𝑣𝑣 ⊗ ( 𝑓 𝜖𝑣1,𝑣 � 𝑓
𝜖𝑣

2,𝑣 )) ≠ 0 for 𝑣 ∈ Σ∞, where 𝜑𝜖𝑣𝑣 is as in equation (10.4). Let

𝑡𝜃𝑣 : S (X𝑣 ) ⊗ 𝜋∨𝐵,𝑣 −→ (𝜋𝐵1 ,𝑣 � 𝜋𝐵2 ,𝑣 )∨

be the G(U(𝑉𝑣 ) ×U(𝑊𝑣 ))0-equivariant map induced by 𝜃𝑣 . Let 𝑤𝑣 ∈ 𝜋∨𝐵,𝑣 be the unique (up to scalars)
nonzero vector such that

𝜋∨𝐵,𝑣 (𝑧)𝑤𝑣 =

{
𝑧−𝑘𝑣 · 𝑤𝑣 if 𝑣 ∈ Σ;
𝑧𝑘𝑣 · 𝑤𝑣 if 𝑣 ∈ Σ∞ \ Σ

(10.10)

for 𝑧 ∈ C1. Then, by equation (10.9), 𝑡𝜃𝑣 (𝜑𝜖𝑣𝑣 ⊗ 𝑤𝑣 ) is a scalar multiple of the unique (up to scalars)
nonzero vector 𝔉𝜖𝑣

𝑣 ∈ (𝜋𝐵1 ,𝑣 � 𝜋𝐵2 ,𝑣 )∨ such that
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(𝜋𝐵1 ,𝑣 � 𝜋𝐵2 ,𝑣 )∨(𝑡)𝔉𝜖𝑣
𝑣 =

{
𝑡 𝜖𝑣 𝑘𝑣1 ·𝔉𝜖𝑣

𝑣 if 𝑣 ∈ Σ;
𝑡 𝜖𝑣 (𝑘𝑣−2)
1 ·𝔉𝜖𝑣

𝑣 if 𝑣 ∈ Σ∞ \ Σ
(10.11)

for 𝑡 = (𝑡1, 𝑡2) ∈ U(𝑉𝑣 )0 with 𝑡𝑖 ∈ SO(2) � C1. Since

〈𝜃𝑣 (𝜑𝜖𝑣𝑣 ⊗ ( 𝑓
𝜖𝑣

1,𝑣 � 𝑓 𝜖𝑣2,𝑣 )), 𝑤𝑣〉 = 〈 𝑓 𝜖𝑣1,𝑣 � 𝑓 𝜖𝑣2,𝑣 ,
𝑡𝜃𝑣 (𝜑𝜖𝑣𝑣 ⊗ 𝑤𝑣 )〉

and 〈 𝑓 𝜖𝑣1,𝑣 � 𝑓 𝜖𝑣2,𝑣 ,𝔉
𝜖𝑣
𝑣 〉 ≠ 0 by equations (10.2), (10.3) and (10.11), where 〈·, ·〉 denotes the natural

pairing, it suffices to show that 𝑡𝜃𝑣 (𝜑𝜖𝑣𝑣 ⊗ 𝑤𝑣 ) ≠ 0.
For this, we realize 𝑡𝜃𝑣 explicitly as follows. Recall that we write 𝐽 = 𝑡2𝑣 for some 𝑡𝑣 ∈ 𝐹×𝑣 in §10.3.

We define an isomorphism 𝔦′𝑣 : 𝐵1,𝑣 → 𝐵2,𝑣 of quaternion 𝐹𝑣 -algebras by

𝔦′𝑣 (𝑎 + 𝑏𝑖 + 𝑐 𝑗1 + 𝑑𝑖 𝑗1) = 𝑎 + 𝑏𝑖 + 𝑐 𝑗2 + 𝑑𝑖 𝑗2,

where

𝑖 = |𝑢 |−
1
2

𝐹𝑣
· i, 𝑗1 = |𝐽1 |

− 1
2

𝐹𝑣
· j1, 𝑗2 = 𝜁𝑣 𝑡

−1
𝑣 · |𝐽1 |

1
2
𝐹𝑣
· j2

with

𝜁𝑣 =

{
+1 if 𝑣 ∈ Σ;
−1 if 𝑣 ∈ Σ∞ \ Σ.

Since j1e2 = 𝐽1e1, j2e2 = e1j and j𝑒′′𝑣 = −𝑡𝑣𝑒′′𝑣 , we have

𝑗1𝑒2,𝑣 = 𝜁𝑣𝑒4,𝑣 , 𝑗2𝑒2,𝑣 = −𝜁𝑣𝑒4,𝑣 .

From this and equation (10.1), we deduce that

𝑥∗𝑒2,𝑣 = 𝔦′𝑣 (𝑥)𝑒2,𝑣

for all 𝑥 ∈ 𝐵1,𝑣 , where ∗ is the main involution on 𝐵1,𝑣 . In particular, if we define a subgroup 𝛥𝑣 of
𝐺𝑣 = (𝐵×1,𝑣 × 𝐵

×
2,𝑣 )/𝐹

×
𝑣 by

𝛥𝑣 = {((𝑥∗)−1, 𝔦′𝑣 (𝑥)) | 𝑥 ∈ 𝐵×1,𝑣 }/𝐹
×
𝑣 ,

then 𝑒2,𝑣 is 𝛥𝑣 -fixed. We now realize 𝜋∨𝐵,𝑣 on the Whittaker modelW (𝜋∨𝐵,𝑣 ) with respect to the character( 1 𝑥
1
)
↦→ 𝑒−2𝜋𝑖𝜁𝑣 𝑥 and define a map

B̃𝑣 : S (X𝑣 ) ⊗W (𝜋∨𝐵,𝑣 ) −→ C

by

B̃𝑣 (Φ ⊗𝑊) =
∫
𝑁𝑣\SL2 (𝐹𝑣 )

𝜔𝑣 (ℎ)Φ(
√

2𝑒2,𝑣 )𝑊 (ℎ) 𝑑ℎ,

where 𝑁𝑣 is the group of unipotent upper triangular matrices in 𝐻𝑣 = GL2 (𝐹𝑣 ) and the integral is
absolutely convergent by [67, Lemme 5]. For 𝔉 ∈ (𝜋𝐵1 ,𝑣 � 𝜋𝐵2 ,𝑣 )∨, put

B𝑣 (𝔉) = B̃𝑣 (�̃�),
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where we choose �̃� ∈ S (X𝑣 ) ⊗W (𝜋∨𝐵,𝑣 ) such that 𝑡𝜃𝑣 (�̃�) = 𝔉. Then, by [67, Lemme 6], this does not
depend on the choice of �̃� and defines a 𝛥𝑣 -invariant map B𝑣 : (𝜋𝐵1 ,𝑣 � 𝜋𝐵2 ,𝑣 )∨ → C so that

B̃𝑣 = B𝑣 ◦ 𝑡𝜃𝑣 .

Note that the representation 𝑥 ↦→ 𝜋𝐵1 ,𝑣 ((𝑥∗)−1) is isomorphic to 𝜋∨𝐵1 ,𝑣
. Thus, it suffices to show that

B̃𝑣 (𝜑𝜖𝑣𝑣 ⊗ 𝑤𝑣 ) ≠ 0. By equation (10.10), we may normalize 𝑤𝑣 so that

𝑤𝑣

(
𝑎
𝑎−1

)
= 𝑎𝑘𝑣 𝑒−2𝜋𝑎2

.

If 𝑣 ∈ Σ, then

B̃𝑣 (𝜑𝜖𝑣𝑣 ⊗ 𝑤𝑣 ) =
∫ ∞

0
𝑎2𝜑𝜖𝑣𝑣 (𝑎

√
2𝑒2,𝑣 ) · 𝑤𝑣

(
𝑎
𝑎−1

)
· 𝑎−2 𝑑×𝑎

= (𝜖𝑣 𝑖
√

2)𝑘𝑣 ·
∫ ∞

0
𝑎2𝑘𝑣 𝑒−4𝜋𝑎2

𝑑×𝑎

= (𝜖𝑣 𝑖
√

2)𝑘𝑣 · (4𝜋)−𝑘𝑣 · 2−1 ·
∫ ∞

0
𝑎𝑘𝑣 𝑒−𝑎 𝑑×𝑎

= (𝜖𝑣 𝑖
√

2)𝑘𝑣 · (4𝜋)−𝑘𝑣 · 2−1 · Γ(𝑘𝑣 ),

where 𝑑×𝑎 = 𝑑𝑎/𝑎. Similarly, if 𝑣 ∈ Σ∞ \ Σ, then

B̃𝑣 (𝜑𝜖𝑣𝑣 ⊗ 𝑤𝑣 ) = (𝜖𝑣 𝑖
√

2)𝑘𝑣−2 · (4𝜋)−𝑘𝑣+1 · 2−1 · Γ(𝑘𝑣 − 1).

This completes the proof. �

By Lemma 10.3, we may choose 𝜑𝜖 so that 𝜃𝜑 𝜖 ( 𝑓 𝜖 ) is nonzero. Moreover, by replacing 𝑓 𝜖 by its
scalar multiple if necessary, we may assume that 𝜃𝜑 𝜖 ( 𝑓 𝜖 ) does not depend on 𝜖 .

Lemma 10.4. There exists an element (𝑔0, ℎ0) ∈ G(U(𝑉𝑣0) × U(𝑊𝑣0 ))0 such that the restriction of
𝜃𝜔 (𝑔0 ,ℎ0)𝜑 𝜖 ( 𝑓 𝜖 ) to 𝐻 (A)+ is nonzero.

Proof. Since 𝐻 (𝐹)𝐻 (A)+ is the kernel of 𝜉𝐸 ◦𝜈 and 𝐸𝑣0 is a ramified quadratic extension of 𝐹𝑣0 , we have

𝐻 (A) = 𝐻 (𝐹)𝐻 (A)+
⊔

𝐻 (𝐹)𝐻 (A)+ℎ0

for some ℎ0 ∈ 𝐻𝑣0 such that 𝜈(ℎ0) ∈ O×𝐹𝑣0
\ N(O×𝐸𝑣0

). Then there exists an element 𝑔0 ∈ 𝐺𝑣0 such that
𝜈(𝑔0) = 𝜈(ℎ0) and such that the image of 𝑔0 in 𝑍𝑣0\𝐺𝑣0 belongs to K𝑣0 . Since 𝑓 𝜖 is K𝑣0 -fixed, we have

𝜃𝜑 𝜖 ( 𝑓 𝜖 ) (ℎℎ0) =
∫

U(𝑉 )0 (𝐹 )\U(𝑉 )0 (A)
Θ𝜑 𝜖 (𝑔1𝑔𝑔0, ℎℎ0) 𝑓 𝜖 (𝑔1𝑔𝑔0) 𝑑𝑔1

=
∫

U(𝑉 )0 (𝐹 )\U(𝑉 )0 (A)
Θ𝜑 𝜖 (𝑔1𝑔𝑔0, ℎℎ0) 𝑓 𝜖 (𝑔1𝑔) 𝑑𝑔1

= 𝜃𝜔 (𝑔0 ,ℎ0)𝜑 𝜖 ( 𝑓 𝜖 ) (ℎ)

for ℎ ∈ 𝐻 (A)+, where we choose 𝑔 ∈ 𝐺 (A) such that 𝜈(𝑔) = 𝜈(ℎ). Hence, 𝜃𝜑 𝜖 ( 𝑓 𝜖 ) (ℎ) or
𝜃𝜔 (𝑔0 ,ℎ0)𝜑 𝜖 ( 𝑓 𝜖 ) (ℎ) is nonzero for some ℎ ∈ 𝐻 (A)+. �

By Lemma 10.4, we may assume that the restriction of 𝜃𝜑 𝜖 ( 𝑓 𝜖 ) to 𝐻 (A)+ is nonzero.
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10.8. Choosing 𝜼 and 𝝋0

We choose 𝜂 satisfying the conditions of the following lemma.
Lemma 10.5. There exists a character 𝜂 of A×𝐸/𝐸

× such that:

• 𝜂 |A× = 1;
• 𝜂𝑣 = 1 for all real places v of F;
• 𝜂𝑣 does not factor through the norm map if 𝐵𝑣 is ramified.
Proof. By Hilbert 90, the map 𝑥 ↦→ 𝑥/𝑥𝜌 induces an isomorphism 𝐸×/𝐹× � 𝐸1. Hence, it suffices to
find a character 𝜒 of A1

𝐸/𝐸
1 such that:

• 𝜒𝑣 = 1 for all real places v of F;
• 𝜒2

𝑣 ≠ 1 if 𝐵𝑣 is ramified.
Since 𝐸𝑣 is nonsplit if either v is real or 𝐵𝑣 is ramified, it remains to show the following: if S is a finite
set of places of F such that 𝐸𝑣 is nonsplit for all 𝑣 ∈ 𝑆 and 𝜒𝑆 is a character of 𝐸1

𝑆 =
∏

𝑣 ∈𝑆 𝐸
1
𝑣 , then

there exists a character 𝜒 of A1
𝐸/𝐸

1 such that 𝜒 |𝐸1
𝑆
= 𝜒𝑆 . But this assertion follows from the fact that

𝐸1
𝑆 is compact and hence the image of the natural continuous injective homomorphism

𝐸1
𝑆 −→ A

1
𝐸 −→ A

1
𝐸/𝐸

1

is closed. �

Let 𝜋(𝜂) be the automorphic induction of 𝜂 to GL2 (A) and 𝜋(𝜂)𝐵 its Jacquet–Langlands transfer to
𝐵×(A) (which exists since 𝜂𝑣 does not factor through the norm map if 𝐵𝑣 is ramified). Note that:
• 𝜋(𝜂)𝐵 has central character 𝜉𝐸 ;
• 𝜋(𝜂)𝐵,𝑣 is the limit of discrete series representation of GL2 (R) of weight 1 if 𝑣 ∈ Σ∞.
By Lemma 9.1, we have a nonzero equivariant map

𝜃 : S (X0 (A)) −→ 𝜋(𝜂)𝐵

given by 𝜑0 ↦→ 𝜃𝜑0 (𝜂).
Lemma 10.6. Let 𝜑0 =

⊗
𝑣 𝜑0,𝑣 ∈ S (X0 (A)) be a Schwartz function such that 𝜑0,𝑣 is as in equation

(10.5) for all 𝑣 ∈ Σ∞. Then

𝜋(𝜂)𝐵,𝑣 (𝑧)𝜃𝜑0 (𝜂) =
{
𝑧 · 𝜃𝜑0 (𝜂) if 𝑣 ∈ Σ;
𝑧−1 · 𝜃𝜑0 (𝜂) if 𝑣 ∈ Σ∞ \ Σ

(10.12)

for 𝑧 ∈ C1. Moreover, 𝜃𝜑0 (𝜂) is nonzero for some such 𝜑0.
Proof. We have

𝜔𝑣 (𝑡, 𝑧)𝜑0,𝑣 =

{
𝑧 · 𝜑0,𝑣 if 𝑣 ∈ Σ;
𝑧−1 · 𝜑0,𝑣 if 𝑣 ∈ Σ∞ \ Σ

for 𝑡 ∈ U(𝑉0,𝑣 )0 and 𝑧 ∈ U(𝑊𝑣 ) with 𝑧 ∈ C1. This proves equation (10.12).
As explained in the proof of Lemma 9.1, we may regard 𝜃𝜑0 (𝜂) as the theta lift of 𝜂 (regarded

as an automorphic character of GU(V) (A)) to GU(W) (A), where V and W are the one-dimensional
Hermitian E-space and the two-dimensional skew-Hermitian E-space, respectively, as in §A.4. Hence,
by the Howe duality for (GU(V𝑣 ),GU(W𝑣 )+), we have a decomposition

𝜃 =
⊗
𝑣

𝜃𝑣 ,
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where

𝜃𝑣 : S (X0,𝑣 ) −→ 𝜋(𝜂)𝐵,𝑣

is the unique (up to scalars) nonzero G(U(V𝑣 ) × U(W𝑣 ))-equivariant map. Here, (𝑔, [ℎ, 𝛼]) ∈
G(U(V𝑣 ) × U(W𝑣 )) with ℎ ∈ 𝐵×𝑣 and 𝛼 ∈ 𝐸×𝑣 acts as 𝜔𝑣 (𝑔, [ℎ, 𝛼]) ⊗ 𝜂𝑣 (𝑔) on the left-hand side and
as 𝜋(𝜂)𝐵,𝑣 (ℎ) ⊗ 𝜂𝑣 (𝛼)−1 on the right-hand side. For 𝑣 ∉ Σ∞, we may choose 𝜑0,𝑣 so that 𝜃𝑣 (𝜑0,𝑣 ) ≠ 0.

It remains to show that 𝜃𝑣 (𝜑0,𝑣 ) ≠ 0 for 𝑣 ∈ Σ∞, where 𝜑0,𝑣 is as in equation (10.5). Since 𝜂𝑣 = 1,
𝜃𝑣 can be realized by

𝜃𝑣 (Φ) = FΦ, FΦ(ℎ) = 𝜔𝑣 (𝑔, ℎ)Φ(0)

for Φ ∈ S (X0,𝑣 ) and ℎ ∈ 𝐻+𝑣 , where we choose 𝑔 ∈ 𝐺0,𝑣 such that 𝜈(𝑔) = 𝜈(ℎ) and regard 𝜋(𝜂)𝐵,𝑣 as
a subrepresentation of some unitary principal series representation. Then, noting that 𝜑0,𝑣 (0) = 1, we
have 𝜃𝑣 (𝜑0,𝑣 ) ≠ 0. �

By Lemma 10.6, we may choose 𝜑0 so that 𝜃𝜑0 (𝜂) is nonzero. Since 𝜃𝜑0 (𝜂) is supported in
𝐻 (𝐹)𝐻 (A)+ by definition, its restriction to 𝐻 (A)+ is also nonzero.

10.9. Choosing 𝝉 and 𝝓

Lemma 10.7. Let 𝜓 be the restriction of 𝜃𝜑 𝜖 ( 𝑓 𝜖 ) · 𝜃𝜑0 (𝜂) to 𝐻 (A)+. For 𝑣 ∈ Σ∞, let 𝜎𝑣 be the
representation of GL2 (R)+ generated by 𝜓. Then

𝜎𝑣 (𝑧)𝜓 =

{
𝑧𝑘𝑣+1 · 𝜓 if 𝑣 ∈ Σ;
𝑧−𝑘𝑣−1 · 𝜓 if 𝑣 ∈ Σ∞ \ Σ

(10.13)

for 𝑧 ∈ C1. Moreover, if 𝜓 is nonzero, then
• 𝜎𝑣 is the holomorphic discrete series representation of GL2(R)+ of weight 𝑘𝑣 + 1 if 𝑣 ∈ Σ;
• 𝜎𝑣 is the antiholomorphic discrete series representation of GL2 (R)+ of weight −𝑘𝑣 − 1 if 𝑣 ∈ Σ∞ \Σ.
Proof. We only consider the case 𝑣 ∈ Σ; the other case is similar. Let 𝜓 ′ and 𝜓 ′′ be the restrictions of
𝜃𝜑 𝜖 ( 𝑓 𝜖 ) and 𝜃𝜑0 (𝜂) to 𝐻 (A)+, respectively. Since 𝜓 = 𝜓 ′ ·𝜓 ′′, equation (10.13) follows from equations
(10.8) and (10.12).

Let 𝜎′𝑣 and 𝜎′′𝑣 be the representations of GL2(R)+ generated by 𝜓 ′ and 𝜓 ′′, respectively. Then
𝜎′𝑣 � HDS𝑘𝑣 and𝜎′′𝑣 � HDS1, where for any positive integer k, HDS𝑘 denotes the (limit of) holomorphic
discrete series representation of GL2(R)+ of weight k with central character trivial on R×+ . Since
𝜓 = 𝜓 ′ · 𝜓 ′′, 𝜎𝑣 is a subquotient of 𝜎′𝑣 ⊗ 𝜎′′𝑣 . However, we have

HDS𝑘𝑣 ⊗ HDS1 �
∞⊕
𝑖=0

HDS𝑘𝑣+1+2𝑖

by [60, Theorem 8.1]. Hence, if 𝜓 is nonzero, then equation (10.13) forces 𝜎𝑣 � HDS𝑘𝑣+1. This
completes the proof. �

Lemma 10.8. There exists an element (𝑔0, ℎ0) ∈ G(U(𝑉0) × U(𝑊))0(A 𝑓 ) such that the restriction of
𝜃𝜑 𝜖 ( 𝑓 𝜖 ) · 𝜃𝜔 (𝑔0 ,ℎ0)𝜑0 (𝜂) to 𝐻 (A)+ is nonzero.
Proof. Let 𝜓 ′ and 𝜓 ′′ be the restrictions of 𝜃𝜑 𝜖 ( 𝑓 𝜖 ) and 𝜃𝜑0 (𝜂) to 𝐻 (A)+, respectively. Choose an
open compact subgroup K+𝐻 of 𝐻 (A 𝑓 )+ so that 𝜓 ′ and 𝜓 ′′ are K+𝐻 -fixed. Since 𝑍𝐻 (A)𝐻 (𝐹)+\𝐻 (A)+
is compact, we have a finite decomposition

𝐻 (A)+ =
⊔
𝑖

𝐻 (𝐹)+𝐻 (𝐹∞)+ℎ𝑖K+𝐻
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for some ℎ𝑖 ∈ 𝐻 (A 𝑓 )+, where 𝐹∞ = 𝐹 ⊗Q R. This gives rise to a natural identification

𝐻 (𝐹)+\𝐻 (A)+/𝐾𝐻,∞K+𝐻 =
⊔
𝑖

Γ𝑖\𝔥𝑛,

where 𝐾𝐻,∞ =
∏

𝑣 ∈Σ∞ R
× · SO(2) is a maximal compact modulo center subgroup of 𝐻 (𝐹∞)+, 𝔥 is

the upper half plane, 𝑛 = [𝐹 : Q], and Γ𝑖 = 𝐻 (𝐹)+ ∩ ℎ𝑖K𝐻 ℎ
−1
𝑖 . Hence, the restrictions of 𝜓 ′ and 𝜓 ′′

to 𝐻 (𝐹∞)+ℎ𝑖 descend to analytic functions Ψ′𝑖 and Ψ′′𝑖 on 𝔥𝑛 (regarded as a real analytic manifold),
respectively, satisfying some equivariance properties relative to the action of Γ𝑖 on 𝔥𝑛. Since 𝜓 ′ and 𝜓 ′′
are nonzero, so are Ψ′𝑖 and Ψ′′𝑗 for some i and j. Then the product Ψ′𝑖 · Ψ′′𝑗 is also nonzero. Namely, if
we put ℎ0 = ℎ−1

𝑖 ℎ 𝑗 ∈ 𝐻 (A 𝑓 )+, then

𝜓 ′(ℎ) · 𝜓 ′′(ℎℎ0) ≠ 0

for some ℎ ∈ 𝐻 (𝐹∞)+ℎ𝑖 . Choose 𝑔0 ∈ 𝐺0 (A 𝑓 ) such that 𝜈(𝑔0) = 𝜈(ℎ0). Then

𝜃𝜑0 (𝜂) (ℎℎ0) =
∫

U(𝑉0)0 (𝐹 )\U(𝑉0)0 (A)
Θ𝜑0 (𝑔1𝑔𝑔0, ℎℎ0)𝜂(𝑔1𝑔𝑔0) 𝑑𝑔1

= 𝜂(𝑔0) ·
∫

U(𝑉0)0 (𝐹 )\U(𝑉0)0 (A)
Θ𝜑0 (𝑔1𝑔𝑔0, ℎℎ0)𝜂(𝑔1𝑔) 𝑑𝑔1

= 𝜂(𝑔0) · 𝜃𝜔 (𝑔0 ,ℎ0)𝜑0 (𝜂) (ℎ)

for ℎ ∈ 𝐻 (A)+, where we choose 𝑔 ∈ 𝐺0(A) such that 𝜈(𝑔) = 𝜈(ℎ). Hence,

𝜃𝜑 𝜖 ( 𝑓 𝜖 ) (ℎ) · 𝜃𝜔 (𝑔0 ,ℎ0)𝜑0 (𝜂) (ℎ) = 𝜂(𝑔0)−1 · 𝜓 ′(ℎ) · 𝜓 ′′(ℎℎ0) ≠ 0

for some ℎ ∈ 𝐻 (A)+. �

By Lemma 10.8, we may assume that the restriction of 𝜃𝜑 𝜖 ( 𝑓 𝜖 ) · 𝜃𝜑0 (𝜂) to 𝐻 (A)+ is nonzero. Then,
noting that 𝑍𝐻 (A)𝐻 (𝐹)+\𝐻 (A)+ is compact, we deduce from the spectral decomposition together with
Lemma 10.7 that ∫

𝑍𝐻 (A)𝐻 (𝐹 )+\𝐻 (A)+
𝜃𝜑 𝜖 ( 𝑓 𝜖 ) (ℎ) · 𝜃𝜑0 (𝜂) (ℎ) · 𝜙(ℎ) 𝑑ℎ ≠ 0

for some nonzero vector 𝜙 in some irreducible automorphic representation 𝜏 of 𝐻 (A)+ as in §10.4. This
completes the proof of Proposition 10.1.

11. Arthur packets, Galois representations and Hodge classes

11.1. Classification

Let F be a totally real number field and E a totally imaginary quadratic extension of F. Let V be an
n-dimensional Hermitian E-space and 𝐺 = U(V) the unitary group of V. In this section, we recall the
classification of automorphic representations of 𝐺 (A𝐹 ), which has been established by Mok [52] in the
quasi-split case, following Arthur’s book [4], and has been extended to the general case by Kaletha–
Minguez–Shin–White [34].

More precisely, let 𝐿2
disc (𝐺) be the discrete spectrum of the unitary representation of 𝐺 (A𝐹 ) on the

Hilbert space 𝐿2 (𝐺 (𝐹)\𝐺 (A𝐹 )). Then the decomposition of 𝐿2
disc(𝐺) into near equivalence classes is

described as follows. We say that an irreducible cuspidal automorphic representation 𝜋 of GL𝑚(A𝐸 ) is
conjugate-self-dual if 𝜋𝜌 � 𝜋∨, where 𝜋𝜌 and 𝜋∨ are the Galois conjugate and the contragredient of 𝜋,
respectively. In this case, exactly one of the Asai L-functions 𝐿(𝑠, 𝜋,As+) and 𝐿(𝑠, 𝜋,As−) has a pole
at 𝑠 = 1 (see [20, §7] for the definition of the Asai representations As±). For 𝜖 = ±, we say that 𝜋 has
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sign 𝜖 if 𝐿(𝑠, 𝜋,As𝜖 ) has a pole at 𝑠 = 1. We also say that 𝜋 is conjugate-orthogonal (resp. conjugate-
symplectic) if it is conjugate-self-dual with sign + (resp. −). Consider a formal unordered finite direct
sum

𝜓 =
⊕
𝑖

𝜋𝑖 � Sym𝑑𝑖−1,

where

• 𝜋𝑖 is an irreducible cuspidal automorphic representation of GL𝑚𝑖 (A𝐸 );
• Sym𝑑𝑖−1 is the irreducible representation of SL2(C) of dimension 𝑑𝑖 .

Then 𝜓 is called an elliptic A-parameter for G if

• ∑
𝑖 𝑚𝑖𝑑𝑖 = 𝑛;

• if 𝑑𝑖 is odd, then 𝜋𝑖 is conjugate-self-dual with sign (−1)𝑛−1;
• if 𝑑𝑖 is even, then 𝜋𝑖 is conjugate-self-dual with sign (−1)𝑛;
• if (𝜋𝑖 , 𝑑𝑖) = (𝜋 𝑗 , 𝑑 𝑗 ), then 𝑖 = 𝑗 .

We attach to 𝜓 an automorphic representation

𝜋𝜓 =�𝑖

(
𝜋𝑖 | det |

𝑑𝑖−1
2 � 𝜋𝑖 | det |

𝑑𝑖−3
2 � · · · � 𝜋𝑖 | det |−

𝑑𝑖−1
2

)
of GL𝑛 (A𝐸 ), where � denotes the isobaric sum. Then the result of Kaletha–Minguez–Shin–White [34,
Theorem∗ 1.7.1] (which is proved in [34] partially and will be completed in its sequels) says that

𝐿2
disc (𝐺) =

⊕
𝜓

𝐿2
𝜓 (𝐺),

where 𝜓 runs over elliptic A-parameters for G and 𝐿2
𝜓 (𝐺) is the near equivalence class of irreducible

subrepresentations 𝜋 of 𝐿2
disc(𝐺) such that for almost all places v of F, the base change of 𝜋𝑣 to GL𝑛 (𝐸𝑣 )

is isomorphic to 𝜋𝜓,𝑣 .
We next describe this decomposition in terms of L-groups. Recall that the L-group of 𝐺 = U(V) is

given by

𝐿𝐺 = GL𝑛 (C) � Gal(Q/𝐹),

where Gal(Q/𝐸) acts trivially on GL𝑛 (C) and the nontrivial element in Gal(𝐸/𝐹) acts as the automor-
phism 𝜃𝑛 defined by

𝜃𝑛 (𝑔) = 𝐽𝑛 · 𝑡𝑔−1 · 𝐽−1
𝑛 , 𝐽𝑛 =

������
1

−1

. . .

(−1)𝑛−1

������
.

Put �̃� = Res𝐸/𝐹 GL𝑛 so that its L-group is given by

𝐿�̃� = (GL𝑛 (C) × GL𝑛 (C)) � Gal(Q/𝐹),

where Gal(Q/𝐸) acts trivially on GL𝑛 (C) ×GL𝑛 (C) and the nontrivial element in Gal(𝐸/𝐹) acts as the
automorphism (𝑔1, 𝑔2) ↦→ (𝑔2, 𝑔1). Then the base change L-homomorphism BC : 𝐿𝐺 → 𝐿�̃� is given by

BC(𝑔 � 𝜎) = (𝑔, 𝜃𝑛 (𝑔)) � 𝜎.
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Let𝜓 be an elliptic A-parameter for G. Then the local Langlands correspondence induces an (equivalence
class of) A-parameter �̃�𝑣 : L𝐹𝑣 × SL2 (C) → 𝐿�̃� for any place v of F, where

L𝐹𝑣 =

{
the Weil group of 𝐹𝑣 if 𝑣 is real;
the Weil–Deligne group of 𝐹𝑣 if 𝑣 is finite.

Moreover, by [20, Theorem 8.1], there exists a unique (equivalence class of) A-parameter 𝜓𝑣 : L𝐹𝑣 ×
SL2 (C) → 𝐿𝐺 such that �̃�𝑣 = BC ◦ 𝜓𝑣 . We associate to 𝜓𝑣 an L-parameter 𝜙𝜓𝑣 : L𝐹𝑣 → 𝐿𝐺 by

𝜙𝜓𝑣 (𝑤) = 𝜓𝑣

(
𝑤,

(
|𝑤 |

1
2
𝑣

|𝑤 |−
1
2

𝑣

))
.

Then 𝐿2
𝜓 (𝐺) consists of irreducible subrepresentations 𝜋 of 𝐿2

disc (𝐺) such that the L-parameter of 𝜋𝑣
is 𝜙𝜓𝑣 for almost all v.

For our applications, we will consider elliptic A-parameters with 𝑛 = 4 of the form

𝜓 = 𝜋𝐸 � Sym1, (11.1)
where
• 𝜋 is an irreducible cuspidal automorphic representation of GL2 (A𝐹 ) with central character 𝜉𝐸 ;
• 𝜋𝐸 is the base change of 𝜋 to GL2(A𝐸 ).
We note the following:
Lemma 11.1.
(i) If 𝜋𝐸 is cuspidal, then 𝜋𝐸 is conjugate-orthogonal.

(ii) If 𝜋𝐸 is not cuspidal, then 𝜋𝐸 = 𝜒 � 𝜒−1 for some conjugate-orthogonal character 𝜒 of A×𝐸/𝐸
×

such that 𝜒2 ≠ 1.
Proof. First, assume that 𝜋𝐸 is not cuspidal. Then 𝜋 is the automorphic induction of some character 𝜒
of A×𝐸/𝐸

× so that 𝜋𝐸 = 𝜒 � 𝜒𝜌. Since 𝜋 is cuspidal, we have 𝜒𝜌 ≠ 𝜒. Also, since the central character
of 𝜋 is 𝜉𝐸 , we have 𝜒 |A×𝐹 = 1, that is, 𝜒 is conjugate-orthogonal. Hence, the assertion follows.

Next, assume that 𝜋𝐸 is cuspidal. Put 𝐻 = GL2 and �̃� = Res𝐸/𝐹 GL2 so that

𝐿𝐻 = GL2(C) × Gal(Q/𝐹), 𝐿 �̃� = (GL2 (C) × GL2(C)) � Gal(Q/𝐹).

Then the base change L-homomorphism BC : 𝐿𝐻 → 𝐿 �̃� is given by

BC(ℎ × 𝜎) = (ℎ, ℎ) � 𝜎.

Recall that As+ is the representation of 𝐿 �̃� on C2 ⊗ C2 defined by

As+((ℎ1, ℎ2) � 1) (𝑥 ⊗ 𝑦) = ℎ1𝑥 ⊗ ℎ2𝑦,

As+((1, 1) � 𝜎) (𝑥 ⊗ 𝑦) =
{
𝑥 ⊗ 𝑦 if 𝜎 ∈ Gal(Q/𝐸);
𝑦 ⊗ 𝑥 if 𝜎 ∉ Gal(Q/𝐸).

Then we have

As+ ◦ BC � Sym2 ⊕ (∧2 ⊗ 𝜉𝐸 )

as representations of 𝐿𝐻. Since the central character of 𝜋 is 𝜉𝐸 , it follows that

𝐿(𝑠, 𝜋𝐸 ,As+) = 𝐿(𝑠, 𝜋, Sym2) · 𝜁𝐹 (𝑠).

This implies the assertion. �
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11.2. Local A-packets

Let 𝜓 be an elliptic A-parameter for 𝐺 = U(V) and 𝐿2
𝜓 (𝐺) the near equivalence class associated to 𝜓.

Then the result of Kaletha–Minguez–Shin–White [34, Theorem∗ 1.7.1] also describes the local-global
structure of 𝐿2

𝜓 (𝐺) with a multiplicity formula. In particular, if 𝜋 is an irreducible summand of 𝐿2
𝜓 (𝐺),

then for any place v of F, the local component 𝜋𝑣 is an irreducible summand of some representation in
Π𝜓𝑣 . Here, Π𝜓𝑣 is the local A-packet associated to 𝜓𝑣 consisting of certain semisimple representations
of 𝐺𝑣 of finite length.

Suppose that v is real. If 𝐺𝑣 is quasi-split and 𝜓𝑣 is ‘cohomological’, then it follows from the result
of Arancibia–Mœglin–Renard [3] (the unitary group case had already been treated by Johnson [32])
that Π𝜓𝑣 agrees with the packet constructed by Adams–Johnson [2], which we recall below. From now
on, we suppress the subscript v from the notation.

Let V be an n-dimensional Hermitian space over C of signature (𝑝, 𝑞). Choosing a basis of V, we
may identify the unitary group 𝐺 = U(V) with

U(𝑝, 𝑞) = {𝑔 ∈ GL𝑛 (C) | 𝑡 �̄�𝐼𝑝,𝑞𝑔 = 𝐼𝑝,𝑞}, 𝐼𝑝,𝑞 =

(
1𝑝
−1𝑞

)
.

We define a Cartan involution 𝜃 of G by 𝜃 (𝑔) = 𝑡 �̄�−1. Let 𝐾 � U(𝑝) × U(𝑞) be the maximal compact
subgroup of G with respect to 𝜃 and 𝑇 � U(1)𝑛 the maximal torus of G consisting of diagonal matrices.
Let 𝐵𝐺C be the Borel subgroup of 𝐺C � GL𝑛 (C) (which is not defined over R) consisting of upper
triangular matrices.

Let 𝔤0, 𝔨0, 𝔱0 be the Lie algebras of G, K, T, respectively. We have a Cartan decomposition 𝔤0 = 𝔨0⊕𝔭0,
where 𝔭0 is the (−1)-eigenspace of 𝜃. Let 𝔤, 𝔨, 𝔭, 𝔱 be the complexifications of 𝔤0, 𝔨0, 𝔭0, 𝔱0, respectively.
Let 𝔭± be the (±𝑖)-eigenspace of the complex structure on 𝔭 defined by

𝑋 ↦−→ 𝐽𝑋𝐽−1, 𝐽 =

(
𝑒

𝜋𝑖
4 1𝑝

𝑒−
𝜋𝑖
4 1𝑞

)
.

More explicitly, we have 𝔤 = 𝔨 ⊕ 𝔭+ ⊕ 𝔭− with

𝔨 =

{ (
𝐴 0
0 𝐷

) !!!! 𝐴 ∈ M𝑝 (C), 𝐷 ∈ M𝑞 (C)
}
,

𝔭+ =

{ (
0 𝐵
0 0

) !!!! 𝐵 ∈ M𝑝,𝑞 (C)
}
,

𝔭− =

{ (
0 0
𝐶 0

) !!!! 𝐶 ∈ M𝑞,𝑝 (C)
}
.

The packet constructed by Adams–Johnson [2] consists of certain unitary representations 𝜋 such that
𝐻∗(𝔤, 𝐾; 𝜋 ⊗ 𝐹) ≠ 0 for some irreducible finite-dimensional representation F of G. Let 𝜆 ∈ 𝔱∗ � C𝑛 be
the highest weight of 𝐹∗ relative to 𝐵𝐺C . We may write

𝜆 = (𝜆1, . . . , 𝜆1︸������︷︷������︸
𝑛1

, 𝜆2, . . . , 𝜆2︸������︷︷������︸
𝑛2

, . . . , 𝜆𝑟 , . . . , 𝜆𝑟︸������︷︷������︸
𝑛𝑟

) ∈ Z𝑛

with 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑟 . Then we consider the A-parameter 𝜓 : LR × SL2 (C) → 𝐿𝐺 whose restriction
to C× × SL2(C) is equal to(

𝜒𝜆1+𝜌1 � Sym𝑛1−1
)
⊕ · · · ⊕

(
𝜒𝜆𝑟+𝜌𝑟 � Sym𝑛𝑟−1

)
,
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where

• 𝜌𝑖 = 1
2 (−𝑛1 − · · · − 𝑛𝑖−1 + 𝑛𝑖+1 + · · · + 𝑛𝑟 );

• 𝜒𝜅 is the character of C× defined by 𝜒𝜅 (𝑧) = (𝑧/𝑧)𝜅 ;
• Sym𝑑−1 is the irreducible d-dimensional representation of SL2(C).

This defines a parabolic subgroup Q of 𝐺C (which is not defined over R) containing 𝐵𝐺C with Levi
component L (which is defined over R) such that

𝜓 = 𝜉 ◦ 𝜓𝐿 ,

where 𝜉 : 𝐿𝐿 → 𝐿𝐺 is the canonical embedding and 𝜓𝐿 : LR × SL2 (C) → 𝐿𝐿 is an A-parameter such
that the A-packet Π𝜓𝐿 consists of a single one-dimensional representation of L. Note that

𝐿 = 𝐺 ∩
(
GL𝑛1 (C) × · · · × GL𝑛𝑟 (C)

)
.

Put

𝑆 = 𝑊 (𝐿,𝑇)\𝑊 (𝐺,𝑇)/𝑊R (𝐺,𝑇) �
(
𝔖𝑛1 × · · · ×𝔖𝑛𝑟

)
\𝔖𝑛/

(
𝔖𝑝 ×𝔖𝑞

)
,

where W and 𝑊R denote the absolute and relative Weyl groups, respectively. As a set of representatives
for S, we can take the set of 𝑤 ∈ 𝔖𝑛 such that

• 𝑤−1 (𝑖) < 𝑤−1 ( 𝑗) for 𝑛1 + · · · + 𝑛𝑘−1 + 1 ≤ 𝑖 < 𝑗 ≤ 𝑛1 + · · · + 𝑛𝑘 for 1 ≤ 𝑘 ≤ 𝑟;
• 𝑤(𝑖) < 𝑤( 𝑗) for 1 ≤ 𝑖 < 𝑗 ≤ 𝑝 and for 𝑝 + 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

For any 𝑤 ∈ 𝑆, we have a 𝜃-stable parabolic subgroup 𝑄𝑤 = 𝑤−1𝑄𝑤 of 𝐺C with Levi component
𝐿𝑤 = 𝑤−1𝐿𝑤. Let 𝔮𝑤 be the Lie algebra of 𝑄𝑤 . Then the Adams–Johnson packet ΠAJ

𝜓 is given by

ΠAJ
𝜓 =

{
𝐴𝔮𝑤 (𝑤−1𝜆) | 𝑤 ∈ 𝑆

}
.

We now explicate the A-packet Π𝜓 when 𝐺 = U(2, 2) and 𝜓 is the localization of a global A-
parameter as in equation (11.1). More precisely, we start with the discrete series representation of
GL2(R) of weight 𝑘 + 1 with an even integer 𝑘 ≥ 2. Since its base change to GL2 (C) is the principal
series representation Ind(𝜒 𝑘

2
⊗ 𝜒− 𝑘

2
), the associated A-parameter 𝜓 is given by

𝜓 =
(
𝜒 𝑘

2
� Sym1) ⊕ (

𝜒− 𝑘
2
� Sym1)

so that we need to take

𝜆 =
(
𝑘
2 − 1, 𝑘2 − 1,− 𝑘

2 + 1,− 𝑘
2 + 1

)
.

In this case, we have 𝑆 = {𝑤0, 𝑤1, 𝑤2} with

𝑤0 = 1, 𝑤1 = (23), 𝑤2 = (13) (24).

Then

Π𝜓 = ΠAJ
𝜓 = {𝐴𝔮𝑖 (𝑤−1

𝑖 𝜆) | 0 ≤ 𝑖 ≤ 2},

where 𝔮𝑖 = 𝔮𝑤𝑖 .
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Proposition 11.2. We have

dim𝐻 𝑝,𝑞 (𝔤, 𝐾; 𝐴𝔮0 (𝑤−1
0 𝜆) ⊗ 𝐹) =

{
1 if (𝑝, 𝑞) = (4, 0),
0 otherwise,

dim𝐻 𝑝,𝑞 (𝔤, 𝐾; 𝐴𝔮1 (𝑤−1
1 𝜆) ⊗ 𝐹) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if (𝑝, 𝑞) = (1, 1), (3, 3),
2 if (𝑝, 𝑞) = (2, 2),
0 otherwise,

dim𝐻 𝑝,𝑞 (𝔤, 𝐾; 𝐴𝔮2 (𝑤−1
2 𝜆) ⊗ 𝐹) =

{
1 if (𝑝, 𝑞) = (0, 4),
0 otherwise,

where F is the irreducible finite-dimensional representation of G with highest weight 𝜆.

Proof. First, note that F is self-dual, that is, 𝐹∗ has highest weight 𝜆. Also, if we write 𝔮𝑖 = 𝔩𝑖 ⊕ 𝔲𝑖 with
Levi component 𝔩𝑖 and unipotent radical 𝔲𝑖 , then

𝔩0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�����
∗ ∗ 0 0
∗ ∗ 0 0
0 0 ∗ ∗
0 0 ∗ ∗

�����
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , 𝔲0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�����
0 0 ∗ ∗
0 0 ∗ ∗
0 0 0 0
0 0 0 0

�����
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

𝔩1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�����
∗ 0 ∗ 0
0 ∗ 0 ∗
∗ 0 ∗ 0
0 ∗ 0 ∗

�����
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , 𝔲1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�����
0 ∗ 0 ∗
0 0 0 0
0 ∗ 0 ∗
0 0 0 0

�����
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

𝔩2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�����
∗ ∗ 0 0
∗ ∗ 0 0
0 0 ∗ ∗
0 0 ∗ ∗

�����
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , 𝔲2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�����
0 0 0 0
0 0 0 0
∗ ∗ 0 0
∗ ∗ 0 0

�����
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

Hence, the assertion follows from [65, Proposition 6.19]. �

We also note the following:

Lemma 11.3. Let

𝛿 =

(
12

12

)
∈ GU(2, 2).

Then we have

𝐴𝔮0 (𝑤−1
0 𝜆) ◦ Ad(𝛿) = 𝐴𝔮2 (𝑤−1

2 𝜆),
𝐴𝔮1 (𝑤−1

1 𝜆) ◦ Ad(𝛿) = 𝐴𝔮1 (𝑤−1
1 𝜆).

Proof. The lemma immediately follows from the characterization of the cohomological representation
as described in §7.1. �

11.3. The Hodge structure

Suppose again that F is a totally real number field and E is a totally imaginary quadratic extension of
F. Let V be a four-dimensional Hermitian E-space. We now change notation and write 𝐺 = GU(V)
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and 𝐺 ′ = U(V) for the unitary similitude and unitary groups of V, respectively. We assume that
discV ∉ N(𝐸×) but discV𝑣 ∈ N(𝐸×𝑣 ) for all 𝑣 ∈ Σ∞. Then we may identify 𝐺𝑣 with the group

{𝑔 ∈ GL4 (C) | 𝑡 �̄�𝐼𝑣𝑔 = 𝜈(𝑔) · 𝐼𝑣 },

where

𝐼𝑣 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
12

−12

)
if 𝑣 ∈ Σ;

14 if 𝑣 ∈ Σ∞ \ Σ

for some subset Σ of Σ∞. We further assume that Σ ≠ Σ∞ so that 𝐺 ′ is anisotropic. For 𝑣 ∈ Σ∞, we
define a maximal compact subgroup 𝐾 ′𝑣 of 𝐺 ′𝑣 by

𝐾 ′𝑣 =

{ (
𝑎
𝑑

) !!!! 𝑎, 𝑑 ∈ U(2)
}

if 𝑣 ∈ Σ and 𝐾 ′𝑣 = 𝐺 ′𝑣 if 𝑣 ∈ Σ∞ \ Σ. Put 𝐾𝑣 = 𝐹×𝑣 · 𝐾 ′𝑣 , where we regard 𝐹×𝑣 � R× as a subgroup of 𝐺𝑣

via the map 𝑧 ↦→ 𝑧14. Then 𝐾𝑣 is a maximal connected compact modulo center subgroup of 𝐺𝑣 . Put

𝐺∞ =
∏
𝑣 ∈Σ∞

𝐺𝑣 , 𝐾∞ =
∏
𝑣 ∈Σ∞

𝐾𝑣 ,

𝐺 ′∞ =
∏
𝑣 ∈Σ∞

𝐺 ′𝑣 , 𝐾 ′∞ =
∏
𝑣 ∈Σ∞

𝐾 ′𝑣 .

Let 𝔤 and 𝔤′ be the complexified Lie algebras of 𝐺∞ and 𝐺 ′∞, respectively. Let S = ResC/R G𝑚 and
𝐺0 = Res𝐹/Q𝐺. We define a homomorphism ℎ : S→ 𝐺0,R by ℎ(𝑧) = (ℎ𝑣 (𝑧))𝑣 ∈Σ∞ with

ℎ𝑣 (𝑧) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
𝑧12

𝑧12

)
if 𝑣 ∈ Σ;

14 if 𝑣 ∈ Σ∞ \ Σ.

Let X be the 𝐺0 (R)-conjugacy class of homomorphisms S → 𝐺0,R containing h. Then we have an
identification

𝑋 = 𝐺∞/𝐾∞.

For any 𝑣 ∈ Σ∞ and any even integer 𝑘 ≥ 2, let (𝜌𝑣,𝑘 , 𝑉𝑣,𝑘 ) be the irreducible algebraic representation
of 𝐺𝑣 such that

• 𝜌𝑣,𝑘 has trivial central character;
• 𝜌′𝑣,𝑘 = 𝜌𝑣,𝑘 |𝐺′𝑣 is the irreducible finite-dimensional representation of 𝐺 ′𝑣 with highest weight

𝜆𝑣 =
(
𝑘
2 − 1, 𝑘2 − 1,− 𝑘

2 + 1,− 𝑘
2 + 1

)
.

Let 𝑘 = (𝑘𝑣 )𝑣 ∈Σ∞ be a tuple of even integers 𝑘𝑣 ≥ 2, and put

𝜌𝑘 =
⊗
𝑣 ∈Σ∞

𝜌𝑣,𝑘𝑣 , 𝑉𝑘 =
⊗
𝑣 ∈Σ∞

𝑉𝑣,𝑘𝑣 .
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For any open compact subgroup K of 𝐺 (A𝐹, 𝑓 ) (where A𝐹, 𝑓 denotes the ring of finite adèles of F), let
ShK be the Shimura variety associated to (𝐺0, 𝑋,K):

ShK = 𝐺 (𝐹)\𝑋 × 𝐺 (A𝐹, 𝑓 )/K.

Then (𝜌𝑘 , 𝑉𝑘 ) gives rise to a local system V𝑘 on ShK. We have the Hodge decomposition

𝐻𝑖 (ShK,V𝑘 ) =
⊕
𝑝+𝑞=𝑖

𝐻 𝑝,𝑞 (ShK,V𝑘 ).

In §5.2, we have associated to V a quaternion F-algebra B and a three-dimensional skew-Hermitian
right B-space �̃� such that PGU𝐸 (V) � PGU𝐵 (�̃�)0. By the above assumption on V, B is division
but 𝐵𝑣 is split for all 𝑣 ∈ Σ∞. Let W be the one-dimensional Hermitian left B-space as in §9.1. Then
GU(𝑊) � 𝐵×. Let 𝜏 be an irreducible unitary automorphic representation of GU(𝑊) (A𝐹 )+ with central
character 𝜉𝐸 such that:

• 𝜏𝑣 is the antiholomorphic discrete series representation of GL2(R)+ of weight −𝑘𝑣 − 1 if 𝑣 ∈ Σ;
• 𝜏𝑣 is the holomorphic discrete series representation of GL2(R)+ of weight 𝑘𝑣 + 1 if 𝑣 ∈ Σ∞ \ Σ.

Let Π = 𝜃 (𝜏) be the global theta lift of 𝜏 to GU(�̃�) (A𝐹 ) relative to the standard additive character 𝜓 of
A𝐹/𝐹 (i.e., the additive character 𝜓 such that 𝜓𝑣 (𝑥) = 𝑒2𝜋𝑖𝑥 for 𝑣 ∈ Σ∞). We assume that Π is nonzero.
Then:

• Π is irreducible by Lemma 9.3;
• Π has trivial central character by Proposition A.1.

Hence, we may regard Π as an irreducible unitary automorphic representation of 𝐺 (A𝐹 ) with trivial
central character. Let S be a finite set of rational primes such that for all 𝑝 ∉ 𝑆 and all places v of F
above p:

• 𝐺𝑣 is unramified over 𝐹𝑣 ;
• K𝑣 is a hyperspecial maximal compact subgroup of 𝐺𝑣 ;
• Π𝑣 has a nonzero K𝑣 -fixed vector.

Let H 𝑆 = H (𝐺 (A𝑆𝐹 ),K𝑆) be the Hecke algebra of compactly supported K𝑆-bi-invariant functions on
𝐺 (A𝑆𝐹 ), where A𝑆𝐹 =

∏′
𝑝∉𝑆

∏
𝑣 |𝑝 𝐹𝑣 and K𝑆 =

∏
𝑝∉𝑆

∏
𝑣 |𝑝 K𝑣 . Then H 𝑆 acts on 𝐻𝑖 (ShK,V𝑘 ). Put

Π𝑆 =
⊗′

𝑝∉𝑆

⊗
𝑣 |𝑝 Π𝑣 and

𝐻𝑖 (ShK,V𝑘 ) [Π𝑆] = {𝑥 ∈ 𝐻𝑖 (ShK,V𝑘 ) | 𝑇𝑥 = 𝜒(𝑇)𝑥 for all 𝑇 ∈ H 𝑆},

where 𝜒 is the character of H 𝑆 associated to Π𝑆 . We define 𝐻 𝑝,𝑞 (ShK,V𝑘 ) [Π𝑆] similarly.

Proposition 11.4. We have

𝐻2𝑑 (ShK,V𝑘 ) [Π𝑆] = 𝐻𝑑,𝑑 (ShK,V𝑘 ) [Π𝑆],

where 𝑑 = |Σ |.

Proof. By Matsushima’s formula [10, VII.5.2], we have

𝐻2𝑑 (ShK,V𝑘 ) �
⊕
𝜋

𝑚(𝜋)𝐻2𝑑 (𝔤, 𝐾∞; 𝜋∞ ⊗ 𝜌𝑘 ) ⊗ 𝜋K𝑓 ,

where 𝜋 = 𝜋∞ ⊗ 𝜋 𝑓 runs over equivalence classes of irreducible admissible representations of (𝔤, 𝐾∞) ×
𝐺 (A𝐹, 𝑓 ), 𝑚(𝜋) is the multiplicity of 𝜋 in the space of automorphic forms on 𝐺 (A𝐹 ) and 𝜋K𝑓 is the
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space of K-fixed vectors in 𝜋 𝑓 . Since this isomorphism is compatible with the Hodge decompositions,
it suffices to prove the following: If 𝑚(𝜋) > 0 and 𝜋𝑣 � Π𝑣 for almost all v, then

𝐻2𝑑 (𝔤, 𝐾∞; 𝜋∞ ⊗ 𝜌𝑘 ) = 𝐻𝑑,𝑑 (𝔤, 𝐾∞; 𝜋∞ ⊗ 𝜌𝑘 ). (11.2)

Under this assumption, 𝜋𝑣 has trivial central character for almost all v, and hence so is 𝜋 since it is
automorphic. Since 𝜋∞ and 𝜌𝑘 have trivial central character, we have

𝐻2𝑑 (𝔤, 𝐾∞; 𝜋∞ ⊗ 𝜌𝑘 ) = 𝐻2𝑑 (𝔤′, 𝐾 ′∞; 𝜋′∞ ⊗ 𝜌′𝑘 ),

𝐻𝑑,𝑑 (𝔤, 𝐾∞; 𝜋∞ ⊗ 𝜌𝑘 ) = 𝐻𝑑,𝑑 (𝔤′, 𝐾 ′∞; 𝜋′∞ ⊗ 𝜌′𝑘 ),

where 𝜋′∞ = 𝜋∞|(𝔤′,𝐾 ′∞) and 𝜌′𝑘 = 𝜌𝑘 |𝐺′∞ . Note that 𝜋′∞ and 𝜌′𝑘 remain irreducible.
Fix a realization V of 𝜋 in the space of automorphic forms on𝐺 (A𝐹 ). Let V |𝐺′ (A𝐹 ) be the restriction

of V to𝐺 ′(A𝐹 ) as functions so that V |𝐺′ (A𝐹 ) is a nonzero subspace of the space of automorphic forms on
𝐺 ′(A𝐹 ). Fix an irreducible component 𝜋′ of V |𝐺′ (A𝐹 ) . Since the natural surjective map V → V |𝐺′ (A𝐹 )
is (𝔤′, 𝐾 ′∞) ×𝐺 ′(A𝐹, 𝑓 )-equivariant, 𝜋′𝑣 is an irreducible component of 𝜋𝑣 |𝐺′𝑣 (resp. 𝜋′𝑣 = 𝜋𝑣 |(𝔤′𝑣 ,𝐾 ′𝑣 ) ) if
v is finite (resp. if v is real).

We now compute the A-parameter 𝜓 of 𝜋′. Choose an irreducible unitary cuspidal automorphic
representation 𝜏 of GL2 (A𝐹 ) so that 𝜏 is an irreducible component of 𝜏𝐵 |𝐵× (A𝐹 )+ , where 𝜏𝐵 is the
Jacquet–Langlands transfer of 𝜏 to 𝐵×(A𝐹 ). Let 𝜏𝐸 be the base change of 𝜏 to GL2(A𝐸 ). Note
that 𝜏𝐸 does not depend on the choice of 𝜏. For almost all v, 𝜏𝑣 is a principal series representation
Ind(𝜒𝑣 ⊗ 𝜒−1

𝑣 𝜉𝐸𝑣 ) of GL2 (𝐹𝑣 ) for some unramified character 𝜒𝑣 of 𝐹×𝑣 . Hence,

𝜏𝐸,𝑣 = Ind(𝜂𝑣 ⊗ 𝜂−1
𝑣 )

for almost all v, where 𝜂𝑣 = 𝜒𝑣 ◦ N𝐸𝑣/𝐹𝑣 . On the other hand, by Lemmas 6.1 and 9.4, 𝜋𝑣 is the unique
irreducible unramified subquotient of

Ind𝐺𝑣

𝐵𝐺𝑣
(𝜂𝑣 | · |

1
2
𝐸𝑣
⊗ 𝜂𝑣 | · |

− 1
2

𝐸𝑣
⊗ 𝜒−2

𝑣 )

for almost all v, where 𝐵𝐺𝑣 is the standard Borel subgroup of 𝐺𝑣 containing the maximal torus
𝑇𝑣 � (𝐸×𝑣 )2 × 𝐹×𝑣 as in §9.4. Hence, 𝜋′𝑣 is the unique irreducible unramified subquotient of

Ind𝐺
′
𝑣

𝐵𝐺′𝑣
(𝜂𝑣 | · |

1
2
𝐸𝑣
⊗ 𝜂𝑣 | · |

− 1
2

𝐸𝑣
)

for almost all v, where 𝐵𝐺′𝑣 = 𝐵𝐺𝑣 ∩𝐺 ′𝑣 is the standard Borel subgroup of 𝐺 ′𝑣 containing the maximal
torus 𝑇𝑣 ∩ 𝐺 ′𝑣 � (𝐸×𝑣 )2. Namely, we have

𝜓 = 𝜏𝐸 � Sym1.

Thus, by the classification of automorphic representations of 𝐺 ′(A𝐹 ), 𝜋′𝑣 is an irreducible summand
of some representation in the local A-packet Π𝜓𝑣 for all v. In particular, if 𝑣 ∈ Σ, then 𝜋′𝑣 is one of the
representations 𝐴𝔮𝑖 (𝑤−1

𝑖 𝜆𝑣 ) as in §11.2, and hence we have

𝐻𝑖 (𝔤′𝑣 , 𝐾 ′𝑣 ; 𝜋′𝑣 ⊗ 𝜌′𝑣,𝑘𝑣 ) = 0

for 𝑖 < 2 and

𝐻2 (𝔤′𝑣 , 𝐾 ′𝑣 ; 𝜋′𝑣 ⊗ 𝜌′𝑣,𝑘𝑣 ) = 𝐻1,1(𝔤′𝑣 , 𝐾 ′𝑣 ; 𝜋′𝑣 ⊗ 𝜌′𝑣,𝑘𝑣 )
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by Proposition 11.2. From this, we deduce that

𝐻2𝑑 (𝔤′, 𝐾 ′∞; 𝜋′∞ ⊗ 𝜌′𝑘 ) =
⊗
𝑣 ∈Σ

𝐻2 (𝔤′𝑣 , 𝐾 ′𝑣 ; 𝜋′𝑣 ⊗ 𝜌′𝑣,𝑘𝑣 )
⊗

𝑣 ∈Σ∞\Σ
𝐻0(𝔤′𝑣 , 𝐾 ′𝑣 ; 𝜋′𝑣 ⊗ 𝜌′𝑣,𝑘𝑣 )

=
⊗
𝑣 ∈Σ

𝐻1,1 (𝔤′𝑣 , 𝐾 ′𝑣 ; 𝜋′𝑣 ⊗ 𝜌′𝑣,𝑘𝑣 )
⊗

𝑣 ∈Σ∞\Σ
𝐻0(𝔤′𝑣 , 𝐾 ′𝑣 ; 𝜋′𝑣 ⊗ 𝜌′𝑣,𝑘𝑣 )

= 𝐻𝑑,𝑑 (𝔤′, 𝐾 ′∞; 𝜋′∞ ⊗ 𝜌′𝑘 ).

This completes the proof. �

Remark 11.5. The classification of automorphic representations is used in the proof of Proposition
11.4, but in fact, we can avoid appealing to the result of Kaletha–Minguez–Shin–White [34] as follows.
Let 𝜋 be an irreducible automorphic representation of 𝐺 (A𝐹 ) such that 𝜋𝑣 � Π𝑣 for almost all v. Then,
by Proposition 9.5, we may write 𝜋 as a global theta lift. Hence, if 𝜋′𝑣 is an irreducible component of
𝜋𝑣 |(𝔤′𝑣 ,𝐾 ′𝑣 ) for 𝑣 ∈ Σ, then it follows from the description of local theta lifts [48] (see also §7.2 and
Lemma 11.3) that 𝜋′𝑣 = 𝐴𝔮𝑖 (𝑤−1

𝑖 𝜆𝑣 ) for some i. This implies equation (11.2).

Proposition 11.6. The Hodge structure 𝐻2𝑑 (ShK,V𝑘 ) [Π𝑆] is purely of type (𝑑, 𝑑).

Proof. From the proof of Proposition 11.4, we need to compute the Hodge structure on

𝐻𝑑,𝑑 (𝔤′, 𝐾 ′∞; 𝜋′∞ ⊗ 𝜌′𝑘 ) �
⊗
𝑣 ∈Σ

𝐻1,1 (𝔤′𝑣 , 𝐾 ′𝑣 ; 𝜋′𝑣 ⊗ 𝜌′𝑣,𝑘𝑣 )
⊗

𝑣 ∈Σ∞\Σ
𝐻0(𝔤′𝑣 , 𝐾 ′𝑣 ; 𝜋′𝑣 ⊗ 𝜌′𝑣,𝑘𝑣 ).

The term 𝐻0(𝔤′𝑣 , 𝐾 ′𝑣 ; 𝜋′𝑣 ⊗ 𝜌′𝑣,𝑘𝑣 ) (for 𝑣 ∈ Σ∞ \Σ) is clearly of type (0, 0), so we are reduced to showing
that 𝐻1,1(𝔤′𝑣 , 𝐾 ′𝑣 ; 𝜋′𝑣 ⊗ 𝜌′𝑣,𝑘𝑣 ) (for 𝑣 ∈ Σ) is of type (1, 1). The Hodge type can be computed using [72],
keeping in mind that loc. cit. gives the Hodge numbers in the standard normalization; they need to
be twisted appropriately to get the Hodge type in the automorphic (unitary) normalization that we are
using. For ease of comparison with [72], we temporarily change notation to match that reference. (See
also [16], [25].)

Fix 𝑣 ∈ Σ for the rest of the proof. Let𝑊 �𝔖4 and𝑊𝑐 �𝔖2×𝔖2 be the Weyl groups of 𝔤′𝑣 = 𝔤𝔩(4,C)
and 𝔨′𝑣 = 𝔤𝔩(2,C) ⊕ 𝔤𝔩(2,C), respectively. Let 𝑊1 be the set of representatives for 𝑊𝑐\𝑊 given by

{𝑤 ∈ 𝑊 | 𝑤−1 (Δ+𝑐) ⊂ Δ+},

where Δ+𝑐 and Δ+ are the sets of positive roots in 𝔨′𝑣 and 𝔤′𝑣 , respectively. Put

𝑊1 (𝑝) = {𝑤 ∈ 𝑊1 | ℓ(𝑤) = 𝑝},

where ℓ(𝑤) is the length of w. Then we can enumerate the elements in 𝑊1 as follows:

𝑝 0 1 2 2 3 4
𝑤−1 1 (23) (243) (123) (1243) (13) (24).

Recall that 𝑘𝑣 is a positive even integer and put

Λ = 1
2 (𝑘𝑣 − 2, 𝑘𝑣 − 2,−𝑘𝑣 + 2,−𝑘𝑣 + 2).

Let 𝜌 be half the sum of positive roots in 𝔤′𝑣 :

𝜌 = 1
2 (3, 1,−1,−3).

Let 𝑍 = {𝑡𝛼 := (𝛼, 𝛼−1) ∈ U(1) ×U(1)} ⊂ U(2) ×U(2). As in [72], §1 and §4, let 𝜇 and 𝜆 denote the
highest characters of Z appearing in the adjoint representation of U(2, 2) and in the representation 𝜌′𝑣,𝑘𝑣 .
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Then 𝜇 is just the action on (𝔭′𝑣 )+ and is explicitly given by

𝜇(𝑡𝛼) = 𝛼2.

As for 𝜆, it agrees with the action of Z on the irreducible representation of U(2) × U(2) with highest
weight Λ; since this representation is just det

𝑘𝑣
2 −1 � det−

𝑘𝑣
2 +1, we see that

𝜆(𝑡𝛼) = (𝛼2)
𝑘𝑣
2 −1 (𝛼−2)−

𝑘𝑣
2 +1 = 𝛼2𝑘𝑣−4.

Since 𝜌′𝑣,𝑘𝑣 is self-dual, the lowest character of Z appearing in 𝜌′𝑣,𝑘𝑣 is simply 𝜆−1; thus, 𝑚 = 2𝑘𝑣 − 4,
where m is defined as in loc. cit. equation (4.8). Here, m is the total weight of the Hodge structure on
the fiber of the local system. (To convert to our normalization, where 𝜌𝑣,𝑘𝑣 has trivial central character
and hence the total weight on the fiber is zero, we must therefore twist the Hodge numbers below by
(2 − 𝑘𝑣 , 2 − 𝑘𝑣 ).)

For completeness, we consider not just 𝐻1,1 but all the nonzero 𝐻 𝑝,𝑞 (𝔤′𝑣 , 𝐾 ′𝑣 ; 𝜋′𝑣 ⊗ 𝜌′𝑣,𝑘𝑣 ), where 𝜋′𝑣
is chosen such that 𝐻 𝑝,𝑞 ≠ 0. This space is then the sum of components of multidegree (𝑝, 𝑞); (𝑟, 𝑠),
where (𝑟, 𝑠) with 𝑟 + 𝑠 = 𝑚 is the bidegree coming from the Hodge structure on the fiber. By [72], §5,
the (𝑝, 𝑞); (𝑘 − 𝑝, 𝑚 + 𝑝 − 𝑘) component can only be nonzero if the action 𝜏𝑍 of Z on the irreducible
representation 𝜏 of U(2) ×U(2) with highest weight 𝑤(Λ+ 𝜌) − 𝜌 is 𝜆− 𝑘𝜇 for some 𝑤 ∈ 𝑊1(𝑝). Thus,
we just need to run through the different choices of (𝑝, 𝑞) and 𝑤 ∈ 𝑊1(𝑝).
• If (𝑝, 𝑞) = (0, 4) and 𝑤−1 = 1, then

𝑤(Λ + 𝜌) = 1
2 (𝑘𝑣 + 1, 𝑘𝑣 − 1,−𝑘𝑣 + 1,−𝑘𝑣 − 1),

𝑤(Λ + 𝜌) − 𝜌 = 1
2 (𝑘𝑣 − 2, 𝑘𝑣 − 2,−𝑘𝑣 + 2,−𝑘𝑣 + 2)

so that

𝜏 = (Sym0 ⊗ det
𝑘𝑣
2 −1) � (Sym0 ⊗ det−

𝑘𝑣
2 +1),

𝜏𝑍 : 𝑡𝛼 ↦→ (𝛼2)
𝑘𝑣
2 −1(𝛼−2)−

𝑘𝑣
2 +1 = 𝛼2𝑘𝑣−4.

Then 𝑘 = 0, so the Hodge type is

(0, 4) + (0, 2𝑘𝑣 − 4) = (0, 2𝑘𝑣 ).

• If (𝑝, 𝑞) = (1, 1) and 𝑤−1 = (23), then

𝑤(Λ + 𝜌) = 1
2 (𝑘𝑣 + 1,−𝑘𝑣 + 1, 𝑘𝑣 − 1,−𝑘𝑣 − 1),

𝑤(Λ + 𝜌) − 𝜌 = 1
2 (𝑘𝑣 − 2,−𝑘𝑣 , 𝑘𝑣 ,−𝑘𝑣 + 2)

so that

𝜏 = (Sym𝑘𝑣−1 ⊗ det−
𝑘𝑣
2 ) � (Sym𝑘𝑣−1 ⊗ det−

𝑘𝑣
2 +1),

𝜏𝑍 : 𝑡𝛼 ↦→ 𝛼𝑘𝑣−1(𝛼2)−
𝑘𝑣
2 (𝛼−1)𝑘𝑣−1(𝛼−2)−

𝑘𝑣
2 +1 = 𝛼−2.

Then 𝑘 = 𝑘𝑣 − 1, so the Hodge type is

(1, 1) + (𝑘𝑣 − 1 − 1, 2𝑘𝑣 − 4 + 1 − (𝑘𝑣 − 1) = (𝑘𝑣 − 1, 𝑘𝑣 − 1).

• If (𝑝, 𝑞) = (2, 2) and 𝑤−1 = (243), then

𝑤(Λ + 𝜌) = 1
2 (𝑘𝑣 + 1,−𝑘𝑣 − 1, 𝑘𝑣 − 1,−𝑘𝑣 + 1),

𝑤(Λ + 𝜌) − 𝜌 = 1
2 (𝑘𝑣 − 2,−𝑘𝑣 − 2, 𝑘𝑣 ,−𝑘𝑣 + 4)
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so that

𝜏 = (Sym𝑘𝑣 ⊗ det−
𝑘𝑣
2 −1) � (Sym𝑘𝑣−2 ⊗ det−

𝑘𝑣
2 +2),

𝜏𝑍 : 𝑡𝛼 ↦→ 𝛼𝑘𝑣 (𝛼2)−
𝑘𝑣
2 −1 (𝛼−1)𝑘𝑣−2(𝛼−2)−

𝑘𝑣
2 +2 = 𝛼−4.

Then 𝑘 = 𝑘𝑣 , so the Hodge type is

(2, 2) + (𝑘𝑣 − 2, 2𝑘𝑣 − 4 + 2 − 𝑘𝑣 ) = (𝑘𝑣 , 𝑘𝑣 ).

• If (𝑝, 𝑞) = (2, 2) and 𝑤−1 = (123), then

𝑤(Λ + 𝜌) = 1
2 (𝑘𝑣 − 1,−𝑘𝑣 + 1, 𝑘𝑣 + 1,−𝑘𝑣 − 1),

𝑤(Λ + 𝜌) − 𝜌 = 1
2 (𝑘𝑣 − 4,−𝑘𝑣 , 𝑘𝑣 + 2,−𝑘𝑣 + 2)

so that

𝜏 = (Sym𝑘𝑣−2 ⊗ det−
𝑘𝑣
2 ) � (Sym𝑘𝑣 ⊗ det−

𝑘𝑣
2 +1),

𝜏𝑍 : 𝑡𝛼 ↦→ 𝛼𝑘𝑣−2(𝛼2)−
𝑘𝑣
2 (𝛼−1)𝑘𝑣 (𝛼−2)−

𝑘𝑣
2 +1 = 𝛼−4.

Then 𝑘 = 𝑘𝑣 , so the Hodge type is

(2, 2) + (𝑘𝑣 − 2, 2𝑘𝑣 − 4 + 2 − 𝑘𝑣 ) = (𝑘𝑣 , 𝑘𝑣 ).

• If (𝑝, 𝑞) = (3, 3) and 𝑤−1 = (1243), then

𝑤(Λ + 𝜌) = 1
2 (𝑘𝑣 − 1,−𝑘𝑣 − 1, 𝑘𝑣 + 1,−𝑘𝑣 + 1),

𝑤(Λ + 𝜌) − 𝜌 = 1
2 (𝑘𝑣 − 4,−𝑘𝑣 − 2, 𝑘𝑣 + 2,−𝑘𝑣 + 4)

so that

𝜏 = (Sym𝑘𝑣−1 ⊗ det−
𝑘𝑣
2 −1) � (Sym𝑘𝑣−1 ⊗ det−

𝑘𝑣
2 +2),

𝜏𝑍 : 𝑡𝛼 ↦→ 𝛼𝑘𝑣−1(𝛼2)−
𝑘𝑣
2 −1 (𝛼−1)𝑘𝑣−1(𝛼−2)−

𝑘𝑣
2 +2 = 𝛼−6.

Then 𝑘 = 𝑘𝑣 + 1, so the Hodge type is

(3, 3) + (𝑘𝑣 + 1 − 3, 2𝑘𝑣 − 4 + 3 − (𝑘𝑣 + 1)) = (𝑘𝑣 + 1, 𝑘𝑣 + 1).

• If (𝑝, 𝑞) = (4, 0) and 𝑤−1 = (13) (24), then

𝑤(Λ + 𝜌) = 1
2 (−𝑘𝑣 + 1,−𝑘𝑣 − 1, 𝑘𝑣 + 1, 𝑘𝑣 − 1),

𝑤(Λ + 𝜌) − 𝜌 = 1
2 (−𝑘𝑣 − 2,−𝑘𝑣 − 2, 𝑘𝑣 + 2, 𝑘𝑣 + 2)

so that

𝜏 = (Sym0 ⊗ det−
𝑘𝑣
2 −1) � (Sym0 ⊗ det

𝑘𝑣
2 +1),

𝜏𝑍 : 𝑡𝛼 ↦→ (𝛼2)−
𝑘𝑣
2 −1(𝛼−2)

𝑘𝑣
2 +1 = 𝛼−2𝑘𝑣−4.

Then 𝑘 = 2𝑘𝑣 , so the Hodge type is

(4, 0) + (2𝑘𝑣 − 4, 2𝑘𝑣 − 4 + 4 − 2𝑘𝑣 ) = (2𝑘𝑣 , 0).
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The relevant case for us is the case (𝑝, 𝑞) = (1, 1) in which case the overall Hodge type (𝑘𝑣−1, 𝑘𝑣−1);
twisting it by (2−𝑘𝑣 , 2−𝑘𝑣 ), we see that𝐻1,1 (𝔤′𝑣 , 𝐾 ′𝑣 ; 𝜋′𝑣 ⊗𝜌′𝑣,𝑘𝑣 ) has Hodge type (1, 1) as expected. �

Finally, we note that by §4.4, we may regard Π as an automorphic representation of any of the groups
G̃ (A), G (A), G𝐵 (A), G̃𝐵 (A). Let S and K be as in §4.4 as well. Then we get:
Corollary 11.7. The Hodge structure on 𝐻2𝑑 (ShG̃𝐵,K

,V𝑘 ) [Π𝑆] is purely of type (𝑑, 𝑑).

11.4. Galois representations

Finally, we state the main result we need on Galois representations.
Proposition 11.8. Assume Kottwitz’s conjecture for Shimura varieties attached to unitary similitude
groups. Then the action of Gal(Q/𝐹Σ) on

𝐻2𝑑 (ShG̃ ,K,V𝑘,ℓ) [Π𝑆] (𝑑)

is trivial.
The proposition above encodes the expected relation between the automorphic form Π and the

cohomology of the Shimura variety ShG̃ ,K and is consistent with Corollary 11.7. As such, it is an
immediate consequence of the following special case of Kottwitz’s conjecture [37, §10]:
Proposition 11.9. Assume Kottwitz’s conjecture for Shimura varieties attached to unitary similitude
groups. Then the action of Gal(Q/𝐹Σ) on the semisimplification of

𝐻2𝑑 (ShG̃ ,K,V𝑘,ℓ) [Π𝑆] (𝑑)

is trivial.
Remark 11.10. Proposition 11.8 follows directly from Proposition 11.9 by a standard argument us-
ing the finiteness of the class number of 𝐹Σ (as in [54, §5.13]). For convenience of the reader,
we include the argument here. Recall that any subquotient of the representation of Gal(Q/𝐹Σ) on
𝐻2𝑑 (ShG̃ ,K,V𝑘,ℓ) [Π𝑆] (𝑑) (regarded as a Qℓ-vector space) is unramified at almost all places and is de
Rham at all places dividing ℓ. Thus, it suffices to show that 𝐻1

𝑔 (𝑘,Qℓ) = 0 for any number field k. Here,
𝐻1
𝑔 (𝑘,Qℓ) is the Bloch–Kato Selmer group [8] consisting of elements 𝑥 ∈ 𝐻1(𝑘,Qℓ) such that

• 𝑥𝑣 ∈ 𝐻1
𝑓 (𝑘𝑣 ,Qℓ) for almost all v;

• 𝑥𝑣 ∈ 𝐻1
𝑔 (𝑘𝑣 ,Qℓ) for all v dividing ℓ,

where for any finite place v of k, 𝑥𝑣 denotes the restriction of x to 𝐻1(𝑘𝑣 ,Qℓ). By class field theory, we
identify

𝐻1 (𝑘𝑣 ,Qℓ) = Homcont (Gal(𝑘𝑣/𝑘𝑣 ),Qℓ) = Homcont (𝑘×𝑣 ,Qℓ).

Under this identification, we have 𝐻1
𝑓 (𝑘𝑣 ,Qℓ) = 𝐻1(𝑘𝑣 ,Qℓ) = Hom(𝑘×𝑣/𝔬×𝑣 ,Qℓ) if v does not divide ℓ,

and 𝐻1
𝑔 (𝑘𝑣 ,Qℓ) = Hom(𝑘×𝑣/𝔬×𝑣 ,Qℓ) if v divides ℓ by [8, Example 3.9]. Here, 𝔬𝑣 is the ring of integers

of 𝑘𝑣 . From this, we deduce that

𝐻1
𝑔 (𝑘,Qℓ) = Hom(A×𝑘/𝑘

×𝑘×∞�̂�
×,Qℓ)

with 𝑘∞ = 𝑘 ⊗Q R and �̂� =
∏

𝑣 𝔬𝑣 . But since A×𝑘/𝑘
×𝑘×∞�̂�

× is finite, we have 𝐻1
𝑔 (𝑘,Qℓ) = 0.

Remark 11.11. We remark that Kottwitz’s conjecture for ShG̃ ,K should follow from the stable trace
formula for Shimura varieties of abelian type established by Kisin–Shin–Zhu [35] but is conditional
on the classification of automorphic representations on unitary similitude groups and the equality [35,
(9.2.2.1)] of certain stable distributions. This is explained in more detail in Remark 1.4 in the introduction.

In the next section, we explain how to deduce Proposition 11.9 from Kottwitz’s conjecture.
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11.5. Kottwitz’s conjecture

Put Γ𝑘 = Gal(Q/𝑘) for a number field k. Then Σ∞ (regarded as the set of embeddings of F in C) admits
a natural action of ΓQ induced by the inclusion Q ↩→ C. We identify Σ∞ with ΓQ/Γ𝐹 so that the fixed
embedding 𝐹 ↩→ Q corresponds to the trivial coset Γ𝐹 . Choose a set of representatives {𝜎1, . . . , 𝜎𝑛}
for ΓQ/Γ𝐹 so that Σ = {𝜎1Γ𝐹 , . . . , 𝜎𝑑Γ𝐹 }, where 𝑛 = [𝐹 : Q] and 𝑑 = |Σ |. Define an action of ΓQ on
{1, . . . , 𝑛} so that

𝛾𝜎𝑖Γ𝐹 = 𝜎𝛾 (𝑖)Γ𝐹

for 𝛾 ∈ ΓQ. We denote by 𝐹Σ the fixed field of the subgroup

{𝜎 ∈ ΓQ | 𝜎Σ = Σ}.

Recall that 𝐺 = GU(V) with

𝐺𝑣 �
{

GU(2, 2) if 𝑣 ∈ Σ;
GU(4) if 𝑣 ∈ Σ∞ \ Σ

and 𝐺0 = Res𝐹/Q𝐺. (Note that 𝐺0 = G̃ with the notation of §4.1.) Then we have

𝐿𝐺 = �̂� � Γ𝐹 , �̂� = GL4 (C) × C×,

where Γ𝐸 acts trivially on �̂� and the nontrivial element in Gal(𝐸/𝐹) acts as the automorphism 𝜃
defined by

𝜃 (𝑔, 𝜈) = (𝜃4 (𝑔), 𝜈 · det 𝑔).

Also, by [9, §5], we have

𝐿𝐺0 = �̂�0 � ΓQ, �̂�0 = (�̂�)𝑛,

where 𝛾 ∈ ΓQ acts on �̂�0 as the automorphism

(𝑔1, . . . , 𝑔𝑛) ↦→ (𝛾1 · 𝑔𝛾−1 (1) , . . . , 𝛾𝑛 · 𝑔𝛾−1 (𝑛) )

with

𝛾𝑖 = 𝜎−1
𝑖 𝛾𝜎𝛾−1 (𝑖) ∈ Γ𝐹 .

To describe the Galois representation on the cohomology of the Shimura variety ShG̃ ,K, we need
to introduce some representation of the L-group. Following [7, §5.1], we recall its definition. Let
𝜇 : G𝑚,C → SC → 𝐺0,C be the cocharacter associated to the homomorphism ℎ : S→ 𝐺0,R as in §11.3.
More explicitly, we have 𝜇(𝑧) = (𝜇𝑣 (𝑧))𝑣 ∈Σ∞ with

𝜇𝑣 (𝑧) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
𝑧12

12

)
× 𝑧 if 𝑣 ∈ Σ;

14 × 1 if 𝑣 ∈ Σ∞ \ Σ.

From this, we see that the reflex field of the Shimura datum (𝐺0, 𝑋) is 𝐹Σ. We also identify 𝜇 with a
character of the standard maximal torus of �̂�0. Let 𝑟0 be the irreducible algebraic representation of �̂�0
with extreme weight −𝜇, which can be explicated as follows. Let ∧2C4 be the exterior square of the
standard representation of GL4 (C) and regard it as a representation of �̂� by letting 𝜈 ∈ C× act as the
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scalar 𝜈. We denote by r its contragredient on V = (∧2C4)∗. Then 𝑟0 is the representation of �̂�0 on
V0 = V ⊗𝑑 given by

𝑟0(𝑔1, . . . , 𝑔𝑛) = 𝑟 (𝑔1) ⊗ · · · ⊗ 𝑟 (𝑔𝑑).

On the other hand, since (∧2C4)∗ ⊗ det � ∧2C4 as representations of GL4 (C), there exists a unique
automorphism A of V such that

𝑟 (𝜃 (𝑔)) ◦ 𝐴 = 𝐴 ◦ 𝑟 (𝑔)

for all 𝑔 ∈ �̂� and such that A fixes the highest weight vector (unique up to scalars) in V with respect to
the standard Borel subgroup of �̂�. Then we can extend r to 𝐿𝐺 by setting

𝑟 (1 � 𝜎) =
{

id if 𝜎 ∈ Γ𝐸 ;
𝐴 otherwise

and hence 𝑟0 to �̂�0 � Γ𝐹Σ by setting

𝑟0 (1 � 𝛾) (𝑥1 ⊗ · · · ⊗ 𝑥𝑑) = 𝑟 (1 � 𝛾1)𝑥𝛾−1 (1) ⊗ · · · ⊗ 𝑟 (1 � 𝛾𝑑)𝑥𝛾−1 (𝑑) .

We also need to introduce the expected classification of automorphic representations of 𝐺 (A𝐹 ).
Let 𝐿2

disc(𝐺) be the discrete spectrum of the unitary representation of 𝐺 (A𝐹 ) on the Hilbert space
𝐿2 (𝐴𝐺 (𝐹∞)0𝐺 (𝐹)\𝐺 (A𝐹 )), where 𝐴𝐺 is the split component of the center of G and 𝐹∞ = 𝐹 ⊗Q R.
We say that a pair (𝜓 ′, 𝜒) is an elliptic A-parameter for G if

• 𝜓 ′ is an elliptic A-parameter for 𝐺 ′;
• 𝜒 is a character of A×𝐸/𝐸

× such that 𝜒𝜌/𝜒 is equal to the central character of 𝜋𝜓′ .

Then one expects the decomposition

𝐿2
disc (𝐺) =

⊕
𝜓

𝐿2
𝜓 (𝐺),

where 𝜓 = (𝜓 ′, 𝜒) runs over elliptic A-parameters for G and 𝐿2
𝜓 (𝐺) is the near equivalence class of

irreducible subrepresentations 𝜋 of 𝐿2
disc (𝐺) such that for almost all places v of F, the base change of

𝜋𝑣 to GL4(𝐸𝑣 ) × 𝐸×𝑣 is isomorphic to 𝜋𝜓′,𝑣 � 𝜒𝑣 .
To compute the Galois representation, it is convenient to introduce the hypothetical Langlands group

L𝑘 of a number field k equipped with a surjective homomorphism pr : L𝑘 � Γ𝑘 . Let 𝜓 be an elliptic
A-parameter for G and regard it as an L-homomorphism 𝜓 : L𝐹 × SL2(C) → 𝐿𝐺. Let 𝜙𝜓 : L𝐹 → 𝐿𝐺
be the L-parameter associated to 𝜓, that is,

𝜙𝜓 (𝑤) = 𝜓

(
𝑤,

(
|𝑤 | 12

|𝑤 |− 1
2

))
.

Then we have a representation 𝑟 (𝜓) = (𝑟 ◦ 𝜙𝜓) ⊗ | · |−2 of L𝐹 on V equipped with a decomposition

V =
⊕
𝑖

V 𝑖 ,

where

V 𝑖 =
{
𝑣 ∈ V

!! (𝑟 ◦ 𝜓) (1, ( 𝑡 𝑡−1
) )
𝑣 = 𝑡−𝑖𝑣 for all 𝑡 ∈ C×

}
.
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Similarly, if 𝜓0 : LQ × SL2 (C) → 𝐿𝐺0 is the A-parameter induced by 𝜓, then we have a representation
𝑟 (𝜓0) = (𝑟0 ◦ 𝜙𝜓0) ⊗ | · |−2𝑑 of L𝐹Σ on V0 equipped with a decomposition

V0 =
⊕
𝑖

V 𝑖
0.

More explicitly, we have

𝜓0 (𝛾, ℎ) = (𝑔(𝛾1, ℎ), . . . , 𝑔(𝛾𝑑 , ℎ)) � pr(𝛾),

where we write 𝜓(𝜎, ℎ) = 𝑔(𝜎, ℎ) � pr(𝜎) and 𝛾𝑖 ∈ L𝐹 is defined similarly as above, and

V 𝑖
0 =

⊕
𝑖=𝑖1+···+𝑖𝑑

V 𝑖1 ⊗ · · · ⊗ V 𝑖𝑑 .

We write 𝑟 𝑖ℓ (𝜓0) for the ℓ-adic representation of Γ𝐹Σ which should correspond to the representation of
L𝐹Σ on V 𝑖

0. Finally, let 𝜋𝑆 be the irreducible unramified representation of 𝐺 (A𝑆𝐹 ) associated to 𝜓, where
S is a sufficiently large finite set of rational primes. Then it follows from Kottwitz’s conjecture [37, §10]
that the ℓ-adic representation of Γ𝐹Σ on the semisimplification of

𝐻𝑖 (ShG̃ ,K,V𝑘,ℓ) [𝜋𝑆]

is isomorphic to a subrepresentation of 𝑟 𝑖−4𝑑
ℓ (𝜓0)⊕𝑚 for some integer m.

To deduce Proposition 11.9 from Kottwitz’s conjecture, we now suppose that 𝜓 = (𝜓 ′, 𝜒) with
𝜓 ′ = 𝜋𝐸 � Sym1 as in equation (11.1) and 𝜒 = 1. It suffices to show that 𝑟−2𝑑

ℓ (𝜓0) (𝑑) is trivial. Let 𝜌
be the two-dimensional representation of L𝐹 (conjecturally) associated to 𝜋 and put 𝜌𝐸 = 𝜌 |L𝐸 . (We
can justify the formal computation by using the ℓ-adic representation of Γ𝐹 associated to 𝜋, but we
omit the details.) Since 𝜋𝐸 has trivial central character, 𝜌𝐸 is self-dual. Let W be the four-dimensional
representation of L𝐸 induced by 𝜙𝜓 |L𝐸 so that W = W1 ⊕W−1 with W±1 = 𝜌𝐸 ⊗ | · |∓

1
2 . Then, noting

that W is self-dual, we have

V = (∧2W)∗ ⊗ | · |−2 = ∧2W ⊗ | · |−2 = V2 ⊕ V0 ⊕ V−2

as representations of L𝐹 , where

V2 = ∧2W1 ⊗ | · |−2 = | · |−3,

V0 = W1 ⊗W−1 ⊗ | · |−2 = As+(𝜌𝐸 ) ⊗ | · |−2 = | · |−2 ⊕
(
Sym2(𝜌) ⊗ | · |−2

)
,

V−2 = ∧2W−1 ⊗ | · |−2 = | · |−1.

(Note that in the context of §1.2.8 when 𝐹 = Q and 𝑑 = 1, V 𝑖 corresponds to the ℓ-adic representation
on 𝐻𝑖+4.) Hence,

V−2𝑑
0 ⊗ | · |𝑑 = (V−2)⊗𝑑 ⊗ | · |𝑑

is the trivial representation of L𝐹Σ as desired.

12. Hodge–Tate classes and the proof of the main theorem

12.1. Hodge–Tate classes

We make the following definition. Recall that the category M𝐿
𝑘 that is used below was defined in §2.1.
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Definition 12.1. Let (𝑉,𝑉ℓ , 𝑖ℓ) denote a (pure) object in M𝐿
𝑘 . A class 𝑐 ∈ 𝑉 is said to be a Hodge–Tate

class (HT in brief) if c is a Hodge class in V and 𝑖ℓ (𝑐) is a Tate class in 𝑉ℓ for all ℓ. Thus, c is required
to lie in 𝑉0,0 and 𝑖ℓ (𝑐) is required to be 𝐺𝑘 -invariant for all ℓ.

We let HT (𝑉) denote the L-subspace of HT-classes in V and HT (𝑉)C its C-span. (This notation is
slightly ambiguous since it does not keep track of the isomorphisms 𝑖ℓ ; this will typically not cause a
problem since the maps 𝑖ℓ will be understood from the context.) Clearly, any morphism from (𝑉,𝑉ℓ , 𝑖ℓ)
to (𝑉 ′, 𝑉 ′ℓ , 𝑖

′
ℓ) induces maps HT (𝑉) → HT (𝑉 ′) and HT (𝑉)C → HT (𝑉 ′)C.

If 𝐿 ⊂ 𝐿 ′ ⊂ C, the natural functor M𝐿
𝑘 →M𝐿′

𝑘 carries HT (𝑉) into HT (𝑉𝐿′ ), where we write 𝑉𝐿′
for 𝑉 ⊗𝐿 𝐿 ′.

12.2. The construction of a cohomology class

While some aspects of the construction have been described previously at various points in the paper,
we now collect in a single place the entire construction, which also makes clear the dependence on
various auxiliary choices.

12.2.1. Spaces and groups
Choose a CM quadratic extension 𝐸/𝐹 that embeds in both 𝐵1 and 𝐵2. (Later, we will be more careful
about the choice of E.) Fix embeddings 𝐸 ↩→ 𝐵1 and 𝐸 ↩→ 𝐵2. Let V1 = 𝐵1 and V2 = 𝐵2, viewed as
Hermitian E-spaces with the canonical Hermitian form, as in [30, §2.2], and let V = V1 ⊕ V2 be their
direct sum, viewed as a four-dimensional Hermitian E-space. To the space V, we can associate the skew-
Hermitian B-space �̃� as in §5.2. Further, as in §5.3.1, the decomposition V = V1 ⊕ V2 of E-Hermitian
spaces induces a decomposition �̃� = 𝑉 ⊕ 𝑉0 as the sum of skew-Hermitian B-spaces of dimensions two
and one, respectively. We then get a collection of groups and maps between them as described in §4,
and the reader is referred especially to the diagrams of groups in that section, which will be used often
in the construction below.

12.2.2. Shimura data
Fix isomorphisms

𝐵𝑖 ⊗𝐹,𝜎𝑣 R � M2 (R) for 𝑣 ∈ Σ; 𝐵𝑖 ⊗𝐹,𝜎𝑣 R � H for 𝑣 ∈ Σ∞ \ Σ.

For concreteness, we can fix isomorphisms as follows:

i ↦→
(

0 1
𝜎𝑣 (𝑢) 0

)
, j𝑖 ↦→

(√
𝜎𝑣 (𝐽𝑖) 0

0 −
√
𝜎𝑣 (𝐽𝑖)

)
, 𝑣 ∈ Σ∞,

where for 𝑣 ∈ Σ∞ \ Σ, the notation
√
𝜎𝑣 (𝐽𝑖) stands for

√
|𝜎𝑣 (𝐽𝑖) |𝑖. We will use these isomorphisms to

identify

𝐺𝐵𝑖 (R) �
∏
𝑣 ∈Σ

GL2(R) ×
∏

𝑣 ∈Σ∞\Σ
H×.

Define Shimura data associated to 𝐵1 and 𝐵2 as in §3. Namely, take the 𝐺𝐵𝑖 (R)-conjugacy class of the
homomorphisms

ℎ𝑖 : S→ 𝐺𝐵𝑖 (R), (ℎ𝑖 (𝑧))𝑣 = 𝜄(𝑧) for 𝑣 ∈ Σ; (ℎ𝑖 (𝑧))𝑣 = 1 for 𝑣 ∈ Σ∞ \ Σ,

where 𝜄 : C× → GL2 (R) is defined as in equation (3.1). Note that for 𝑣 ∈ Σ, ℎ𝑖,𝑣 is (𝐵𝑖 ⊗𝐹,𝜎𝑣 R)×-
conjugate to the embedding 𝜄′𝑣 : C× � (𝐸 ⊗𝐹,𝜎𝑣 R)× ⊂ (𝐵 ⊗𝐹,𝜎𝑣 R)×, where the first of these
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isomorphisms is induced from the map 𝐸 ⊗𝐹,𝜎𝑣 R � C sending i ↦→
√
|𝜎𝑣 (𝑢) |𝑖. We denote this latter

isomorphism by 𝜎𝑣 as well.
Let 𝑋𝐵1 and 𝑋𝐵2 denote the associated Shimura varieties. The Shimura data for the other groups are

defined as follows. For (𝐵×𝑖 × 𝐸×)/𝐹× � GU𝐸 (V𝑖) with (𝛽, 𝛼) ↦→ (𝑥 ↦→ 𝛽𝑥𝛼−1),

(ℎ𝑖 (𝑧))𝑣 = (𝜄(𝑧), 1) for 𝑣 ∈ Σ; (ℎ𝑖 (𝑧))𝑣 = 1 for 𝑣 ∈ Σ∞ \ Σ.

In the basis (1𝐵𝑖 , j𝑖) of V𝑖 , the map (𝐵×𝑖 × 𝐸×)/𝐹× → GU𝐸 (V𝑖) is given by

(𝛼 + 𝛽j𝑖 , 𝛿) ↦→ 𝛿−1
(
𝛼 𝐽𝑖𝛽
𝛽 �̄�

)
∈ GL2(𝐸), 𝛼, 𝛽, 𝛿 ∈ 𝐸.

In the basis (w𝑖1,w𝑖2) = (1𝐵𝑖 ,
1√

|𝜎𝑣 (𝐽𝑖) |
j𝑖) of V𝑖,𝑣 := V𝑖 ⊗𝐸,𝜎𝑣 C, the Hermitian form is diagonal,

given by the matrix
(
1
±1

)
with the sign being −1 (resp. +1) if 𝑣 ∈ Σ (resp. 𝑣 ∈ Σ∞ \ Σ).

Let 𝑣 ∈ Σ. The map (𝐵×𝑖 × 𝐸×)/𝐹× → GU𝐸 (V𝑖) (R)𝑣 is given by

(𝛼 + 𝛽j𝑖 , 𝛿) ↦→ 𝜎𝑣 (𝛿)−1
(

𝜎𝑣 (𝛼)
√
𝜎𝑣 (𝐽𝑖)𝜎𝑣 (𝛽)√

𝜎𝑣 (𝐽𝑖)𝜎𝑣 (𝛽) 𝜎𝑣 (�̄�)

)
∈ GU(1, 1), 𝛼, 𝛽, 𝛿 ∈ 𝐸.

In particular, the map ℎ𝑖,𝑣 : C× → GU(1, 1) is GU(1, 1)-conjugate to the map 𝑧 ↦→
(
𝑧 0
0 𝑧

)
.

For G̃ = G(U𝐸 (V1) × U𝐸 (V2)), let h be defined by ℎ(𝑧) = (ℎ1 (𝑧), ℎ2 (𝑧)). For G̃ = GU𝐸 (V), let h
be defined by composing the map h for G̃ with the inclusion 𝑖 : G̃ ↩→ G̃ . In the basis

(w11,w21,w12,w22) = (1𝐵1 , 1𝐵2 ,
1√

𝜎𝑣 (𝐽1)
j1,

1√
𝜎𝑣 (𝐽2)

j2)

of V𝑣 = V ⊗𝐸,𝜎𝑣 C, the Hermitian form is diag(1, 1,±1,±1) with the sign being −1 (resp. +1) if 𝑣 ∈ Σ
(resp. 𝑣 ∈ Σ∞ \ Σ). For 𝑣 ∈ Σ, ℎ𝑣 is G̃ (R)𝑣 -conjugate to the map

𝑧 ↦→
(
𝑧12

𝑧12

)
,

while for 𝑣 ∈ Σ∞ \ Σ, ℎ𝑣 is trivial.
For G̃𝐵 = G(U𝐵 (𝑉) × U𝐵 (𝑉0)) = G((𝐵×1 × 𝐵

×
2 )/𝐹

× × 𝐸×), we take

ℎ(𝑧)𝑣 = ((𝜄(𝑧), 𝜄(𝑧)), 𝑧𝑧)

for 𝑣 ∈ Σ and ℎ(𝑧)𝑣 = 1 otherwise. For G̃𝐵, we take h to be the map obtained by composing h
for G̃𝐵 with the inclusion G̃𝐵 ↩→ G̃𝐵. Thus, for 𝑣 ∈ Σ, the action of ℎ(𝑧)𝑣 on �̃�𝑣 = 𝑉𝑣 ⊕ 𝑉0,𝑣 =
(V1,𝑣 ⊗C V2,𝑣 ) ⊕ (∧2

C
V1,𝑣 ⊕ ∧2

C
V2,𝑣 ) is given by 𝜄(𝑧) ⊗ 𝜄(𝑧) ⊕ 𝑧𝑧. To compute the G̃𝐵 (R)𝑣 -conjugacy

class, we may replace 𝜄(𝑧) by 𝜄′𝑣 (𝑧). The action of 𝜄′𝑣 (𝑧) on V𝑖,𝑣 is diagonalizable, given by
(
𝑧
𝑧

)
in the

basis (w𝑖1,w𝑖2), that is,

𝜄′𝑣 (𝑧)w𝑖1 = w𝑖1𝑧, 𝜄′𝑣 (𝑧)w𝑖2 = w𝑖2𝑧.
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Now, (w11 ⊗ w21,w12 ⊗ w21,w11 ∧ w12) is a 𝐵 ⊗𝐹,𝜎𝑣 R-basis of �̃�𝑣 and in this basis, the action of
ℎ(𝑧)𝑣 is diagonal, given by diag(𝑧2, 𝑧𝑧, 𝑧𝑧). From this description, it is clear that under the canonical
isomorphism

G̃ /𝐸× = G � G𝐵 = G̃𝐵/𝐹×,

the chosen Shimura data are identified.

12.2.3. Local systems
We consider a local system Ṽ𝜌 on ShG̃𝐵

associated with a finite-dimensional representation 𝜌 of G̃𝐵. To
construct this local system, we first fix isomorphisms 𝐵 ⊗𝐹 𝐹𝑣 � M2 (R) for all infinite places v of F.
Then to each infinite place v, as in §6 (and [30, §C.2]), we can associate orthogonal spaces �̃�†𝑣 = 𝑉†𝑣 ⊕𝑉†0,𝑣
such that

GU𝐵𝑣 (�̃�𝑣 )0 � GSO(�̃�†𝑣 ), GU𝐵𝑣 (𝑉𝑣 )0 � GSO(𝑉†𝑣 ), GU𝐵𝑣 (𝑉0,𝑣 )0 � GSO(𝑉†0,𝑣 ).

Recall that

G̃𝐵 (R) �
∏
𝑣 ∈Σ

GSO(4, 2) ×
∏

𝑣 ∈Σ∞\Σ
GSO(0, 6),

where for 𝑝 + 𝑞 even,

GSO(𝑝, 𝑞) = {𝑔 ∈ GL𝑝+𝑞 (R) | 𝑡𝑔𝐼𝑝,𝑞𝑔 = 𝜈(𝑔) · 𝐼𝑝,𝑞 , det 𝑔 = 𝜈(𝑔)
𝑝+𝑞

2 }

with

𝐼𝑝,𝑞 =

(
1𝑝
−1𝑞

)
.

The local system is then associated to the algebraic representation Ṽ𝜌,C := ⊗𝑣ℋ𝑘𝑣−2(�̃�†𝑣 ) of G̃𝐵 (R),
where for ℓ even, we have

ℋℓ := ker(Symℓ → Symℓ−2) ⊗ 𝜈(·)−ℓ/2.

Note that by §8.2 (for ℓ = 𝑘 − 2) the restriction of this representation to SO(4, 2) is irreducible with
highest weight (𝑘−2, 0, 0). Via the isomorphism given by Corollary 6.3, this corresponds (for ℓ = 𝑘−2)
to the irreducible representation of U(2, 2) with highest weight(

𝑘
2 − 1, 𝑘2 − 1,− 𝑘

2 + 1,− 𝑘
2 + 1

)
.

A similar statement holds for the places 𝑣 ∈ Σ∞ \Σ, and for the pair (SO(0, 6),U(4, 0)). Thus, the local
system Ṽ𝜌,C is isomorphic to the local system V𝑘,C considered in §11.3.

Proposition 12.2. The C-vector space Ṽ𝜌,C contains a Q(𝑘)-subspace Ṽ𝜌 that is stable by the action
of G̃𝐵 (Q) and such that Ṽ𝜌 ⊗Q(𝑘) C = Ṽ𝜌,C. Moreover, such a subspace is unique up to homothety.

Proof. Fix an infinite place v of F. Then the representation ℋ𝑘𝑣−2(�̃�†𝑣 ) is defined over 𝜎𝑣 (𝐹) by [64],
Théorème 3.3, since the highest weight is both invariant by Gal(Q/𝜎𝑣 (𝐹)) and lies in the root lattice.
Taking the tensor induction over all places 𝑣 ∈ Σ∞ yields a Q(𝑘)-structure on Ṽ𝜌,C. The uniqueness up
to homothety follows from the irreducibility of Ṽ𝜌,C. �

12.2.4. Auxiliary modular form
Let 𝜏 be an irreducible automorphic representation of 𝐵×(A) corresponding to a holomorphic Hilbert
modular form of weights (𝑘 + 1, 𝑟) (with some odd integer r) and central character 𝜉𝐸 . Let 𝐵×(A)+
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denote the subgroup of 𝐵×(A) consisting of elements with positive reduced norm at every infinite
place. The restriction of 𝜏 to 𝐵×(A)+ splits up as a sum of 2[𝐹 :Q] representations, characterized by the
local component at the [𝐹 : Q] infinite places being either holomorphic or antiholomorphic discrete
series. We let 𝜏 be the irreducible summand whose local component is antiholomorphic for 𝑣 ∈ Σ and
holomorphic for 𝑣 ∉ Σ, twisted by a (half-integer power of) the norm character to make it unitary.

12.2.5. Theta lift to G̃𝑩

Let 𝜃 �̃� (𝜙) denote the element in A (G̃𝐵) ⊗ ∧2𝑑�̃�∗ ⊗ Ṽ𝜌,C constructed in §10.4, with an element 𝜙 in the
space 𝜏 and a Schwartz form �̃�. (Note that in that section, the group G̃𝐵 is simply denoted by �̃�. Then
𝜃 �̃� (𝜙) corresponds to a class

𝜉𝜏 ∈ 𝐻2𝑑 (ShG̃𝐵
, Ṽ𝜌,C)

via the isomorphism

𝐻2𝑑 (ShG̃𝐵
, Ṽ𝜌,C) � 𝐻2𝑑 (𝔤, 𝐾; A (G̃𝐵) ⊗ Ṽ𝜌,C).

12.2.6. Pull back to G̃𝑩

Pull back 𝜉𝜏 to a class 𝑖∗𝜉𝜏 in 𝐻2𝑑 (ShG̃𝐵
, Ṽ𝜌,C). Decompose Ṽ𝜌,C into a sum of irreducibles (as

a representation of G̃𝐵 (R)), and project to the irreducible component V𝜌,C := ⊗𝑣ℋ𝑘𝑣−2(𝑉𝑣 ), as in
equation (8.3). Thus, 𝑖∗𝜉𝜏 can be viewed as an element of 𝐻2𝑑 (ShG̃𝐵

,V𝜌,C). Note that theQ(𝑘)-rational
structure on Ṽ𝜌,C can be chosen such that the projection map carries it into the Q(𝑘)-rational structure
on V𝜌,C.

12.2.7. Auxiliary character
For a finite order Hecke character 𝜂 of 𝑇1 (A) (see §4.3), we take the class 𝑐𝜂 ∈ 𝐻0 (ShG̃𝐵

,Q(𝜂)) and
cup it with 𝑖∗𝜉𝜏 , to get

𝜉𝜏,𝜂 := 𝑖∗𝜉𝜏 ∪ 𝑐𝜂 ∈ 𝐻2𝑑 (ShG̃𝐵
,V𝜌,C).

12.2.8. Push forward to Sh𝑮 and K-invariant projection
Push forward the class 𝜉𝜏,𝜂 to Sh𝐺 . Pick an open compactK of 𝑍 (A 𝑓 )\𝐺 (A 𝑓 ), and take theK-invariant
projection 𝜉𝜏,𝜂,K.

12.2.9. Pull back to Sh𝑩1 × Sh𝑩2

Take an open compact subgroup K1 ×K2 ⊂ 𝐵1 (A 𝑓 ) × 𝐵2 (A 𝑓 ) whose image under the natural map to
𝑍 (A 𝑓 )\𝐺 (A 𝑓 ) is contained in K. Then pull back to Sh𝐵1 ,K1 × Sh𝐵2 ,K2 to get the class

𝜉𝜏,𝜂 := 𝑗∗𝑝1,∗𝜉𝜏,𝜂,K ∈ 𝐻2𝑑 (Sh𝐵1 ,K1 × Sh𝐵2 ,K2 ,V𝜌,C).

12.2.10. Project to [𝝅1, 𝝅2]-component
On Sh𝐵1 × Sh𝐵2 , we have

V𝜌 � V𝑘 � V𝑘 .

Thus

𝐻2𝑑 (𝑋𝐵1 ,K1 × 𝑋𝐵2 ,K2 ,V𝜌,C) =
⊕̃
𝜋1 , �̃�2

H2𝑑
K1 ,K2

[�̃�1, �̃�2],

where

H2𝑑
K1 ,K2

[�̃�1, �̃�2] = (�̃�K1
1, 𝑓 ⊗ �̃�

K2
2, 𝑓 ) ⊗ 𝐻

2𝑑 (𝑋𝐵1 ,K1 × 𝑋𝐵2 ,K2 ,V𝑘,C � V𝑘,C)�̃�1� �̃�2
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and �̃�1, �̃�2 range over automorphic representations of 𝐵×1 (A) and 𝐵×2 (A) such that �̃�1 � �̃�2 contributes
to the cohomology of the local system 𝑉𝜌,C. Then

𝜖𝜋 (𝜉𝜏,𝜂) ∈ H2𝑑
K1 ,K2

[𝜋1, 𝜋2]

is defined to be the projection to the [𝜋1, 𝜋2]-component. Note that

𝐻2𝑑 (𝑋𝐵1 ,K1 × 𝑋𝐵2 ,K2 ,V𝑘,C � V𝑘,C)𝜋1�𝜋2 = 𝐻𝑑 (𝑋𝐵1 ,K1 ,V𝑘,C)𝜋1 ⊗ 𝐻𝑑 (𝑋𝐵2 ,K2 ,V𝑘,C)𝜋2 .

12.2.11. Contraction with 𝒗1 ⊗ 𝒗2
Though we are assuming that 𝜋∨ � 𝜋, below we distinguish between them for purposes of clarity. Pick
nonzero elements 𝑣1 ∈ (𝜋∨1 )

𝑓 ,K1 , 𝑣2 ∈ (𝜋∨2 )
𝑓 ,K2 such that 𝑣1 ⊗ 𝑣2 is K-invariant. Then contracting

𝑣1 ⊗ 𝑣2 with 𝜖𝜋 (𝜉𝜂) gives an element

𝜉 := 〈𝜖𝜋 (𝜉𝜏,𝜂), 𝑣1 ⊗ 𝑣2〉 ∈ 𝐻𝑑 (Sh𝐵1 ,V𝑘,C)𝜋1 ⊗ 𝐻𝑑 (Sh𝐵2 ,V𝑘,C)𝜋2 .

12.3. The construction of a Hodge–Tate class

Note that 𝜉 induces a map (for the moment of C-vector spaces!)

𝐼𝜉 : 𝐻𝑑 (Sh𝐵1 ,V𝑘,C)𝜋∨1 � 𝐻
𝑑 (Sh𝐵1 ,V𝑘,C)∨𝜋1

·𝜉
−−→ 𝐻𝑑 (Sh𝐵2 ,V𝑘,C)𝜋2 .

Note also that 𝜉 depends on the choices of the following data:

Υ := (𝐸, 𝜏, 𝜙, �̃�, 𝜂,K,K1,K2, 𝑣1, 𝑣2).

Proposition 12.3. There exists a choice of data Υ such that 𝐼𝜉 is an isomorphism of C-vector spaces:

𝐻𝑑 (Sh𝐵1 ,V𝑘,C)𝜋∨1 � 𝐻
𝑑 (Sh𝐵2 ,V𝑘,C)𝜋2 .

Proof. By Matsushima’s formula, there are canonical isomorphisms:

𝐻𝑑 (𝔤1, 𝐾1; 𝜋∨𝐵1 ,∞ ⊗ 𝜌𝑘 ) � 𝐻
𝑑 (Sh𝐵1 ,V𝑘 )𝜋∨1 ,

𝐻𝑑 (𝔤2, 𝐾2; 𝜋𝐵2 ,∞ ⊗ 𝜌𝑘 ) � 𝐻𝑑 (Sh𝐵2 ,V𝑘 )𝜋2 ,

and so we just need to check that the data Υ can be picked so that the induced map

𝐼𝜉 : 𝐻𝑑 (𝔤1, 𝐾1; 𝜋∨𝐵1 ,∞ ⊗ 𝜌𝑘 )
∨ → 𝐻𝑑 (𝔤2, 𝐾2; 𝜋𝐵2 ,∞ ⊗ 𝜌𝑘 )

is an isomorphism. But this is exactly the content of Proposition 10.1. The only point to note is that one
can in fact pick a CM extension 𝐸/𝐹 satisfying the conditions (i) through (iii) in the statement of the
proposition. But equations (ii) and (iii) hold for all but a finite number of finite places, so it is obvious
that there exists E satisfying the needed conditions. �

We now come to the proof of the main theorem (Theorem 1 of the introduction and its generalization,
Theorem 3.2.)
Theorem 12.4.
(i) There exists a Hodge class 𝜉0 ∈ 𝑉𝐵1 , 𝜋1 ⊗ 𝑉𝐵2 , 𝜋2 (𝑑) such that the induced map

𝑉𝐵1 , 𝜋1 � 𝑉∨𝐵1 , 𝜋1
(−𝑑)

·𝜉0−−→ 𝑉𝐵2 , 𝜋2

is an isomorphism of L-Hodge structures.
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(ii) Assume Kottwitz’s conjecture for Shimura varieties attached to unitary similitude groups. Then the
Hodge class 𝜉0 can be chosen such that it belongs to HT (𝑉𝐵1 , 𝜋1 ⊗ 𝑉𝐵2 , 𝜋2 (𝑑)) so that the induced
map

𝑉𝐵1 , 𝜋1 ⊗ Qℓ � (𝑉𝐵1 , 𝜋1 ⊗ Qℓ)∨(−𝑑)
·𝜉0−−→ 𝑉𝐵2 , 𝜋2 ⊗ Qℓ

is an isomorphism of 𝐺𝐹Σ -modules for all rational primes ℓ.

Proof. The construction outlined in §12.2.1 to §12.2.11 above gives a map (for any open compact
subgroup K̃ of G̃𝐵 (A 𝑓 ))

Res : 𝐻2𝑑 (ShG̃𝐵 ,K̃, Ṽ𝜌) (𝑑) → 𝑉𝐵1 , 𝜋1 ⊗ 𝑉𝐵2 , 𝜋2 (𝑑) � Hom(𝑉𝐵1 , 𝜋1 , 𝑉𝐵2 , 𝜋2 )

such that ResC sends

𝜉𝜏 (𝑑) ↦→ 𝜉 (𝑑) ↦→ 𝐼𝜉 (𝑑) .

Let I be the kernel of the unramified part of the Hecke algebra (at level K̃) acting on ΠK̃ so that

𝐻2𝑑 (ShG̃𝐵 ,K̃, Ṽ𝜌,C) [I] (𝑑) =
⊕
𝜎

𝐻2𝑑 (ShG̃𝐵 ,K̃, Ṽ𝜌,C) [Π
𝜎] (𝑑),

where 𝜎 ranges over a set of automorphisms of C/Q such that the Π𝜎 are the distinct conjugates of Π.
Since Ṽ𝜌 is defined over Q(𝑘), we may consider the Q(𝑘)-Hodge structure

𝐻2𝑑 (ShG̃𝐵 ,K̃, Ṽ𝜌) [I] (𝑑) ⊂ 𝐻2𝑑 (ShG̃𝐵 ,K̃, Ṽ𝜌,C) [I] (𝑑).

Now, 𝜉𝜏 ∈ 𝐻2𝑑 (ShG̃𝐵 ,K̃, Ṽ𝜌,C) [I] and ResC (𝜉𝜏 (𝑑)) is an isomorphism; hence, there exists an element
Ξ𝜏 ∈ 𝐻2𝑑 (ShG̃𝐵 ,K̃, Ṽ𝜌) [I] such that Res(Ξ𝜏 (𝑑)) is an isomorphism. Indeed, if we pick a Q(𝑘)-basis
(𝑥1, . . . , 𝑥𝑟 ) for 𝐻2𝑑 (ShG̃𝐵 ,K̃, Ṽ𝜌) [I], then this is also a C-basis for 𝐻2𝑑 (ShG̃𝐵 ,K̃, Ṽ𝜌,C) [I]. Expanding
𝜉𝜏 in this basis:

𝜉𝜏 = 𝑎1𝑥1 + · · · + 𝑎𝑟𝑥𝑟

we see that the (𝑎1, . . . , 𝑎𝑟 ) ∈ C𝑟 satisfies det(𝐼∑
𝑖 𝑎𝑖 𝑥𝑖 (𝑑)) ≠ 0. Since this is a polynomial function in

the 𝑎𝑖 , it follows that there exist 𝑏𝑖 ∈ Q(𝑘) with det(𝐼∑
𝑖 𝑏𝑖 𝑥𝑖 (𝑑)) ≠ 0. Taking Ξ𝜏 =

∑
𝑖 𝑏𝑖𝑥𝑖 , we see

that Res(Ξ𝜏 (𝑑)) is an isomorphism. By a similar argument using a determinant, we can replace the
class 𝑐𝜂 in the original construction by some Q-linear combination c of the fundamental classes of the
components of ShG̃𝐵

. (We note that since the action of Gal(Q/𝐹Σ) on the components of ShG̃𝐵
is trivial,

the class c is Gal(Q/𝐹Σ)-invariant.) The class Res(Ξ𝜏 (𝑑)) then has coefficients in L. (The only step
where the coefficients might be enlarged is the projection to the 𝜋1 � 𝜋2-component, and the coefficient
field L of 𝜋 contains Q(𝑘).) By Corollary 11.7, the class Ξ𝜏 (𝑑) is a Q(𝑘)-rational Hodge class; hence,
𝜉0 := Res(Ξ𝜏 (𝑑)) is an L-rational Hodge class. Assuming Kottwitz’s conjecture, by Proposition 11.8,
the action of Gal(Q/𝐹Σ) on Ξ𝜏 (𝑑) is trivial and so the same is true for 𝜉0. �

A. Splittings

A.1. Setup

Let F be a number field and B a quaternion division algebra over F. Let E be a quadratic extension of
F which embeds into B. Let ∗ be the main involution on B and 𝜌 the nontrivial Galois automorphism
of E over F. We write 𝐸 = 𝐹 + 𝐹i and 𝐵 = 𝐸 + 𝐸j for some trace zero elements i ∈ 𝐸× and j ∈ 𝐵×.
Let pr : 𝐵 → 𝐸 be the associated projection. Put 𝑢 = i2 ∈ 𝐹× and 𝐽 = j2 ∈ 𝐹×. Fix a nontrivial
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additive character 𝜓 ofA/𝐹 and a character 𝜒 ofA×𝐸/𝐸
× such that 𝜒 |A× = 𝜉𝐸 , where 𝜉𝐸 is the quadratic

character of A×/𝐹× associated to 𝐸/𝐹 by class field theory.
We consider an m-dimensional right B-space V equipped with a skew-Hermitian form 〈·, ·〉 : 𝑉×𝑉 →

𝐵 given by

〈𝑒1𝑥1 + · · · + 𝑒𝑚𝑥𝑚, 𝑒1𝑦1 + · · · + 𝑒𝑚𝑦𝑚〉 = 𝑥∗1 · 𝜅1i · 𝑦1 + · · · + 𝑥∗𝑚 · 𝜅𝑚i · 𝑦𝑚 (A.1)

for some basis 𝑒1, . . . , 𝑒𝑚 of V and some 𝜅1, . . . , 𝜅𝑚 ∈ 𝐹×. We denote by GU(𝑉) the unitary similitude
group of V and by 𝜈 : GU(𝑉) → 𝐹× the similitude character

GU(𝑉) = {𝑔 ∈ GL(𝑉) | 〈𝑔𝑣, 𝑔𝑣′〉 = 𝜈(𝑔) · 〈𝑣, 𝑣′〉 for all 𝑣, 𝑣′ ∈ 𝑉},

where GL(𝑉) acts on V on the left. We have a natural embedding

𝐸× ↩→ GU(𝑉),

where we may regard 𝛼 ∈ 𝐸× as an element in GU(𝑉) given by 𝑒𝑖 ↦→ 𝑒𝑖𝛼 for all i.
Let 𝑊 = 𝐵 be a left B-space equipped with a Hermitian form 〈·, ·〉 : 𝑊 ×𝑊 → 𝐵 given by

〈𝑥, 𝑦〉 = 𝑥 · 𝑦∗.

We denote by GU(𝑊) the unitary similitude group of W and by 𝜈 : GU(𝑊) → 𝐹× the similitude
character

GU(𝑊) = {ℎ ∈ GL(𝑊) | 〈𝑤ℎ, 𝑤′ℎ〉 = 𝜈(ℎ) · 〈𝑤, 𝑤′〉 for all 𝑤, 𝑤′ ∈ 𝑊},

where GL(𝑊) acts on W on the right. Then we have GU(𝑊) � 𝐵×.
Let V = 𝑉 ⊗𝐵 𝑊 be a 4𝑚-dimensional F-space equipped with a symplectic form

〈〈·, ·〉〉 :=
1
2

tr𝐵/𝐹 (〈·, ·〉 ⊗ 〈·, ·〉∗) .

Then we have a natural homomorphism

G(U(𝑉) × U(𝑊)) −→ Sp(V), (A.2)

where

G(U(𝑉) × U(𝑊)) = {(𝑔, ℎ) ∈ GU(𝑉) × GU(𝑊) | 𝜈(𝑔) = 𝜈(ℎ)}

and GL(𝑉) × GL(𝑊) acts on V on the right:

(𝑣 ⊗ 𝑤) · (𝑔, ℎ) := 𝑔−1𝑣 ⊗ 𝑤ℎ.

Let G be a subgroup of G(U(𝑉) × U(𝑊)) defined by

G = {(𝑔, ℎ) ∈ GU(𝑉)0 × GU(𝑊) | 𝜈(𝑔) = 𝜈(ℎ) ∈ N𝐸/𝐹 (𝐸×)}.

We take a complete polarization V = X ⊕ Y defined by

X = 𝐹 · 𝑒1 ⊗ 1 + · · · + 𝐹 · 𝑒𝑚 ⊗ 1 + 𝐹 · 𝑒1 ⊗ j + · · · + 𝐹 · 𝑒𝑚 ⊗ j,
Y = 𝐹 · 𝑒1 ⊗ i + · · · + 𝐹 · 𝑒𝑚 ⊗ i + 𝐹 · 𝑒1 ⊗ ij + · · · + 𝐹 · 𝑒𝑚 ⊗ ij.
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A.2. Splitting over G
For each place v of F, let Mp(V𝑣 ) be the metaplectic group over 𝐹𝑣 :

1 −→ C1 −→ Mp(V𝑣 ) −→ Sp(V𝑣 ) −→ 1.

Then Mp(V𝑣 ) can be realized by a 2-cocycle 𝑧Y𝑣 relative toY𝑣 and 𝜓𝑣 (see, e.g., [58], [30, §3.2.2]). For
almost all v, there exists a map 𝑠Y𝑣 : 𝐾𝑣 → C1, where 𝐾𝑣 is the standard maximal compact subgroup
of Sp(V𝑣 ), such that

𝑧Y𝑣 (𝑘1, 𝑘2) =
𝑠Y𝑣 (𝑘1𝑘2)

𝑠Y𝑣 (𝑘1)𝑠Y𝑣 (𝑘2)

for 𝑘1, 𝑘2 ∈ 𝐾𝑣 (see, e.g., [30, §3.2.3]).

Proposition A.1. For all v, there exists a map 𝑠𝑣 : G𝑣 → C1 satisfying the following conditions:

(i) For g1, g2 ∈ G𝑣 , we have

𝑧Y𝑣 (g1, g2) =
𝑠𝑣 (g1g2)

𝑠𝑣 (g1)𝑠(g2)
.

Here, by abuse of notation, we write g𝑖 on the left-hand side for the image of g𝑖 in Sp(V𝑣 ) under
equation (A.2).

(ii) For z = (𝑧, 𝑧) with 𝑧 ∈ 𝐹×𝑣 and g ∈ G𝑣 , we have

𝑠𝑣 (zg) = 𝜉𝐸𝑣 (𝑧)𝑚 · 𝑠𝑣 (g).

(iii) For almost all v, we have

𝑠𝑣 |G𝑣∩𝐾𝑣 = 𝑠Y𝑣 |G𝑣∩𝐾𝑣 .

(iv) For 𝛾 ∈ G (𝐹), we have ∏
𝑣

𝑠𝑣 (𝛾) = 1.

As in [30, §3.3], Proposition A.1 enable us to define a Weil representation 𝜔𝜓 of G (A) on the
Schwartz space S (X(A)). Moreover, for any 𝜑 ∈ S (X(A)), the associated theta function

Θ𝜑 (g) :=
∑
𝑥∈X

𝜔𝜓 (g)𝜑(𝑥)

on G (A) is left G (𝐹)-invariant.

Remark A.2. Suppose that V is the three-dimensional skew-Hermitian right B-space as in §5.2. Then
V satisfies the condition (A.1) and we may apply the above construction. Note that 𝜈(GU(𝑉𝑣 )0) =
N𝐸𝑣/𝐹𝑣 (𝐸×𝑣 ) for all v so that

G (A) = G(U(𝑉) × U(𝑊))0(A).

The proof of Proposition A.1 will be given in §A.3–§A.6 below. From now on, we fix a place v of F
and suppress the subscript v from the notation.
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A.3. The doubling method for U(𝑽)

We consider the doubled space 𝑉� = 𝑉 ⊕ 𝑉 equipped with a skew-Hermitian form:

〈(𝑣1, 𝑣2), (𝑣′1, 𝑣
′
2)〉 := 〈𝑣1, 𝑣

′
1〉 − 〈𝑣2, 𝑣

′
2〉.

Then we have a natural embedding

𝜄 : G(U(𝑉) × U(𝑉)) −→ GU(𝑉�).

If V� = V ⊕ V is the doubled space equipped with a symplectic form defined similarly as above, then
we have a natural embedding

𝜄 : Sp(V) × Sp(V) −→ Sp(V�)

and an identification

V� = 𝑉� ⊗𝐵 𝑊.

We take a complete polarization V� = V� ⊕ V� defined by

V� = {(𝑥,−𝑥) | 𝑥 ∈ V}, V� = {(𝑥, 𝑥) | 𝑥 ∈ V}.

Under the above identification, we have

V� = 𝑉 � ⊗𝐵 𝑊, V� = 𝑉 � ⊗𝐵 𝑊,

where 𝑉� = 𝑉 � ⊕ 𝑉 � is the complete polarization over B defined similarly as above.
Now, we recall Kudla’s splitting over U(𝑉�), where we regard U(𝑉�) as a subgroup of Sp(V�) via

the natural embedding. As in [30, §C.3], we regard 𝑉� as a left B-space and let GL(𝑉�) act on 𝑉� on
the right:

𝑥 · 𝑣 := 𝑣 · 𝑥∗, 𝑥 ∈ 𝐵,
𝑣 · 𝑔 := 𝑔−1 · 𝑣, 𝑔 ∈ GL(𝑉�).

Similarly, we regard W as a right B-space and let GL(𝑊) act on W on the left. Then we have an
identification

V� = 𝑊 ⊗𝐵 𝑉�.

Put

v𝑖 =
1

2𝜅𝑖i
· (𝑒𝑖 ,−𝑒𝑖), v∗𝑖 = (𝑒𝑖 , 𝑒𝑖)

so that 〈v𝑖 , v∗𝑗〉 = 𝛿𝑖 𝑗 . Using a basis v1, . . . , v𝑚, v∗1, . . . , v
∗
𝑚 of 𝑉�, we identify U(𝑉�) with{

𝑔 ∈ GL2𝑚(𝐵)
!!!! 𝑔 (

1𝑚
−1𝑚

)
𝑡𝑔∗ =

(
1𝑚

−1𝑚

) }
.

Let 𝑃𝑉 � be the maximal parabolic subgroup of U(𝑉�) stabilizing 𝑉 �:

𝑃𝑉 � =

{ (
𝑎 ∗
(𝑡𝑎∗)−1

) !!!! 𝑎 ∈ GL𝑚(𝐵)
}
.
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We define a map

𝑠1 : U(𝑉�) −→ C1

as follows:
• If B is split, then we set

𝑠1(𝑔) = 1

for 𝑔 ∈ U(𝑉�).
• If B is ramified, then we set

𝑠1(𝑔) = (−1) 𝑗

for 𝑔 ∈ 𝑃𝑉 �𝜏𝑗𝑃𝑉 � with

𝜏𝑗 =
�����
1𝑚− 𝑗

−1 𝑗

1𝑚− 𝑗
1 𝑗

����� .
By [40, Theorem 3.1, cases 1−and 2+], we have

𝑧V� (𝑔1, 𝑔2) =
𝑠1(𝑔1𝑔2)

𝑠1(𝑔1)𝑠1(𝑔2)
(A.3)

for 𝑔1, 𝑔2 ∈ U(𝑉�).
Lemma A.3. For 𝛼 ∈ 𝐸× and 𝑔 ∈ U(𝑉�), we have

𝑠1(𝛼𝑔𝛼−1) = 𝑠1(𝑔).

Proof. Since 𝛼𝑝𝛼−1 ∈ 𝑃𝑉 � for 𝑝 ∈ 𝑃𝑉 � and 𝛼𝜏𝑗𝛼
−1 = 𝜏𝑗 , the assertion follows. �

Lemma A.4. Let 𝛼 ∈ 𝐸1. Then we have

𝑠1(𝜄(𝛼, 1)) = 1

if B is split, and

𝑠1(𝜄(𝛼, 1)) =
{

1 if 𝛼 = 1,
(−1)𝑚 if 𝛼 ≠ 1

if B is ramified.
Proof. We may assume that B is ramified and 𝛼 ≠ 1. Then we have[

v𝑖 · 𝜄(𝛼, 1)
v∗𝑖 · 𝜄(𝛼, 1)

]
= 𝐴 ·

[
v𝑖
v∗𝑖

]
,
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where

𝐴 =

( 1
2 (𝛼 + 1) 1

4𝜅𝑖 i (𝛼 − 1)
𝜅𝑖i(𝛼 − 1) 1

2 (𝛼 + 1)

)
=

(
− 1
𝜅𝑖 i(𝛼𝜌−1)

1
2 (𝛼 + 1)
𝜅𝑖i(𝛼 − 1)

)
·
(
−1

1

)
·
(
1 𝛼+1

2𝜅𝑖 i(𝛼−1)
1

)
.

This implies the assertion. �

A.4. The doubling method for U(W)

We consider a two-dimensional left E-space W = 𝐵 equipped with a skew-Hermitian form

(𝑥, 𝑦) = −i · pr(𝑥 · 𝑦∗).

Then we have a natural embedding

GU(𝑊) ↩→ GU(W)

and an isomorphism GU(W) � (𝐵× × 𝐸×)/𝐹×, where 𝐵× × 𝐸× acts on W by

𝑥 · (ℎ, 𝛼) = 𝛼−1 · 𝑥 · ℎ.

We write [ℎ, 𝛼] for the image of (ℎ, 𝛼) in GU(W). Also, we consider the doubled space W� = W ⊕W
equipped with a skew-Hermitian form

((𝑤1, 𝑤2), (𝑤′1, 𝑤
′
2)) := (𝑤1, 𝑤

′
1) − (𝑤2, 𝑤

′
2).

Then we have a natural embedding

𝜄 : G(U(W) × U(W)) −→ GU(W�).

Let V = 𝑒1𝐸 + · · · + 𝑒𝑚𝐸 be an m-dimensional right E-space equipped with a Hermitian form

(𝑒1𝑥1 + · · · + 𝑒𝑚𝑥𝑚, 𝑒1𝑦1 + · · · + 𝑒𝑚𝑦𝑚) = 𝑥
𝜌
1 · 𝜅1 · 𝑦1 + · · · + 𝑥𝜌𝑚 · 𝜅𝑚 · 𝑦𝑚.

Let 𝑓 : V ⊗𝐸 W→ 𝑉 ⊗𝐵 𝑊 be the natural isomorphism. Then we have

𝑓 (𝑣 ⊗ (𝑤 · [ℎ, 𝛼])) = 𝑓 (𝑣 ⊗ 𝑤) · (𝛼, ℎ) (A.4)

for ℎ ∈ 𝐵× and 𝛼 ∈ 𝐸×, and

〈〈·, ·〉〉 ◦ ( 𝑓 × 𝑓 ) = 1
2

tr𝐸/𝐹 ((·, ·) ⊗ (·, ·)𝜌).

Hence, we may identify V ⊗𝐸 W with V and omit f from the notation. Similarly, we identify V ⊗𝐸 W�

with V�.
Now, we recall Kudla’s splitting over U(W�), where we regard U(W�) as a subgroup of Sp(V�) via

the natural embedding. We take a complete polarization W� = W� ⊕W� over E defined by

W� = {(𝑤,−𝑤) | 𝑤 ∈W}, W� = {(𝑤, 𝑤) | 𝑤 ∈W}.

Put

w1 = − 1
2i · (1,−1), w2 =

1
2𝐽i · (j,−j), w∗1 = (1, 1), w∗2 = (j, j)
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so that (w𝑖 ,w∗𝑗 ) = 𝛿𝑖 𝑗 . Using a basis w1,w2,w∗1,w
∗
2 of W�, we identify U(W�) with{

ℎ ∈ GL4 (𝐸)
!!!! ℎ (

12
−12

)
𝑡ℎ𝜌 =

(
12

−12

) }
.

Let 𝑃W� be the maximal parabolic subgroup of U(W�) stabilizing W�:

𝑃W� =

{ (
𝑎 ∗
(𝑡𝑎𝜌)−1

) !!!! 𝑎 ∈ GL2 (𝐸)
}
.

We define a map

𝑠2 : U(W�) −→ C1

by setting

𝑠2(ℎ) = 𝜒(𝑥(ℎ))𝑚 · 𝛾− 𝑗

for ℎ = 𝑝1𝜏𝑗 𝑝2 with

𝑝𝑖 =

(
𝑎𝑖 ∗
(𝑡𝑎𝜌𝑖 )

−1

)
∈ 𝑃W� , 𝜏𝑗 =

�����
12− 𝑗

−1 𝑗

12− 𝑗
1 𝑗

����� ,
where

𝑥(ℎ) = det(𝑎1𝑎2) mod N𝐸/𝐹 (𝐸×)

and

𝛾 = (𝑢, det V)𝐹 · 𝛾𝐹 (−𝑢, 1
2𝜓)

𝑚 · 𝛾𝐹 (−1, 1
2𝜓)

−𝑚.

Here, (·, ·)𝐹 is the quadratic Hilbert symbol of F and 𝛾𝐹 (·, 1
2𝜓) is the Weil index as in [58, Appendix],

[30, §3.1.1]. By [40, Theorem 3.1, cases 3+], we have

𝑧V� (ℎ1, ℎ2) =
𝑠2(ℎ1ℎ2)

𝑠2(ℎ1)𝑠2(ℎ2)
(A.5)

for ℎ1, ℎ2 ∈ U(W�).

Lemma A.5. For 𝛼 ∈ 𝐸× and ℎ ∈ U(W�), we have

𝑠2(𝜄([𝛼, 1], [𝛼, 1]) · ℎ · 𝜄([𝛼, 1], [𝛼, 1])−1) = 𝑠2(ℎ).

Proof. Put ℎ𝛼 = 𝜄([𝛼, 1], [𝛼, 1]). Since⎡⎢⎢⎢⎢⎢⎢⎣
w1 · ℎ𝛼
w2 · ℎ𝛼
w∗1 · ℎ𝛼
w∗2 · ℎ𝛼

⎤⎥⎥⎥⎥⎥⎥⎦ =
�����
𝛼
𝛼𝜌

𝛼
𝛼𝜌

����� ·
⎡⎢⎢⎢⎢⎢⎢⎣
w1
w2
w∗1
w∗2

⎤⎥⎥⎥⎥⎥⎥⎦ ,
we have 𝑥(ℎ𝛼𝑝ℎ−1

𝛼 ) = 𝑥(𝑝) for 𝑝 ∈ 𝑃W� and ℎ𝛼𝜏𝑗ℎ
−1
𝛼 = 𝜏𝑗 . Hence, the assertion follows. �
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Lemma A.6. For 𝛼 ∈ 𝐸×, we have

𝑠2(𝜄([𝛼, 𝛼], [𝛼, 𝛼])) = 𝜒(𝛼)−2𝑚.

Proof. Put ℎ𝛼 = 𝜄([𝛼, 𝛼], [𝛼, 𝛼]). Since⎡⎢⎢⎢⎢⎢⎢⎣
w1 · ℎ𝛼
w2 · ℎ𝛼
w∗1 · ℎ𝛼
w∗2 · ℎ𝛼

⎤⎥⎥⎥⎥⎥⎥⎦ =
�����
1
𝛼−1𝛼𝜌

1
𝛼−1𝛼𝜌

����� ·
⎡⎢⎢⎢⎢⎢⎢⎣
w1
w2
w∗1
w∗2

⎤⎥⎥⎥⎥⎥⎥⎦
and 𝜒(𝛼𝜌) = 𝜒(𝛼)−1, the assertion follows. �

Lemma A.7. Let 𝛼 ∈ 𝐸1. Then we have

𝑠2(𝜄([1, 𝛼], 1)) = 𝜒(𝛼)−𝑚

if B is split, and

𝑠2(𝜄([1, 𝛼], 1)) = 𝜒(𝛼)−𝑚 ×
{

1 if 𝛼 = 1,
(−1)𝑚 if 𝛼 ≠ 1

if B is ramified.

Proof. We may assume that 𝛼 ≠ 1. Then we have tr𝐸/𝐹 (𝛼) ≠ 2 and hence 𝛼 − 1 ∈ 𝐸×. As in the proof
of Lemma A.4, we have ⎡⎢⎢⎢⎢⎢⎢⎣

w1 · 𝜄([1, 𝛼], 1)
w2 · 𝜄([1, 𝛼], 1)
w∗1 · 𝜄([1, 𝛼], 1)
w∗2 · 𝜄([1, 𝛼], 1)

⎤⎥⎥⎥⎥⎥⎥⎦ = 𝐴 ·

⎡⎢⎢⎢⎢⎢⎢⎣
w1
w2
w∗1
w∗2

⎤⎥⎥⎥⎥⎥⎥⎦ ,
where

𝐴 =
�����

1
2 (𝛼

−1 + 1) − 1
4i (𝛼

−1 − 1)
1
2 (𝛼

−1 + 1) 1
4𝐽 i (𝛼

−1 − 1)
−i(𝛼−1 − 1) 1

2 (𝛼
−1 + 1)

𝐽i(𝛼−1 − 1) 1
2 (𝛼

−1 + 1)

�����
=
�����

1
i(𝛼−1) ∗

− 1
𝐽 i(𝛼−1) ∗

−i(𝛼𝜌 − 1)
𝐽i(𝛼𝜌 − 1)

����� · 𝜏2 ·
�����
1 ∗

1 ∗
1

1

����� .
Hence, we have

𝑥(𝜄([1, 𝛼], 1)) = − 1
𝑢𝐽 (𝛼 − 1)2

≡ 𝐽

(𝛼 − 1)2
≡ − 𝐽

𝛼
mod N𝐸/𝐹 (𝐸×)

so that

𝜒(𝑥(𝜄([1, 𝛼], 1))) = 𝜒(𝛼)−1 · 𝜉𝐸 (−𝐽)

= 𝜒(𝛼)−1 · 𝜉𝐸 (−1) ×
{

1 if 𝐵 is split,
−1 if 𝐵 is ramified.
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Also, we have

𝛾2 = (−1,−𝑢)𝑚𝐹 · (−1,−1)𝑚𝐹 = (−1, 𝑢)𝑚𝐹 = 𝜉𝐸 (−1)𝑚.

This implies the assertion. �

A.5. Splitting over G♯

Let G♯ be a subgroup of GU(𝑉) × GU(𝑊) × GU(𝑉) × GU(𝑊) defined by

G♯ = {(𝑔, ℎ, 𝛼, 𝛼) ∈ GU(𝑉)0 × GU(𝑊) × 𝐸× × 𝐸× | 𝜈(𝑔) = 𝜈(ℎ) = N𝐸/𝐹 (𝛼)}.

Then we have a natural homomorphism

G♯ ⊂ G(U(𝑉) × U(𝑊)) × G(U(𝑉) × U(𝑊)) −→ Sp(V) × Sp(V) ⊂ Sp(V�). (A.6)

We define a map

𝑠♯ : G♯ −→ C1

by setting

𝑠♯ (𝑔, ℎ, 𝛼, 𝛼) = 𝜒(𝛼)−𝑚 · 𝑠1(𝜄(𝑔𝛼−1, 1)) · 𝑠2(𝜄(ℎ𝛼−1, 1)) · 𝑧V� (𝜄(𝑔𝛼−1, 1), 𝜄(ℎ𝛼−1, 1)).

Lemma A.8. For g1, g2 ∈ G♯, we have

𝑧V� (g1, g2) =
𝑠♯ (g1g2)

𝑠♯ (g1)𝑠♯ (g2)
.

Here, by abuse of notation, we write g𝑖 on the left-hand side for the image of g𝑖 in Sp(V�) under
equation (A.6).
Proof. Write g𝑖 = (𝑔𝑖 , ℎ𝑖 , 𝛼𝑖 , 𝛼𝑖). If 𝛼1 = 𝛼2 = 1, then the assertion follows from equations (A.3)
and (A.5) and [51, Chapitre 2, II.5]. If 𝛼1 and 𝛼2 are arbitrary, put h𝑖 = (𝑔𝑖𝛼−1

𝑖 , ℎ𝑖𝛼
−1
𝑖 , 1, 1) and

𝜶𝑖 = (𝛼𝑖 , 𝛼𝑖 , 𝛼𝑖 , 𝛼𝑖). Let 𝑃V� be the maximal parabolic subgroup of Sp(V�) stabilizing V�. Then it
follows from [58, Theorem 4.1] that

𝑧V� (𝑝1𝜎𝑝, 𝑝
−1𝜎′𝑝2) = 𝑧V� (𝜎, 𝜎′) (A.7)

for 𝑝1, 𝑝2, 𝑝 ∈ 𝑃V� and 𝜎, 𝜎′ ∈ Sp(V�) (see also [30, §3.1.1]). Since g1g2 = h1 · 𝜶1h2𝜶
−1
1 · 𝜶1𝜶2 and

the image of 𝜶𝑖 in Sp(V�) belongs to 𝑃V� , we have

𝑧V� (g1, g2) = 𝑧V� (h1,𝜶1h2𝜶
−1
1 ) =

𝑠♯ (h1𝜶1h2𝜶
−1
1 )

𝑠♯ (h1)𝑠♯ (𝜶1h2𝜶−1
1 )

.

On the other hand, by definition, we have

𝑠♯ (g1g2)
𝑠♯ (g1)𝑠♯ (g2)

=
𝑠♯ (g1g2 (𝜶1𝜶2)−1)
𝑠♯ (g1𝜶−1

1 )𝑠♯ (g2𝜶−1
2 )

=
𝑠♯ (h1𝜶1h2𝜶

−1
1 )

𝑠♯ (h1)𝑠♯ (h2)
.

It follows from Lemmas A.3 and A.5, combined with equation (A.7), that

𝑠♯ (𝜶1h2𝜶
−1
1 ) = 𝑠♯ (h2).

This completes the proof. �

https://doi.org/10.1017/fmp.2023.20 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.20


108 A. Ichino and K. Prasanna

Lemma A.9. For 𝛼 ∈ 𝐸1, we have

𝑠♯ (1, 1, 𝛼, 𝛼) = 𝑠2(𝜄(1, [𝛼, 𝛼])).

Proof. Put

𝑔𝛼 = 𝜄(𝛼, 1) ∈ U(𝑉�),
ℎ𝛼 = 𝜄([𝛼, 1], 1) ∈ U(W�),
𝑘𝛼 = 𝜄([1, 𝛼], 1) ∈ U(W�),
𝑚𝛼 = 𝜄([𝛼, 𝛼], [𝛼, 𝛼]) ∈ U(W�).

By definition, we have

𝑠♯ (1, 1, 𝛼, 𝛼) = 𝜒(𝛼)−𝑚 · 𝑠1(𝑔−1
𝛼 ) · 𝑠2(ℎ−1

𝛼 ) · 𝑧V� (𝑔−1
𝛼 , ℎ−1

𝛼 ).

Since 𝑚𝛼 = ℎ𝛼 · 𝑘𝛼 · 𝜄(1, [𝛼, 𝛼]) and the image of 𝑚𝛼 in Sp(V�) belongs to 𝑃V� , it follows from
equations (A.5) and (A.7) and Lemma A.6 that

𝑠2(𝜄(1, [𝛼, 𝛼])) = 𝑠2(𝑘−1
𝛼 ℎ−1

𝛼 ) · 𝑠2(𝑚𝛼) · 𝑧V� (𝑘−1
𝛼 ℎ−1

𝛼 , 𝑚𝛼)
= 𝑠2(𝑘−1

𝛼 ℎ−1
𝛼 ) · 𝜒(𝛼)−2𝑚

= 𝜒(𝛼)−2𝑚 · 𝑠2(𝑘−1
𝛼 ) · 𝑠2(ℎ−1

𝛼 ) · 𝑧V� (𝑘−1
𝛼 , ℎ−1

𝛼 ).

By Lemmas A.4 and A.7, we have

𝑠2(𝑘−1
𝛼 ) = 𝜒(𝛼)𝑚 · 𝑠1(𝑔−1

𝛼 ).

By equation (A.4), the image of 𝑘𝛼 in Sp(V�) agrees with that of 𝑔𝛼 so that

𝑧V� (𝑘−1
𝛼 , ℎ−1

𝛼 ) = 𝑧V� (𝑔−1
𝛼 , ℎ−1

𝛼 ).

This completes the proof. �

A.6. Proof of Proposition A.1

Now, we take a complete polarization V� = X� ⊕ Y� defined by

X� = X ⊕ X, Y� = Y ⊕ Y.

As in [30, §D.3], we have

𝑧Y� (𝜄(𝜎1, 𝜎2), 𝜄(𝜎′1, 𝜎
′
2)) = 𝑧Y(𝜎1, 𝜎

′
1) · 𝑧Y(𝜎2, 𝜎

′
2)
−1

for 𝜎𝑖 , 𝜎′𝑖 ∈ Sp(V). Fix 𝜎0 ∈ Sp(V�) such that V� = X� · 𝜎0 and V� = Y� · 𝜎0. Put

𝜇(𝜎) = 𝑧Y� (𝜎0, 𝜎)−1 · 𝑧Y� (𝜎0𝜎𝜎
−1
0 , 𝜎0)

for 𝜎 ∈ Sp(V�). Note that 𝜇 does not depend on the choice of 𝜎0. Then, by [40, Lemma 4.2], we have

𝑧Y� (𝜎, 𝜎′) = 𝑧V� (𝜎, 𝜎′) ·
𝜇(𝜎𝜎′)

𝜇(𝜎)𝜇(𝜎′) (A.8)

for 𝜎, 𝜎′ ∈ Sp(V�).
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Put 𝑠♯ = 𝑠♯ · 𝜇 and 𝑠2 = 𝑠2 · 𝜇. By Lemma A.8 and equation (A.5), we have

𝑧Y� (g1, g2) =
𝑠♯ (g1g2)

𝑠♯ (g1)𝑠♯ (g2)

for g1, g2 ∈ G♯ and

𝑧Y� (ℎ1, ℎ2) =
𝑠2(ℎ1ℎ2)

𝑠2(ℎ1)𝑠2(ℎ2)

for ℎ1, ℎ2 ∈ U(W�). We define a map

𝑠 : G −→ C1

by setting

𝑠(𝑔, ℎ) = 𝑠♯ (𝑔, ℎ, 𝛼, 𝛼)
𝑠2(𝜄(1, [𝛼, 𝛼]))

,

where we choose 𝛼 ∈ 𝐸× such that 𝜈(𝑔) = 𝜈(ℎ) = N𝐸/𝐹 (𝛼).
Lemma A.10. The map s is well defined, that is, for (𝑔, ℎ, 𝛼, 𝛼) ∈ G♯ and 𝛽 ∈ 𝐸1, we have

𝑠♯ (𝑔, ℎ, 𝛼𝛽, 𝛼𝛽)
𝑠2(𝜄(1, [𝛼𝛽, 𝛼𝛽]))

=
𝑠♯ (𝑔, ℎ, 𝛼, 𝛼)
𝑠2(𝜄(1, [𝛼, 𝛼]))

.

Proof. First, note that, by equation (A.4), the image of (𝛼, 𝛼) ∈ G(U(𝑉) ×U(𝑊)) in Sp(V) agrees with
that of [𝛼, 𝛼] ∈ U(W). We have

𝑠♯ (𝑔, ℎ, 𝛼𝛽, 𝛼𝛽) = 𝑠♯ (𝑔, ℎ, 𝛼, 𝛼) · 𝑠♯ (1, 1, 𝛽, 𝛽) · 𝑧Y� ((𝑔, ℎ, 𝛼, 𝛼), (1, 1, 𝛽, 𝛽))
= 𝑠♯ (𝑔, ℎ, 𝛼, 𝛼) · 𝑠♯ (1, 1, 𝛽, 𝛽) · 𝑧Y((𝛼, 𝛼), (𝛽, 𝛽))−1

and

𝑠2(𝜄(1, [𝛼𝛽, 𝛼𝛽])) = 𝑠2(𝜄(1, [𝛼, 𝛼])) · 𝑠2(𝜄(1, [𝛽, 𝛽])) · 𝑧Y� (𝜄(1, [𝛼, 𝛼]), 𝜄(1, [𝛽, 𝛽]))
= 𝑠2(𝜄(1, [𝛼, 𝛼])) · 𝑠2(𝜄(1, [𝛽, 𝛽])) · 𝑧Y([𝛼, 𝛼], [𝛽, 𝛽])−1.

By Lemma A.9, we have

𝑠♯ (1, 1, 𝛽, 𝛽) = 𝑠2(𝜄(1, [𝛽, 𝛽])).

This implies the assertion. �

Lemma A.11. The map s satisfies the condition (i) of Proposition A.1, that is, for g1, g2 ∈ G, we have

𝑧Y(g1, g2) =
𝑠(g1g2)

𝑠(g1)𝑠(g2)
.

Proof. Write g𝑖 = (𝑔𝑖 , ℎ𝑖), and choose 𝛼𝑖 ∈ 𝐸× such that 𝜈(𝑔𝑖) = 𝜈(ℎ𝑖) = N𝐸/𝐹 (𝛼𝑖). Then we have

𝑠(g1g2)
𝑠(g1)𝑠(g2)

=
𝑠♯ (𝑔1𝑔2, ℎ1ℎ2, 𝛼1𝛼2, 𝛼1𝛼2)

𝑠♯ (𝑔1, ℎ1, 𝛼1, 𝛼1)𝑠♯ (𝑔2, ℎ2, 𝛼2, 𝛼2)
· 𝑠2(𝜄(1, [𝛼1, 𝛼1]))𝑠2(𝜄(1, [𝛼2, 𝛼2]))

𝑠2(𝜄(1, [𝛼1𝛼2, 𝛼1𝛼2]))
= 𝑧Y� ((𝑔1, ℎ1, 𝛼1, 𝛼1), (𝑔2, ℎ2, 𝛼2, 𝛼2)) · 𝑧Y� (𝜄(1, [𝛼1, 𝛼1]), 𝜄(1, [𝛼2, 𝛼2]))−1

= 𝑧Y((𝑔1, ℎ1), (𝑔2, ℎ2)) · 𝑧Y((𝛼1, 𝛼1), (𝛼2, 𝛼2))−1 · 𝑧Y([𝛼1, 𝛼1], [𝛼2, 𝛼2])
= 𝑧Y((𝑔1, ℎ1), (𝑔2, ℎ2)).

This completes the proof. �
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By definition, the map s also satisfies the other conditions of Proposition A.1. This completes the
proof of Proposition A.1.

A.7. Independence of the choice of 𝝌

To define the map s, we have used the fixed character 𝜒 of 𝐸× such that 𝜒 |𝐹× = 𝜉𝐸 . However, we have:

Lemma A.12. The map s defined as above does not depend on the choice of 𝜒.

Proof. Let 𝜒1 and 𝜒2 be two characters of 𝐸× such that 𝜒1 |𝐹× = 𝜒2 |𝐹× = 𝜉𝐸 . We will write 𝑠 = 𝑠𝜒𝑖 , and so
on, to indicate the dependence on 𝜒𝑖 . For (𝑔, ℎ) ∈ G, choose 𝛼 ∈ 𝐸× such that 𝜈(𝑔) = 𝜈(ℎ) = N𝐸/𝐹 (𝛼).
Then, by definition, we have

𝑠𝜒1 (𝑔, ℎ)
𝑠𝜒2 (𝑔, ℎ)

=
𝑠♯𝜒1 (𝑔, ℎ, 𝛼, 𝛼)

𝑠♯𝜒2 (𝑔, ℎ, 𝛼, 𝛼)
·
𝑠2,𝜒2 (𝜄(1, [𝛼, 𝛼]))
𝑠2,𝜒1 (𝜄(1, [𝛼, 𝛼]))

=
𝑠♯𝜒1 (𝑔, ℎ, 𝛼, 𝛼)

𝑠♯𝜒2 (𝑔, ℎ, 𝛼, 𝛼)
·
𝑠2,𝜒2 (𝜄(1, [𝛼, 𝛼]))
𝑠2,𝜒1 (𝜄(1, [𝛼, 𝛼]))

= 𝜂(𝛼)−𝑚 ·
𝑠2,𝜒1 (𝜄(ℎ𝛼−1, 1))
𝑠2,𝜒2 (𝜄(ℎ𝛼−1, 1))

·
𝑠2,𝜒2 (𝜄(1, [𝛼, 𝛼]))
𝑠2,𝜒1 (𝜄(1, [𝛼, 𝛼]))

,

where 𝜂 = 𝜒1/𝜒2. On the other hand, for 𝑘 ∈ U(W�), we have

𝑠2,𝜒1 (𝑘)
𝑠2,𝜒2 (𝑘)

= 𝜂(𝑥(𝑘))𝑚 = 𝜂(det 𝑘)𝑚,

where 𝜂 is the character of 𝐸1 such that 𝜂(𝑥/𝑥𝜌) = 𝜂(𝑥) for 𝑥 ∈ 𝐸×. Since

det 𝜄(ℎ𝛼−1, 1) = 𝜈(ℎ)N𝐸/𝐹 (𝛼)−1 = 1,
det 𝜄(1, [𝛼, 𝛼]) = N𝐸/𝐹 (𝛼)𝛼−2 = 𝛼−1𝛼𝜌,

we have

𝑠𝜒1 (𝑔, ℎ)
𝑠𝜒2 (𝑔, ℎ)

= 𝜂(𝛼)−𝑚 · 𝜂(𝛼−1𝛼𝜌)−𝑚 = 1.

This completes the proof. �

A.8. Compatibility with seesaws

We write 𝑉 = 𝑉 ′ ⊕ 𝑉 ′′ as an orthogonal direct sum of skew-Hermitian right B-spaces

𝑉 ′ = 𝑒1𝐵 ⊕ · · · ⊕ 𝑒𝑚′𝐵, 𝑉 ′′ = 𝑒𝑚′+1𝐵 ⊕ · · · ⊕ 𝑒𝑚𝐵.

LetV′ = 𝑉 ′⊗𝐵𝑊 andV′′ = 𝑉 ′′⊗𝐵𝑊 be the symplectic F-spaces as in §A.1. Then we haveV = V′⊕V′′,
which gives rise to a seesaw diagram

GU(𝑉)







G(U(𝑊) × U(𝑊))

����
����

����
���

G(U(𝑉 ′) × U(𝑉 ′′)) GU(𝑊)

.
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Let G ′ and G ′′ be the subgroups of G(U(𝑉 ′) ×U(𝑊)) and G(U(𝑉 ′′) ×U(𝑊)), respectively, as in §A.1.
Put

G ′′′ = {(𝑔′, 𝑔′′, ℎ) ∈ GU(𝑉 ′)0 × GU(𝑉 ′′)0 × GU(𝑊) | 𝜈(𝑔′) = 𝜈(𝑔′′) = 𝜈(ℎ) ∈ N𝐸/𝐹 (𝐸×)}.

We regard G ′′′ as subgroups of G and G ′ × G ′′ via the above seesaw diagram. We take the complete
polarizations V′ = X′ ⊕ Y′ and V′′ = X′′ ⊕ Y′′ as in §A.1 so that

X = X′ ⊕ X′′, Y = Y′ ⊕ Y′′.

Let 𝑠′ : G ′ → C1 and 𝑠′′ : G ′′ → C1 be the maps trivializing 𝑧Y′ and 𝑧Y′′ , respectively, defined similarly
as above. Then, by construction, we have

𝑠 = 𝑠′ ⊗ 𝑠′′

on G ′′′.

A.9. Compatibility with [31]

In this section, we compare the splitting s with the standard one for unitary dual pairs when dim𝑉 = 1.
In this case, using the notation of §A.4, we have a seesaw diagram

𝐸× � GU(𝑉)0

���
���

���
� GU(W)

���
���

���
�

� (𝐵× × 𝐸×)/𝐹×

𝐸× � GU(V) GU(𝑊) � 𝐵×

.

We define a map

𝑠♮ : G(U(𝑉) × U(𝑊))0 −→ C1

by setting

𝑠♮ (𝛼, ℎ) = 𝑠2(𝜄([ℎ, 𝛼], 1))

for (𝛼, ℎ) ∈ G(U(𝑉) ×U(𝑊))0, where [ℎ, 𝛼] ∈ U(W) and 𝑠2 = 𝑠2 · 𝜇. Then 𝑠♮ trivializes 𝑧Y by equation
(A.4). This splitting will be used in [31].

Lemma A.13. We have

𝑠♮ (𝛼, ℎ) = 𝑠(𝛼, ℎ) · 𝜒(𝛼)−1.

Proof. Recall that

𝑠(𝛼, ℎ) = 𝑠♯ (𝛼, ℎ, 𝛼, 𝛼)
𝑠2(𝜄(1, [𝛼, 𝛼]))

.

We have

𝑠♯ (𝛼, ℎ, 𝛼, 𝛼) = 𝑠♯ (1, ℎ𝛼−1, 1, 1) · 𝑠♯ (𝛼, 𝛼, 𝛼, 𝛼) · 𝑧Y� ((1, ℎ𝛼−1, 1, 1), (𝛼, 𝛼, 𝛼, 𝛼))
= 𝑠♯ (1, ℎ𝛼−1, 1, 1) · 𝑠♯ (𝛼, 𝛼, 𝛼, 𝛼) · 𝑧Y((1, ℎ𝛼−1), (𝛼, 𝛼)).
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By definition and Lemma A.6, we have

𝑠♯ (1, ℎ𝛼−1, 1, 1) = 𝑠2(𝜄([ℎ𝛼−1, 1], 1))

and

𝑠♯ (𝛼, 𝛼, 𝛼, 𝛼) = 𝜒(𝛼) · 𝑠2(𝜄([𝛼, 𝛼], [𝛼, 𝛼]))
= 𝜒(𝛼) · 𝑠2(𝜄([𝛼, 𝛼], 1)) · 𝑠2(𝜄(1, [𝛼, 𝛼])) · 𝑧Y� (𝜄([𝛼, 𝛼], 1), 𝜄(1, [𝛼, 𝛼]))
= 𝜒(𝛼) · 𝑠2(𝜄([𝛼, 𝛼], 1)) · 𝑠2(𝜄(1, [𝛼, 𝛼])).

Hence, we have

𝑠(𝛼, ℎ) = 𝜒(𝛼) · 𝑠2(𝜄([ℎ𝛼−1, 1], 1)) · 𝑠2(𝜄([𝛼, 𝛼], 1)) · 𝑧Y([ℎ𝛼−1, 1], [𝛼, 𝛼])
= 𝜒(𝛼) · 𝑠2(𝜄([ℎ𝛼−1, 1], 1)) · 𝑠2(𝜄([𝛼, 𝛼], 1)) · 𝑧Y� (𝜄([ℎ𝛼−1, 1], 1), 𝜄([𝛼, 𝛼], 1))
= 𝜒(𝛼) · 𝑠2(𝜄([ℎ, 𝛼], 1)). �

A.10. Compatibility with [30]

In this section, we compare the splitting s with the one defined in [30, Appendix C]. Suppose again that
F is a number field. Let 𝑉 = 𝐵1 ⊗𝐸 𝐵2 be the two-dimensional skew-Hermitian right B-space as in [30,
§2.2], where 𝐵1 and 𝐵2 are quaternion algebras over F such that E embeds into 𝐵1 and 𝐵2, and such
that 𝐵1 · 𝐵2 = 𝐵 in the Brauer group. We write 𝐵𝑖 = 𝐸 + 𝐸j𝑖 for some trace zero element j𝑖 ∈ 𝐵×𝑖 and
put 𝐽𝑖 = j2

𝑖 ∈ 𝐹×. We may assume that

𝐽1 · 𝐽2 = 𝐽.

Then the skew-Hermitian form on V is given by equation (A.1) with

𝑒1 = 1 ⊗ 1, 𝜅1 = 1,
𝑒2 = j1 ⊗ 1, 𝜅2 = −𝐽1.

Recall the exact sequence

1 −→ 𝐹× −→ 𝐵×1 × 𝐵
×
2 −→ GU(𝑉)0 −→ 1,

where 𝐹× embeds into 𝐵×1 × 𝐵
×
2 by 𝑧 ↦→ (𝑧, 𝑧−1) and 𝐵×1 × 𝐵

×
2 acts on V on the left by

(𝑔1, 𝑔2) · (𝑥1 ⊗ 𝑥2) = 𝑔1𝑥1 ⊗ 𝑔2𝑥2.

We write [𝑔1, 𝑔2] for the image of (𝑔1, 𝑔2) in GU(𝑉)0. If we put

G̃ = {(𝑔1, 𝑔2, ℎ) ∈ 𝐵×1 × 𝐵
×
2 × 𝐵

× | 𝜈(𝑔1)𝜈(𝑔2) = 𝜈(ℎ) ∈ N𝐸/𝐹 (𝐸×)},

where 𝜈 denotes the reduced norm, then we have a natural surjective map G̃ � G. We take the complete
polarization V = X ⊕Y as in §A.1, which agrees with the one given in [30, §2.2]. For each place v of F,
let

𝑠𝑣 : GU(𝑉𝑣 )0 × GU(𝑊𝑣 ) −→ C1

be the map trivializing 𝑧Y𝑣 defined in [30, Appendix C]. Since both 𝑠𝑣 and 𝑠𝑣 trivialize 𝑧Y𝑣 , there exists
a continuous character 𝝌 of G (A) such that

𝑠𝑣 |G𝑣 = 𝑠𝑣 · 𝝌𝑣
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for all v. Since both 𝑠𝑣 and 𝑠𝑣 satisfy the product formula, 𝝌 is trivial on G (𝐹). We regard 𝝌 as a
character of G̃ (A).

Proposition A.14. Assume that

• F is totally real;
• E is totally imaginary;
• 𝐵1,𝑣 and 𝐵2,𝑣 are split for some real place v of F.

Then, for (𝑔1, 𝑔2, ℎ) ∈ G̃ (A), we have

𝝌(𝑔1, 𝑔2, ℎ) = 1.

Namely, we have

𝑠𝑣 |G𝑣 = 𝑠𝑣

for all v.

Proof. We define a homomorphism �̃� : G̃ (A) → A× by

�̃�(𝑔1, 𝑔2, ℎ) = 𝜈(𝑔1).

Then the image of �̃� consists of elements 𝑎 ∈ A× with 𝑎𝑣 > 0 for all infinite places v such that 𝐵1,𝑣 or
𝐵2,𝑣 or 𝐵𝑣 is ramified. Also, putting G̃ (1) = 𝐵 (1)1 × 𝐵

(1)
2 × 𝐵

(1) , we have

ker �̃� = G̃ (1) (A) · {(1, 𝛼, 𝛼) | 𝛼 ∈ A×𝐸 },
�̃�−1(N𝐸/𝐹 (A×𝐸 )) = ker �̃� · {(𝛼, 𝛼−1, 1) | 𝛼 ∈ A×𝐸 },

�̃�−1(𝐹×) = ker �̃� · G̃ (𝐹),

where we have used Eichler’s norm theorem in the last equality. Since �̃�−1(𝐹×N𝐸/𝐹 (A×𝐸 )) is the kernel
of 𝜉𝐸 ◦ �̃�, it is a subgroup of G̃ (A) of index 2 and does not contain any element (𝑔1,𝑣 , 𝑔2,𝑣 , ℎ𝑣 ) ∈ G̃𝑣
such that 𝜈(𝑔𝑖,𝑣 ) ∉ N𝐸𝑣/𝐹𝑣 (𝐸×𝑣 ).

Now, we show that 𝝌 is trivial. Since 𝝌 is automorphic, it is trivial on G̃ (1) (A). Moreover, in §A.11
below, we will prove the following:

• For 𝛼 ∈ A×𝐸 , we have

𝝌(1, 𝛼, 𝛼) = 1. (A.9)

• For 𝛼 ∈ A×𝐸 , we have

𝝌(𝛼, 𝛼−1, 1) = 1. (A.10)

• Let v be a real place of F such that 𝐵1,𝑣 and 𝐵2,𝑣 are split. Choose 𝑡𝑖,𝑣 ∈ 𝐹×𝑣 such that 𝐽𝑖 = 𝑡2𝑖,𝑣 . Then
we have

𝝌𝑣 (𝑡−1
1,𝑣 · j1, 𝑡

−1
2,𝑣 · j2, 1) = 1. (A.11)

Note that 𝜈(𝑡−1
𝑖,𝑣 · j𝑖) = −1 ∉ N𝐸𝑣/𝐹𝑣 (𝐸×𝑣 ).

This implies the assertion. �
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A.11. Computation of splittings

We retain the notation of §A.10. We fix a place v of F and suppress the subscript v from the notation.
Recall that 𝝌 is a continuous character of G̃ such that

𝝌(𝑔1, 𝑔2, ℎ) =
𝑠(𝑔1, 𝑔2, ℎ)
𝑠(𝑔1, 𝑔2, ℎ)

,

where we regard 𝑠 and s as maps on G̃. To compute 𝝌 explicitly, we need to introduce more notation.

A.11.1. Notation
We denote by GSp2𝑛 (𝐹) the symplectic similitude group and by 𝜈 : GSp2𝑛 (𝐹) → 𝐹× the similitude
character:

GSp2𝑛 (𝐹) =
{
𝜎 ∈ GL2𝑛 (𝐹)

!!!!𝜎 (
1𝑛

−1𝑛

)
𝑡𝜎 = 𝜈(𝜎) ·

(
1𝑛

−1𝑛

) }
.

Let Sp2𝑛 (𝐹) = ker 𝜈 be the symplectic group and P the standard maximal parabolic subgroup of
Sp2𝑛 (𝐹):

𝑃 = {m(a)n(b) | a ∈ GL𝑛 (𝐹), b ∈ Sym𝑛 (𝐹)},

where

m(a) =
(
a

𝑡a−1

)
, n(b) =

(
1𝑛 b

1𝑛

)
.

Put

𝑑 (𝜈) =
(
1𝑛

𝜈 · 1𝑛

)
, 𝜏𝑗 =

�����
1𝑛− 𝑗

−1 𝑗

1𝑛− 𝑗
1 𝑗

����� .
If 𝜎 = 𝑝1𝜏𝑗 𝑝2 ∈ Sp2𝑛 (𝐹) with 𝑝𝑖 = m(a𝑖)n(b𝑖) ∈ 𝑃, put

𝑥(𝜎) = det(a1a2) mod (𝐹×)2, 𝑗 (𝜎) = 𝑗 .

Note that

𝑥(𝑑 (𝜈) · 𝜎 · 𝑑 (𝜈)−1) = 𝜈 𝑗 (𝜎) · 𝑥(𝜎), 𝑗 (𝑑 (𝜈) · 𝜎 · 𝑑 (𝜈)−1) = 𝑗 (𝜎). (A.12)

We define a map

𝑣 : Sp2𝑛 (𝐹) × 𝐹× −→ C1

by setting

𝑣(𝜎, 𝜈) = (𝑥(𝜎), 𝜈)𝐹 · 𝛾𝐹 (𝜈, 1
2𝜓)

− 𝑗 (𝜎) ,

where (·, ·)𝐹 is the quadratic Hilbert symbol of F and 𝛾𝐹 (·, 1
2𝜓) is the Weil index as in [58, Appendix],

[30, §3.1.1]. Let z be the 2-cocycle on Sp2𝑛 (𝐹) realizing the metaplectic group (see e.g. [58], [30,
§3.2.2]). By [58, Theorem 4.1 and Corollary 4.2], we have:

• 𝑧(𝜎, 𝜎−1) = 1 for 𝜎 ∈ Sp2𝑛 (𝐹);
• 𝑧(𝑝1𝜎𝑝, 𝑝

−1𝜎′𝑝2) = 𝑧(𝜎, 𝜎′) for 𝑝1, 𝑝2, 𝑝 ∈ 𝑃 and 𝜎, 𝜎′ ∈ Sp2𝑛 (𝐹);
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• 𝑧(𝜏𝑖 , 𝜏𝑗 ) = 1;
• 𝑧(𝜏𝑛, n(b)𝜏𝑛) = 𝛾𝐹 ( 1

2𝜓)
𝑛 · 𝛾𝐹 (det b, 1

2𝜓) · ℎ𝐹 (b) for b ∈ Sym𝑛 (𝐹) ∩ GL𝑛 (𝐹), where ℎ𝐹 (b) is the
Hasse invariant of the nondegenerate symmetric bilinear form associated to b.

We may extend z to a 2-cocycle on GSp2𝑛 (𝐹) (see, e.g., [30, Appendix B]). Then, for 𝜎, 𝜎′ ∈ GSp2𝑛 (𝐹)
with 𝜈(𝜎) = 𝜈 and 𝜈(𝜎′) = 𝜈−1, we have

𝑧(𝜎, 𝜎′) = 𝑧(𝜎 · 𝑑 (𝜈)−1, 𝑑 (𝜈) · 𝜎′) · 𝑣(𝜎′ · 𝑑 (𝜈), 𝜈).

Recall that V = 𝑉 ⊗𝐵 𝑊 is an eight-dimensional symplectic F-space. Let e1, . . . , e4, e∗1, . . . , e
∗
4 be

the basis of V given in [30, §2.2]. Then we have

X = 𝐹e1 + · · · + 𝐹e4, Y = 𝐹e∗1 + · · · + 𝐹e∗4, 〈〈e𝑖 , e∗𝑗〉〉 = 𝛿𝑖 𝑗 .

Using this basis, we identify GSp(V) with GSp8(𝐹). Under this identification, we write 𝑃Y and 𝑧Y for
P and z, respectively. We refer to [30, §C.1] for an explicit description of the image of 𝐵×1 × 𝐵

×
2 × 𝐵

× in
GSp(V). Also, using a basis

(e1, 0), . . . , (e4, 0), (0, e1), . . . , (0, e4), (e∗1, 0), . . . , (e
∗
4, 0), (0,−e∗1), . . . , (0,−e∗4)

of V�, we identify GSp(V�) with GSp16(𝐹). For 1 ≤ 𝑖 ≤ 4, put

X𝑖 = 𝐹e𝑖 , X�𝑖 = X𝑖 ⊕ X𝑖 ,
Y𝑖 = 𝐹e∗𝑖 , Y�𝑖 = Y𝑖 ⊕ Y𝑖 ,
V𝑖 = X𝑖 ⊕ Y𝑖 , V�𝑖 = V𝑖 ⊕ V𝑖 .

Then we have a natural embedding

𝜄𝑖 : Sp(V�𝑖 ) −→ Sp(V�).

Using a basis (e𝑖 , 0), (0, e𝑖), (e∗𝑖 , 0), (0,−e∗𝑖 ) of V�𝑖 , we identify GSp(V�𝑖 ) with GSp4 (𝐹). Put

𝜎0 =
�����

1
2 14 − 1

2 14
1
2 14

1
2 14

14 −14
−14 −14

����� ∈ Sp(V�).

Then we have ⎡⎢⎢⎢⎢⎢⎢⎣
1
2 (�e,−�e)

1
2 (�e
∗,−�e∗)
(�e∗, �e∗)
(−�e,−�e)

⎤⎥⎥⎥⎥⎥⎥⎦ = 𝜎0 ·

⎡⎢⎢⎢⎢⎢⎢⎣
(�e, 0)
(0, �e)
(�e∗, 0)
(0,−�e∗)

⎤⎥⎥⎥⎥⎥⎥⎦ , �e =

⎡⎢⎢⎢⎢⎢⎢⎣
e1
e2
e3
e4

⎤⎥⎥⎥⎥⎥⎥⎦ , �e∗ =

⎡⎢⎢⎢⎢⎢⎢⎣
e∗1
e∗2
e∗3
e∗4

⎤⎥⎥⎥⎥⎥⎥⎦
so that V� = X� · 𝜎0 and V� = Y� · 𝜎0.

A.11.2. Proof of equation (A.9)
In this section, we will show that

𝝌(1, 𝛼, 𝛼) = 1

for 𝛼 ∈ 𝐸×. We write 𝛼 = 𝑎 + 𝑏i with 𝑎, 𝑏 ∈ 𝐹 and put 𝜈 = 𝑎2 − 𝑏2𝑢. Since 𝝌 is continuous, we may
assume that

𝑎 ≠ 0, 𝑏 ≠ 0.
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Lemma A.15. We have

𝑠(1, 𝛼, 𝛼) = 𝛾𝐹 (𝐽1,
1
2𝜓) · (−2𝑎𝑏𝐽2, 𝐽1)𝐹 .

Proof. Put 𝑔 = [1, 𝛼] ∈ GU(𝑉)0 and ℎ = 𝛼 ∈ GU(𝑊). Then we have 𝑠(1, 𝛼, 𝛼) = 𝑠(𝑔) · 𝑠(ℎ) · 𝑧Y(𝑔, ℎ).
By [30, Proposition C.4.2], we have

𝑠(𝑔) = (−𝜈𝐽2, 𝐽1)𝐹 , 𝑠(ℎ) = (𝐽2, 𝐽1)𝐹 .

It remains to compute 𝑧Y(𝑔, ℎ).
Recall that

𝑧Y(𝑔, ℎ) = 𝑧Y(𝑔 · 𝑑 (𝜈), 𝑑 (𝜈)−1 · ℎ) · 𝑣(ℎ · 𝑑 (𝜈)−1, 𝜈−1).

We have

𝑔 = 𝜈−1 ·
(
𝑎 · 14 −𝑏𝑢 · J2
−𝑏 · J−1

2 𝑎 · 14

)
, ℎ =

(
𝑎 · 14 𝑏𝑢 · J
𝑏 · J−1 𝑎 · 14

)
in GSp(V), where

J2 =
�����
1
−𝐽1

𝐽2
−𝐽

����� , J =
�����
1
−𝐽1
−𝐽2

𝐽

����� .
Since

𝑔 =

(
−𝑏−1 · J2 𝜈−1𝑎 · 14

−𝜈−1𝑏 · J−1
2

)
· 𝜏4 · n(−𝑎𝑏−1 · J2),

ℎ = n(𝑎𝑏−1 · J) · 𝜏4 ·
(
𝑏 · J−1 𝑎 · 14

𝜈𝑏−1 · J

)
,

we have

𝑧Y(𝑔 · 𝑑 (𝜈), 𝑑 (𝜈)−1 · ℎ) = 𝑧Y(𝜏4 · n(−𝜈𝑎𝑏−1 · J2), n(𝜈𝑎𝑏−1 · J) · 𝜏4) = 𝑧Y(𝜏4, n(b) · 𝜏4),

where

b = −𝜈𝑎𝑏−1 · J2 + 𝜈𝑎𝑏−1 · J = 2𝜈𝑎𝑏−1 ·
�����
0

0
−𝐽2

𝐽

����� .
If we put

b′ = 2𝜈𝑎𝑏−1 ·
(
−𝐽2

𝐽

)
,

then we have

𝑧Y(𝜏4, n(b) · 𝜏4) = 𝛾𝐹 ( 1
2𝜓)

2 · 𝛾𝐹 (det b′, 1
2𝜓) · ℎ𝐹 (b

′).

Hence, since det b′ ≡ −𝐽1 mod (𝐹×)2 and

ℎ𝐹 (b′) = (−2𝜈𝑎𝑏−1𝐽2, 2𝜈𝑎𝑏−1𝐽)𝐹 = (−2𝜈𝑎𝑏𝐽2, 𝐽1)𝐹 ,
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we have

𝑧Y(𝑔 · 𝑑 (𝜈), 𝑑 (𝜈)−1 · ℎ) = 𝛾𝐹 (−1, 1
2𝜓)

−1 · 𝛾𝐹 (−𝐽1,
1
2𝜓) · (−2𝜈𝑎𝑏𝐽2, 𝐽1)𝐹

= 𝛾𝐹 (𝐽1,
1
2𝜓) · (2𝜈𝑎𝑏𝐽2, 𝐽1)𝐹 .

On the other hand, since 𝑥(ℎ · 𝑑 (𝜈)−1) ≡ 1 mod (𝐹×)2 and 𝑗 (ℎ · 𝑑 (𝜈)−1) = 4, we have

𝑣(ℎ · 𝑑 (𝜈)−1, 𝜈−1) = 1.

Thus, we obtain

𝑧Y(𝑔, ℎ) = 𝛾𝐹 (𝐽1,
1
2𝜓) · (2𝜈𝑎𝑏𝐽2, 𝐽1)𝐹 .

This completes the proof. �

Now, we compute 𝑠(1, 𝛼, 𝛼). Note that [1, 𝛼] ∈ GU(𝑉)0 is the image of 𝛼 under the embedding
𝐸× ↩→ GU(𝑉) as in §A.1. Hence, by definition, we have

𝑠(1, 𝛼, 𝛼) = 𝑠♯ (𝛼, 𝛼, 𝛼, 𝛼)
𝑠2(𝜄(1, [𝛼, 𝛼]))

,

where [𝛼, 𝛼] ∈ U(W). Since

𝑠2(𝜄([𝛼, 𝛼], [𝛼, 𝛼])) = 𝑠2(𝜄([𝛼, 𝛼], 1)) · 𝑠2(𝜄(1, [𝛼, 𝛼])) · 𝑧Y� (𝜄([𝛼, 𝛼], 1), 𝜄(1, [𝛼, 𝛼]))
= 𝑠2(𝜄([𝛼, 𝛼], 1)) · 𝑠2(𝜄(1, [𝛼, 𝛼])),

we have

𝑠(1, 𝛼, 𝛼) = 𝑠♯ (𝛼, 𝛼, 𝛼, 𝛼)
𝑠2(𝜄([𝛼, 𝛼], [𝛼, 𝛼]))

· 𝑠2(𝜄([𝛼, 𝛼], 1))

=
𝑠♯ (𝛼, 𝛼, 𝛼, 𝛼)

𝑠2(𝜄([𝛼, 𝛼], [𝛼, 𝛼]))
· 𝑠2(𝜄([𝛼, 𝛼], 1)) · 𝜇(𝜄([𝛼, 𝛼], 1)).

Hence, by definition and Lemma A.6, we have

𝑠(1, 𝛼, 𝛼) = 𝜒(𝛼)2 · 𝑠2(𝜄([𝛼, 𝛼], 1)) · 𝜇(𝜄([𝛼, 𝛼], 1)).

Lemma A.16. We have

𝑠2(𝜄([𝛼, 𝛼], 1)) = 𝜒(𝛼)−2 · (𝑢, 𝐽1)𝐹 .

Proof. Put ℎ = 𝜄([𝛼, 𝛼], 1) ∈ U(W�) and 𝛽 = 𝛼−1𝛼𝜌 so that 𝛽 − 1 ∈ 𝐸×. As in the proof of Lemma
A.4, we have ⎡⎢⎢⎢⎢⎢⎢⎣

w1 · ℎ
w2 · ℎ
w∗1 · ℎ
w∗2 · ℎ

⎤⎥⎥⎥⎥⎥⎥⎦ = 𝐴 ·

⎡⎢⎢⎢⎢⎢⎢⎣
w1
w2
w∗1
w∗2

⎤⎥⎥⎥⎥⎥⎥⎦ ,
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where

𝐴 =
�����
1

1
2 (𝛽 + 1) 1

4𝐽 i (𝛽 − 1)
1

𝐽i(𝛽 − 1) 1
2 (𝛽 + 1)

�����
=
�����
1
− 1
𝐽 i(𝛽𝜌−1) ∗

1
𝐽i(𝛽 − 1)

����� · 𝜏1 ·
�����
1

1 ∗
1

1

����� .
Hence, we have

𝑠2(𝜄([𝛼, 𝛼], 1)) = 𝜒(𝐽i(𝛽 − 1))2 · 𝛾−1,

where

𝛾 = (𝑢, det V)𝐹 · 𝛾𝐹 (−𝑢, 1
2𝜓)

2 · 𝛾𝐹 (−1, 1
2𝜓)

−2

= (𝑢,−𝐽1)𝐹 · (−1,−𝑢)𝐹 · (−1,−1)𝐹
= (𝑢, 𝐽1)𝐹 .

Since 𝛽 − 1 = 𝛼−1(𝛼𝜌 − 𝛼) = −2𝑏i𝛼−1, we have 𝜒(𝐽i(𝛽 − 1))2 = 𝜒(−2𝑏𝑢𝐽𝛼−1)2 = 𝜒(𝛼)−2. This
completes the proof. �

Lemma A.17. We have

𝜇(𝜄([𝛼, 𝛼], 1)) = 𝛾𝐹 (𝐽1,
1
2𝜓) · (−2𝑎𝑏𝑢𝐽2, 𝐽1)𝐹 .

Proof. We write 𝛼−1𝛼𝜌 = 𝑐 + 𝑑i with 𝑐, 𝑑 ∈ 𝐹 so that

𝑐 =
𝑎2 + 𝑏2𝑢

𝑎2 − 𝑏2𝑢
≠ ±1, 𝑑 = − 2𝑎𝑏

𝑎2 − 𝑏2𝑢
≠ 0.

Recall that

𝜇(𝜄([𝛼, 𝛼], 1)) = 𝑧Y� (𝜎0, 𝜎)−1 · 𝑧Y� (𝜎0𝜎𝜎
−1
0 , 𝜎0),

where 𝜎 is the image of 𝜄([𝛼, 𝛼], 1) in Sp(V�). We have

𝜎0 =
4∏
𝑖=1

𝜄𝑖 (𝜏1 ·m(a1)), 𝜎 =
4∏
𝑖=3

𝜄𝑖 (𝜎𝑖),

where

a1 =

( 1
2 −

1
2

−1 −1

)
, 𝜎𝑖 =

�����
𝑐 𝑑𝑘𝑖𝑢

1
𝑑
𝑘𝑖

𝑐

1

����� , 𝑘𝑖 =

{
𝐽2 if 𝑖 = 3,
−𝐽 if 𝑖 = 4.
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Since 𝜏1 ·m(a1) ∈ 𝑃Y�𝑖 · 𝜏1 ·m(a2) and 𝜎𝑖 ∈ n(b1,𝑖) · 𝜏 · 𝑃Y�𝑖 , where

a2 =

(
1
1 1

)
, b1,𝑖 =

𝑐𝑘𝑖
𝑑
·
(
1

0

)
, 𝜏 =

�����
−1

1
1

1

����� ,
we have

𝑧Y� (𝜎0, 𝜎) =
4∏
𝑖=3

𝑧Y�𝑖 (𝜏1 ·m(a1), 𝜎𝑖)

=
4∏
𝑖=3

𝑧Y�𝑖 (𝜏1,m(a2) · n(b1,𝑖) · 𝜏).

If we put

b2,𝑖 =
𝑐𝑘𝑖
𝑑
·
(
1 1
1

)
, b3,𝑖 =

𝑐𝑘𝑖
𝑑
·
(
0

1

)
,

then we have m(a2) · n(b1,𝑖) = n(b2,𝑖) · n(b3,𝑖) ·m(a2) and hence

𝑧Y� (𝜎0, 𝜎) =
4∏
𝑖=3

𝑧Y�𝑖 (𝜏1 · n(b2,𝑖), n(b3,𝑖) ·m(a2) · 𝜏).

Since 𝜏1 · n(b2,𝑖) ∈ 𝑃Y�𝑖 · 𝜏1 and n(b3,𝑖) ·m(a2) · 𝜏 ∈ 𝜏 · 𝑃Y�𝑖 , we have

𝑧Y� (𝜎0, 𝜎) =
4∏
𝑖=3

𝑧Y�𝑖 (𝜏1, 𝜏) = 1.

On the other hand, we have

𝜎0𝜎𝜎
−1
0 =

4∏
𝑖=3

𝜄𝑖 (𝜎′𝑖 ),

where

𝜎′𝑖 =

������
1
2 (𝑐 + 1) 𝑑𝑘𝑖𝑢

2
𝑑𝑘𝑖𝑢

4 − 1
4 (𝑐 − 1)

𝑑
2𝑘𝑖

1
2 (𝑐 + 1) 1

4 (𝑐 − 1) − 𝑑
4𝑘𝑖

𝑑
𝑘𝑖

𝑐 − 1 1
2 (𝑐 + 1) − 𝑑

2𝑘𝑖
−𝑐 + 1 −𝑑𝑘𝑖𝑢 − 𝑑𝑘𝑖𝑢2

1
2 (𝑐 + 1)

������
.

Since 𝜎′𝑖 ∈ 𝑃Y�𝑖 · 𝜏2 · n(b4,𝑖) · n(b5,𝑖), where

b4,𝑖 = −
𝑑

2(𝑐 − 1)𝑘𝑖
·
(
0

1

)
, b5,𝑖 =

𝑑𝑘𝑖𝑢

2(𝑐 − 1) ·
(
1

0

)
,
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we have

𝑧Y� (𝜎0𝜎𝜎
−1
0 , 𝜎0) =

4∏
𝑖=3

𝑧Y�𝑖 (𝜎
′
𝑖 , 𝜏1 ·m(a1))

=
4∏
𝑖=3

𝑧Y�𝑖 (𝜏2, n(b4,𝑖) · n(b5,𝑖) · 𝜏1).

Hence, since n(b5,𝑖) · 𝜏1 ∈ 𝜏1 · 𝑃Y�𝑖 and

𝑑

𝑐 − 1
= − 𝑎

𝑏𝑢
,

we have

𝑧Y� (𝜎0𝜎𝜎
−1
0 , 𝜎0) =

4∏
𝑖=3

𝑧Y�𝑖 (𝜏2, n(b4,𝑖) · 𝜏1)

=
4∏
𝑖=3

[
𝛾𝐹 ( 1

2𝜓) · 𝛾𝐹 (2𝑎𝑏𝑘𝑖𝑢,
1
2𝜓)

]
= 𝛾𝐹 (−1, 1

2𝜓)
−1 · 𝛾𝐹 (𝑘3𝑘4,

1
2𝜓) · (2𝑎𝑏𝑘3𝑢, 2𝑎𝑏𝑘4𝑢)𝐹

= 𝛾𝐹 (−𝑘3𝑘4,
1
2𝜓) · (−2𝑎𝑏𝑘3𝑢,−𝑘3𝑘4)𝐹 .

This completes the proof. �

By Lemmas A.16 and A.17, we have

𝑠(1, 𝛼, 𝛼) = 𝛾𝐹 (𝐽1,
1
2𝜓) · (−2𝑎𝑏𝐽2, 𝐽1)𝐹 .

Now, equation (A.9) follows from this and Lemma A.15.

A.11.3. Proof of equation (A.10)
In this section, we will show that

𝝌(𝛼, 𝛼−1, 1) = 1

for 𝛼 ∈ 𝐸×. We write 𝛼 = 𝑎 + 𝑏i with 𝑎, 𝑏 ∈ 𝐹 and put 𝜈 = 𝑎2 − 𝑏2𝑢. Since 𝝌 is continuous, we may
assume that

𝑎 ≠ 0, 𝑏 ≠ 0.

Lemma A.18. We have

𝑠(𝛼, 𝛼−1, 1) = 𝛾𝐹 (𝐽, 1
2𝜓) · (−2𝑎𝑏𝐽1, 𝐽)𝐹 .

Proof. Put 𝑔1 = [𝛼, 1] ∈ GU(𝑉)0 and 𝑔2 = [1, 𝛼−1] ∈ GU(𝑉)0. Then we have 𝑠(𝛼, 𝛼−1, 1) =
𝑠(𝑔1) · 𝑠(𝑔2) · 𝑧Y(𝑔1, 𝑔2). By [30, Proposition C.4.2], we have

𝑠(𝑔1) = (−𝜈𝐽1, 𝐽2)𝐹 , 𝑠(𝑔2) = (−𝜈𝐽2, 𝐽1)𝐹 .

We have

𝑔1 = 𝜈−1 ·
(
𝑎 · 14 −𝑏𝑢 · J1
−𝑏 · J−1

1 𝑎 · 14

)
, 𝑔2 =

(
𝑎 · 14 𝑏𝑢 · J2
𝑏 · J−1

2 𝑎 · 14

)
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in GSp(V), where

J1 =
�����
1
𝐽1
−𝐽2
−𝐽

����� , J2 =
�����
1
−𝐽1

𝐽2
−𝐽

����� .
Hence, as in the proof of Lemma A.15, we have

𝑧Y(𝑔1, 𝑔2) = 𝛾𝐹 (𝐽, 1
2𝜓) · (2𝜈𝑎𝑏𝐽1, 𝐽)𝐹 .

This completes the proof. �

Now, we compute 𝑠(𝛼, 𝛼−1, 1). By definition, we have

𝑠(𝛼, 𝛼−1, 1) = 𝑠♯ ([𝛼, 𝛼−1], 1, 1, 1)
= 𝑠♯ ([𝛼, 𝛼−1], 1, 1, 1) · 𝜇(𝜄([𝛼, 𝛼−1], 1))
= 𝑠1(𝜄([𝛼, 𝛼−1], 1)) · 𝜇(𝜄([𝛼, 𝛼−1], 1)),

where [𝛼, 𝛼−1] ∈ U(𝑉)0.

Lemma A.19. We have

𝑠1(𝜄([𝛼, 𝛼−1], 1)) = (𝑢, 𝐽)𝐹 .

Proof. Put 𝑔 = 𝜄([𝛼, 𝛼−1], 1) ∈ U(𝑉�) and 𝛽 = 𝛼−1𝛼𝜌 so that 𝛽−1 ∈ 𝐸×. As in the proof of Lemma A.4,
we have ⎡⎢⎢⎢⎢⎢⎢⎣

v1 · 𝑔
v2 · 𝑔
v∗1 · 𝑔
v∗2 · 𝑔

⎤⎥⎥⎥⎥⎥⎥⎦ = 𝐴 ·

⎡⎢⎢⎢⎢⎢⎢⎣
v1
v2
v∗1
v∗2

⎤⎥⎥⎥⎥⎥⎥⎦ ,
where

𝐴 =
�����
1

1
2 (𝛽 + 1) − 1

4𝐽1i (𝛽 − 1)
1

−𝐽1i(𝛽 − 1) 1
2 (𝛽 + 1)

�����
=
�����
1

1
𝐽1i(𝛽𝜌−1) ∗

1
−𝐽1i(𝛽 − 1)

����� · 𝜏1 ·
�����
1

1 ∗
1

1

����� .
Hence, we have

𝑠1(𝑔) =
{

1 if 𝐵 is split,
−1 if 𝐵 is ramified.

This completes the proof. �

Lemma A.20. We have

𝜇(𝜄([𝛼, 𝛼−1], 1)) = 𝛾𝐹 (𝐽, 1
2𝜓) · (−2𝑎𝑏𝑢𝐽1, 𝐽)𝐹 .
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Proof. Recall that

𝜇(𝜄([𝛼, 𝛼−1], 1)) = 𝑧Y� (𝜎0, 𝜎)−1 · 𝑧Y� (𝜎0𝜎𝜎
−1
0 , 𝜎0),

where 𝜎 is the image of 𝜄([𝛼, 𝛼−1], 1) in Sp(V�). If we write 𝛼−1𝛼𝜌 = 𝑐+𝑑i with 𝑐, 𝑑 ∈ 𝐹, then we have

𝜎 =
3∏
𝑖=2

𝜄𝑖 (𝜎𝑖),

where

𝜎𝑖 =
�����
𝑐 𝑑𝑘𝑖𝑢

1
𝑑
𝑘𝑖

𝑐

1

����� , 𝑘𝑖 =

{
𝐽1 if 𝑖 = 2,
−𝐽2 if 𝑖 = 3.

Hence, as in the proof of Lemma A.17, we have 𝑧Y� (𝜎0, 𝜎) = 1 and

𝑧Y� (𝜎0𝜎𝜎
−1
0 , 𝜎0) = 𝛾𝐹 (−𝑘2𝑘3,

1
2𝜓) · (−2𝑎𝑏𝑘2𝑢,−𝑘2𝑘3)𝐹 .

This completes the proof. �

By Lemmas A.19 and A.20, we have

𝑠(𝛼, 𝛼−1, 1) = 𝛾𝐹 (𝐽, 1
2𝜓) · (−2𝑎𝑏𝐽1, 𝐽)𝐹 .

Now, equation (A.10) follows from this and Lemma A.18.

A.12. Proof of equation (A.11)

Assume that 𝐽1, 𝐽2 ∈ (𝐹×)2. Choose 𝑡𝑖 ∈ 𝐹× such that 𝐽𝑖 = 𝑡2𝑖 , and put j♮𝑖 = 𝑡−1
𝑖 · j𝑖 . In this section, we

will show that

𝝌(j♮1, j
♮
2, 1) = 1.

Lemma A.21. We have

𝑠(j♮1, j
♮
2, 1) = 1.

Proof. Put 𝑔1 = [j♮1, 1] ∈ GU(𝑉)0 and 𝑔2 = [1, j♮2] ∈ GU(𝑉)0. Then we have 𝑠(j♮1, j
♮
2, 1) = 𝑠(𝑔1) · 𝑠(𝑔2) ·

𝑧Y(𝑔1, 𝑔2). By [30, Proposition C.4.2], we have

𝑠(𝑔1) = 𝑠(𝑔2) = 1.

It remains to compute 𝑧Y(𝑔1, 𝑔2).
Noting that 𝜈(𝑔1) = 𝜈(𝑔2) = −1, we have

𝑧Y(𝑔1, 𝑔2) = 𝑧Y(𝑔1 · 𝑑 (−1), 𝑑 (−1) · 𝑔2) · 𝑣(𝑔2 · 𝑑 (−1),−1).

We have

𝑔1 = m(a1) · 𝑑 (−1), 𝑔2 = m(a2) · 𝑑 (−1)
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in GSp(V), where

a1 =
�����

1
𝑡1

𝑡1
1
𝑡1

𝑡1

����� , a2 =
�����

1
𝑡2

1
𝑡2

𝑡2
𝑡2

����� .
Hence, we have

𝑧Y(𝑔1 · 𝑑 (−1), 𝑑 (−1) · 𝑔2) = 1.

On the other hand, since 𝑥(𝑔2 · 𝑑 (−1)) = 1 and 𝑗 (𝑔2 · 𝑑 (−1)) = 0, we have

𝑣(𝑔2 · 𝑑 (−1),−1) = 1.

Thus, we obtain 𝑧Y(𝑔1, 𝑔2) = 1. This completes the proof. �

Now, we compute 𝑠(j♮1, j
♮
2, 1). By definition, we have

𝑠(j♮1, j
♮
2, 1) = 𝑠♯ ([j♮1, j

♮
2], 1, 1, 1)

= 𝑠♯ ([j♮1, j
♮
2], 1, 1, 1) · 𝜇(𝜄([j

♮
1, j

♮
2], 1))

= 𝑠1(𝜄([j♮1, j
♮
2], 1)) · 𝜇(𝜄([j

♮
1, j

♮
2], 1)),

where [j♮1, j
♮
2] ∈ U(𝑉)0.

Lemma A.22. We have

𝑠1(𝜄([j♮1, j
♮
2], 1)) = 1.

Proof. Since B is split, the assertion follows. �

Lemma A.23. We have

𝜇(𝜄([j♮1, j
♮
2], 1)) = 1.

Proof. Recall that

𝜇(𝜄([j♮1, j
♮
2], 1)) = 𝑧Y� (𝜎0, 𝜎)−1 · 𝑧Y� (𝜎0𝜎𝜎

−1
0 , 𝜎0),

where 𝜎 is the image of 𝜄([j♮1, j
♮
2], 1) in Sp(V�). Since

𝜎 = m(a1),

where

a1 =

(
a

14

)
, a =

�����
1
𝑡1𝑡2

𝑡1
𝑡2

𝑡2
𝑡1

𝑡1𝑡2

����� ,
https://doi.org/10.1017/fmp.2023.20 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.20


124 A. Ichino and K. Prasanna

we have 𝑧Y� (𝜎0, 𝜎) = 1. On the other hand, we have

𝜎0𝜎𝜎
−1
0 =

�����
1
2 (14 + a) 1

4 (14 − a)
1
2 (14 + 𝑡a) − 1

4 (14 − 𝑡a)
−14 + 𝑡a 1

2 (14 + 𝑡a)
14 − a 1

2 (14 + a)

����� .
Since 𝜎0𝜎𝜎

−1
0 ∈ 𝑃Y� · 𝜏 ·m(a2) and 𝜎0 ∈ 𝜏4 · 𝑃Y� , where

a2 =

(
a′

a′′
)
, a′ =

�����
1

1
− 𝑡2𝑡1 1

−𝑡1𝑡2 1

����� , a′′ =
�����

1
1
− 𝑡1𝑡2 1

− 1
𝑡1𝑡2

1

����� ,
and

𝜏 =

�������������

12
02 −12

12
02 −12

12
12 02

12
12 02

�������������
,

we have

𝑧Y� (𝜎0𝜎𝜎
−1
0 , 𝜎0) = 𝑧Y� (𝜏,m(a2) · 𝜏4).

Hence, since m(a2) · 𝜏4 ∈ 𝜏4 · 𝑃Y� , we have

𝑧Y� (𝜎0𝜎𝜎
−1
0 , 𝜎0) = 𝑧Y� (𝜏, 𝜏4) = 1.

This completes the proof. �

By Lemmas A.22 and A.23, we have

𝑠(j♮1, j
♮
2, 1) = 1.

Now, equation (A.11) follows from this and Lemma A.21.

A.13. Compatibility with [26]

Suppose that F is local. In this section, we compare the splitting s with the standard one for symplectic-
orthogonal dual pairs when B is split. In this case, we have 𝐽 ∈ N𝐸/𝐹 (𝐸×) so that we may write
𝐽 = 𝑘2 − 𝑙2𝑢 for some 𝑘, 𝑙 ∈ 𝐹. We define an isomorphism 𝔦 : 𝐵→ M2 (𝐹) of quaternion F-algebras by

𝔦(𝑎 + 𝑏i + 𝑐j + 𝑑ij) =
(
𝑎 𝑏
𝑏𝑢 𝑎

)
+
(
𝑐 𝑑
𝑑𝑢 𝑐

) (
𝑘 −𝑙
𝑙𝑢 −𝑘

)
.

Put

𝑒 =
1
2
+ 𝑘

2𝐽
j − 𝑙

2𝐽
ij, 𝑒′ =

1
2

i + 𝑙𝑢

2𝐽
j − 𝑘

2𝐽
ij,

𝑒′′ =
1

2𝑢
i − 𝑙

2𝐽
j + 𝑘

2𝑢𝐽
ij, 𝑒∗ =

1
2
− 𝑘

2𝐽
j + 𝑙

2𝐽
ij
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so that

𝔦(𝑒) =
(
1 0
0 0

)
, 𝔦(𝑒′) =

(
0 1
0 0

)
, 𝔦(𝑒′′) =

(
0 0
1 0

)
, 𝔦(𝑒∗) =

(
0 0
0 1

)
.

In particular, we have [
𝑒 · 𝑥
𝑒′ · 𝑥

]
= 𝔦(𝑥) ·

[
𝑒
𝑒′

]
for 𝑥 ∈ 𝐵.

Let V be an m-dimensional skew-Hermitian right B-space as in equation (A.1). We consider the
2𝑚-dimensional quadratic F-space 𝑉† := 𝑉𝑒 given by Morita theory (see [30, §C.2] for details). With
respect to a basis 𝑒1𝑒, 𝑒1𝑒

′′, . . . , 𝑒𝑚𝑒, 𝑒𝑚𝑒
′′ of 𝑉†, the symmetric bilinear form on 𝑉† is associated to

1
2
·

��������

𝜅1𝑢
−𝜅1

. . .

𝜅𝑚𝑢
−𝜅𝑚

��������
.

Similarly, we consider the two-dimensional symplectic F-space𝑊† := 𝑒𝑊 . Then, by [30, Lemma C.2.2],
we have an identification

V = 𝑉† ⊗𝐹 𝑊†.

We take a complete polarization 𝑊† = 𝑋 ⊕ 𝑌 defined by

𝑋 = 𝐹𝑒, 𝑌 = 𝐹𝑒′.

This induces a complete polarization V = X′ ⊕ Y′, where

X′ = 𝑉† ⊗𝐹 𝑋, Y′ = 𝑉† ⊗𝐹 𝑌 .

More explicitly, we have

X′ = 𝐹 · 𝑒1 ⊗ 𝑒 + · · · + 𝐹 · 𝑒𝑚 ⊗ 𝑒 + 𝐹 · 𝑒1 ⊗ 𝑒′′ + · · · + 𝐹 · 𝑒𝑚 ⊗ 𝑒′′,
Y′ = 𝐹 · 𝑒1 ⊗ 𝑒′ + · · · + 𝐹 · 𝑒𝑚 ⊗ 𝑒′ + 𝐹 · 𝑒1 ⊗ 𝑒∗ + · · · + 𝐹 · 𝑒𝑚 ⊗ 𝑒∗.

Now, we recall the splitting defined in [26, §5.1]. Using a basis 𝑒, 𝑒′ of 𝑊†, we identify GSp(𝑊†)
with GSp2 (𝐹) = GL2 (𝐹). We define a map

𝑠† : Sp(𝑊†) −→ C1

by setting

𝑠†(ℎ) = 𝜉𝐸 (𝑥(ℎ))𝑚 · 𝛾′− 𝑗 (ℎ) ,

where 𝑥(ℎ) and 𝑗 (ℎ) are as in §A.11.1, and

𝛾′ = 𝛾𝐹 ( 1
2𝜓)

2𝑚 · 𝛾𝐹 (det𝑉†, 1
2𝜓) · ℎ𝐹 (𝑉

†).
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We extend 𝑠† to a map

𝑠† : G(O(𝑉†) × Sp(𝑊†)) −→ C1

so that

𝑠†(g) = 𝑠†(ℎ · 𝑑 (𝜈(ℎ))−1)

for g = (𝑔, ℎ) ∈ G(O(𝑉†) × Sp(𝑊†)).

Lemma A.24. For g1, g2 ∈ G(O(𝑉†) × Sp(𝑊†)), we have

𝑧Y′ (g1, g2) =
𝑠†(g1g2)

𝑠†(g1)𝑠†(g2)
.

Proof. If g1, g2 ∈ Sp(𝑊†), then the assertion follows from [40, Theorem 3.1, cases 1+]. By [26, §5.1],
this implies the general case. Nevertheless, we include a direct argument for the convenience of the
reader.

Let g𝑖 = (𝑔𝑖 , ℎ𝑖) ∈ G(O(𝑉†) × Sp(𝑊†)). Recall that

𝑧Y′ (g1, g2) = 𝛾𝐹 ( 1
2𝜓 ◦ 𝑞(Y

′ · g−1
1 ,Y′ · g−1

2 g−1
1 ,Y′)),

where q denotes the Leray invariant (see, e.g., [58], [30, §3.1.2]). Put

𝜈𝑖 = 𝜈(ℎ𝑖), ℎ′𝑖 = ℎ𝑖 · 𝑑 (𝜈𝑖)−1, ℎ′′2 = 𝑑 (𝜈1) · ℎ′2 · 𝑑 (𝜈1)−1

so that

ℎ1ℎ2 = ℎ′1 · 𝑑 (𝜈1) · ℎ′2 · 𝑑 (𝜈2) = ℎ′1ℎ
′′
2 · 𝑑 (𝜈1𝜈2).

Since Y′ · (𝑔, 𝑑 (𝜈)) = Y′ for 𝑔 ∈ GO(𝑉†) and 𝜈 ∈ 𝐹×, we have Y′ · g−1
1 = Y′ · ℎ′−1

1 and Y′ · g−1
2 g−1

1 =
Y′ · ℎ′′−1

2 ℎ′−1
1 so that

𝑞(Y′ · g−1
1 ,Y′ · g−1

2 g−1
1 ,Y′) = 𝑞(Y′ · ℎ′−1

1 ,Y′ · ℎ′′−1
2 ℎ′−1

1 ,Y′).

Hence, we have

𝑧Y′ (g1, g2) = 𝑧Y′ (ℎ′1, ℎ
′′
2 ) =

𝑠†(ℎ′1ℎ
′′
2 )

𝑠†(ℎ′1)𝑠†(ℎ
′′
2 )
.

On the other hand, by definition, we have 𝑠†(g𝑖) = 𝑠†(ℎ′𝑖) and 𝑠†(g1g2) = 𝑠†(ℎ′1ℎ
′′
2 ). By equation (A.12),

and noting that 𝜈(GO(𝑉†)) = N𝐸/𝐹 (𝐸×) if m is odd, we have

𝑠†(ℎ′′2 ) = 𝜉𝐸 (𝜈1) 𝑗 (ℎ
′
2)𝑚 · 𝑠†(ℎ′2) = 𝑠†(ℎ′2).

This completes the proof. �

Fix 𝜍0 ∈ Sp(V) such that X = X′ · 𝜍0 and Y = Y′ · 𝜍0. Put

𝜇0 (𝜎) = 𝑧Y′ (𝜍0, 𝜎) · 𝑧Y′ (𝜍0𝜎𝜍
−1
0 , 𝜍0)−1

for 𝜎 ∈ Sp(V). Note that 𝜇0 does not depend on the choice of 𝜍0. Then, by [40, Lemma 4.2], we have

𝑧Y(𝜎, 𝜎′) = 𝑧Y′ (𝜎, 𝜎′) ·
𝜇0 (𝜎𝜎′)

𝜇0 (𝜎)𝜇0(𝜎′)

for 𝜎, 𝜎′ ∈ Sp(V).
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Put 𝑠0 = 𝑠† · 𝜇0. Via the canonical isomorphisms GU(𝑉) � GO(𝑉†) and GU(𝑊) � GSp(𝑊†), we
regard 𝑠0 as a map

𝑠0 : G(U(𝑉) × U(𝑊)) −→ C1.

By Lemma A.24, we have

𝑧Y(g1, g2) =
𝑠0(g1g2)

𝑠0(g1)𝑠0(g2)

for g1, g2 ∈ G(U(𝑉) × U(𝑊)).

Proposition A.25. We have

𝑠0 |G = 𝑠.

The rest of this section is devoted to the proof of Proposition A.25.
As in §A.3, we define the doubled space 𝑊†� = 𝑊† ⊕ 𝑊† and take the complete polarization

𝑊†� = 𝑊†� ⊕𝑊†�. Then we have identifications

V� = 𝑉† ⊗𝐹 𝑊†�, V� = 𝑉† ⊗𝐹 𝑊†�, V� = 𝑉† ⊗𝐹 𝑊†� .

We also take complete polarizations 𝑊†� = 𝑋� ⊕ 𝑌� and V� = X′� ⊕ Y′�, where

𝑋� = 𝑋 ⊕ 𝑋, X′� = X′ ⊕ X′ = 𝑉† ⊗𝐹 𝑋�,

𝑌� = 𝑌 ⊕ 𝑌, Y′� = Y′ ⊕ Y′ = 𝑉† ⊗𝐹 𝑌�.

As in [30, §D.3], we have

𝑧Y′� (𝜄(𝜎1, 𝜎2), 𝜄(𝜎′1, 𝜎
′
2)) = 𝑧Y′ (𝜎1, 𝜎

′
1) · 𝑧Y′ (𝜎2, 𝜎

′
2)
−1

for 𝜎𝑖 , 𝜎′𝑖 ∈ Sp(V). Using a basis (𝑒, 0), (0, 𝑒), (𝑒′, 0), (0,−𝑒′) of 𝑊†�, we identify GSp(𝑊†�) with
GSp4(𝐹). Put

ℎ0 =
�����

1
2 −

1
2

1
2

1
2

1 −1
−1 −1

����� ∈ Sp(𝑊†�).

Then we have ⎡⎢⎢⎢⎢⎢⎢⎣
1
2 (𝑒,−𝑒)

1
2 (𝑒
′,−𝑒′)
(𝑒′, 𝑒′)
(−𝑒,−𝑒)

⎤⎥⎥⎥⎥⎥⎥⎦ = ℎ0 ·

⎡⎢⎢⎢⎢⎢⎢⎣
(𝑒, 0)
(0, 𝑒)
(𝑒′, 0)
(0,−𝑒′)

⎤⎥⎥⎥⎥⎥⎥⎦
so that 𝑊†� = 𝑋� · ℎ0 and 𝑊†� = 𝑌� · ℎ0. Put h0 = id ⊗ ℎ0 ∈ Sp(V�) and

𝜇′(𝜎) = 𝑧Y′� (h0, 𝜎)−1 · 𝑧Y′� (h0𝜎h−1
0 , h0)

for 𝜎 ∈ Sp(V�). Since V� = X′� · h0 and V� = Y′� · h0, we have

𝑧Y′� (𝜎, 𝜎′) = 𝑧V� (𝜎, 𝜎′) ·
𝜇′(𝜎𝜎′)

𝜇′(𝜎)𝜇′(𝜎′) (A.13)

for 𝜎, 𝜎′ ∈ Sp(V�).
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As in §A.6, we put 𝑠♯′ = 𝑠♯ · 𝜇′ and 𝑠′2 = 𝑠2 · 𝜇′ and define a map

𝑠′ : G −→ C1

by setting

𝑠′(𝑔, ℎ) = 𝑠♯′(𝑔, ℎ, 𝛼, 𝛼)
𝑠′2(𝜄(1, [𝛼, 𝛼]))

,

where we choose 𝛼 ∈ 𝐸× such that 𝜈(𝑔) = 𝜈(ℎ) = N𝐸/𝐹 (𝛼). As in Lemma A.10, 𝑠′ is well defined.
Moreover, as in Lemma A.11, we have

𝑧Y′ (g1, g2) =
𝑠′(g1g2)

𝑠′(g1)𝑠′(g2)

for g1, g2 ∈ G.

Lemma A.26. We have

𝑠 = 𝑠′ · 𝜇0.

Proof. Put 𝜍00 = 𝜄(𝜍0, 𝜍0) ∈ Sp(V�) and

𝜇00 (𝜎) = 𝑧Y′� (𝜍00, 𝜎) · 𝑧Y′� (𝜍00𝜎𝜍
−1
00 , 𝜍00)−1

for 𝜎 ∈ Sp(V�). Since X� = X′� · 𝜍00 and Y� = Y′� · 𝜍00, we have

𝑧Y� (𝜎, 𝜎′) = 𝑧Y′� (𝜎, 𝜎′) ·
𝜇00 (𝜎𝜎′)

𝜇00 (𝜎)𝜇00(𝜎′)
(A.14)

for 𝜎, 𝜎′ ∈ Sp(V�). Then it follows from equations (A.8), (A.13) and (A.14) that

𝜇00 (𝜎𝜎′)
𝜇00 (𝜎)𝜇00(𝜎′)

=
𝜇(𝜎𝜎′)

𝜇(𝜎)𝜇(𝜎′) ·
𝜇′(𝜎)𝜇′(𝜎′)
𝜇′(𝜎𝜎′)

for 𝜎, 𝜎′ ∈ Sp(V�). Namely, 𝜇00 · 𝜇′/𝜇 is a character of Sp(V�). Since [Sp(V�), Sp(V�)] = Sp(V�),
this character must be trivial and hence

𝜇00 = 𝜇/𝜇′.

Since

𝜇00 (𝜄(𝜎, 1)) = 𝑧Y′� (𝜄(𝜍0, 𝜍0), 𝜄(𝜎, 1)) · 𝑧Y′� (𝜄(𝜍0𝜎𝜍
−1
0 , 1), 𝜄(𝜍0, 𝜍0))−1

= 𝑧Y′ (𝜍0, 𝜎) · 𝑧Y′ (𝜍0𝜎𝜍
−1
0 , 𝜍0)−1

= 𝜇0 (𝜎)

for 𝜎 ∈ Sp(V), it suffices to show that

𝑠(g)
𝜇(𝜄(g, 1)) =

𝑠′(g)
𝜇′(𝜄(g, 1))

for g ∈ G. Here, by abuse of notation, we write g in the denominator for the image of g in Sp(V) under
equation (A.2) so that 𝜄(g, 1) ∈ Sp(V�).
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For g = (𝑔, ℎ) ∈ G, choose 𝛼 ∈ 𝐸× such that 𝜈(𝑔) = 𝜈(ℎ) = N𝐸/𝐹 (𝛼). Put g♯ = (𝑔, ℎ, 𝛼, 𝛼) ∈ G♯

and 𝜶 = [𝛼, 𝛼] ∈ U(W). Note that the image of g♯ in Sp(V�) agrees with 𝜄(g, 1) · 𝜄(1,𝜶). By definition,
we have

𝑠(g) = 𝑠♯ (g♯)
𝑠2(𝜄(1,𝜶))

· 𝜇(g♯)
𝜇(𝜄(1,𝜶)) , 𝑠′(g) = 𝑠♯ (g♯)

𝑠2(𝜄(1,𝜶))
· 𝜇′(g♯)
𝜇′(𝜄(1,𝜶)) .

Thus, it remains to show that

𝜇(g♯)
𝜇(𝜄(g, 1)) · 𝜇(𝜄(1,𝜶)) =

𝜇′(g♯)
𝜇′(𝜄(g, 1)) · 𝜇′(𝜄(1,𝜶)) .

But the left-hand side is equal to

𝑧Y� (𝜄(g, 1), 𝜄(1,𝜶))
𝑧V� (𝜄(g, 1), 𝜄(1,𝜶))

=
1

𝑧V� (𝜄(g, 1), 𝜄(1,𝜶))

by equation (A.8), whereas the right-hand side is equal to

𝑧Y′� (𝜄(g, 1), 𝜄(1,𝜶))
𝑧V� (𝜄(g, 1), 𝜄(1,𝜶))

=
1

𝑧V� (𝜄(g, 1), 𝜄(1,𝜶))

by equation (A.13). This completes the proof. �

Thus, to finish the proof of Proposition A.25, it remains to prove the following.
Lemma A.27. We have

𝑠† |G = 𝑠′.

Proof. Since both 𝑠† and 𝑠′ trivialize 𝑧Y′ , there exists a continuous character 𝝌′ of G such that

𝑠† |G = 𝑠′ · 𝝌′.

We will show that 𝝌′ is trivial. Since [Sp(𝑊†), Sp(𝑊†)] = Sp(𝑊†), 𝝌′ is trivial on U(𝑊) � Sp(𝑊†).
Let g = (𝑔, 1) ∈ G with 𝑔 ∈ U(𝑉)0 � SO(𝑉†). By definition, we have 𝑠†(g) = 1 and

𝑠′(g) = 𝑠♯′(𝑔, 1, 1, 1) = 𝑠♯ (𝑔, 1, 1, 1) · 𝜇′(𝜄(g, 1)) = 𝜇′(𝜄(g, 1)).

Since 𝜄(g, 1) belongs to 𝑃Y′� and commutes with h0, we have

𝜇′(𝜄(g, 1)) = 𝑧Y′� (h0, 𝜄(g, 1))−1 · 𝑧Y′� (𝜄(g, 1), h0) = 1.

Hence, we have 𝑠′(g) = 1 so that 𝝌′(g) = 1.
Thus, it remains to show that

𝝌′(g) = 1

for g = (𝛼, 𝛼) ∈ G with 𝛼 ∈ 𝐸×. We write 𝛼 = 𝑎 + 𝑏i with 𝑎, 𝑏 ∈ 𝐹 and put 𝜈 = 𝑎2 − 𝑏2𝑢. Since 𝝌′ is
continuous, we may assume that

𝑎 ≠ 0, 𝑏 ≠ 0.

By definition, we have 𝑠†(g) = 𝑠†(ℎ), where

ℎ =

(
𝑎 𝑏
𝑏𝑢 𝑎

)
·
(
1
𝜈−1

)
.
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Since

ℎ =

( 1
𝑏𝑢 𝑎

𝑏𝑢

)
·
(
−1

1

)
·
(
1 𝑎

𝜈𝑏𝑢
1

)
,

we have

𝑠†(ℎ) = 𝜉𝐸 (𝑏𝑢)𝑚 · 𝛾′−1 = (−𝑏, 𝑢)𝑚𝐹 · 𝛾
′−1.

Recall that

𝛾′−1 = 𝛾𝐹 ( 1
2𝜓)

−2𝑚 · 𝛾𝐹 (det𝑉†, 1
2𝜓)

−1 · ℎ𝐹 (𝑉†)
= 𝛾𝐹 (−1, 1

2𝜓)
𝑚 · 𝛾𝐹 ((−𝑢)𝑚, 1

2𝜓)
−1 · ℎ𝐹 (𝑉†)

= 𝛾𝐹 (−1, 1
2𝜓)

𝑚 · 𝛾𝐹 (−𝑢, 1
2𝜓)

−𝑚 · (−𝑢,−𝑢) (𝑚−1)𝑚/2
𝐹 · ℎ𝐹 (𝑉†)

= 𝛾𝐹 (𝑢, 1
2𝜓)

𝑚 · (−𝑢,−𝑢) (𝑚−1)𝑚/2
𝐹 · ℎ𝐹 (𝑉†).

If we put 𝑉†𝑖 = 𝐹𝑒𝑖𝑒 + 𝐹𝑒𝑖𝑒′′, then we have

ℎ𝐹 (𝑉†) =
𝑚∏
𝑖=1

ℎ𝐹 (𝑉†𝑖 ) ·
∏

1≤𝑖< 𝑗≤𝑚
(det𝑉†𝑖 , det𝑉†𝑗 )𝐹

=
𝑚∏
𝑖=1
(−2𝜅𝑖 , 𝑢)𝐹 · (−𝑢,−𝑢) (𝑚−1)𝑚/2

𝐹 .

Hence, we have

𝑠†(g) = 𝛾𝐹 (𝑢, 1
2𝜓)

𝑚 ·
𝑚∏
𝑖=1
(2𝑏𝜅𝑖 , 𝑢)𝐹 .

On the other hand, by definition, we have

𝑠′(g) = 𝑠♯′(𝛼, 𝛼, 𝛼, 𝛼)
𝑠′2(𝜄(1,𝜶))

=
𝑠♯′(𝛼, 𝛼, 𝛼, 𝛼)
𝑠′2(𝜄(𝜶,𝜶))

·
𝑠′2(𝜄(𝜶,𝜶))
𝑠′2(𝜄(1,𝜶))

=
𝑠♯′(𝛼, 𝛼, 𝛼, 𝛼)
𝑠′2(𝜄(𝜶,𝜶))

· 𝑠′2(𝜄(𝜶, 1)) · 𝑧Y′� (𝜄(𝜶, 1), 𝜄(1,𝜶))

=
𝑠♯′(𝛼, 𝛼, 𝛼, 𝛼)
𝑠′2(𝜄(𝜶,𝜶))

· 𝑠′2(𝜄(𝜶, 1))

=
𝑠♯ (𝛼, 𝛼, 𝛼, 𝛼)
𝑠2(𝜄(𝜶,𝜶))

· 𝑠2(𝜄(𝜶, 1)) · 𝜇′(𝜄(𝜶, 1)),

where 𝜶 = [𝛼, 𝛼] ∈ U(W). By definition and Lemma A.6, we have

𝑠♯ (𝛼, 𝛼, 𝛼, 𝛼)
𝑠2(𝜄(𝜶,𝜶))

= 𝜒(𝛼)𝑚.

Also, as in Lemma A.16, we have

𝑠2(𝜄(𝜶, 1)) = 𝜒(𝐽i(𝛽 − 1))𝑚 · 𝛾−1 = 𝜒(2𝑏𝛼−1)𝑚 · 𝛾−1,
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where 𝛽 = 𝛼−1𝛼𝜌 and

𝛾−1 = (det V, 𝑢)𝐹 · 𝛾𝐹 (−𝑢, 1
2𝜓)

−𝑚 · 𝛾𝐹 (−1, 1
2𝜓)

𝑚

= 𝛾(𝑢, 1
2𝜓)

𝑚 ·
𝑚∏
𝑖=1
(𝜅𝑖 , 𝑢)𝐹 .

Hence, noting that the image of g in Sp(V) agrees with that of 𝜶, we have

𝑠′(g) = 𝛾(𝑢, 1
2𝜓)

𝑚 ·
𝑚∏
𝑖=1
(2𝑏𝜅𝑖 , 𝑢)𝐹 · 𝜇′(𝜄(g, 1)).

Thus, we are reduced to showing that

𝜇′(𝜄(g, 1)) = 1

for g = (𝛼, 𝛼) ∈ G with 𝛼 = 𝑎 + 𝑏i ∈ 𝐸× such that 𝑎 ≠ 0 and 𝑏 ≠ 0. This is further reduced to the case
dim𝑉 = 1. Then we may identify𝑉† with the F-space 𝐹𝑒+𝐹𝑒′′ equipped with a symmetric bilinear form

〈𝑥1𝑒 + 𝑥2𝑒
′′, 𝑦1𝑒 + 𝑦2𝑒

′′〉† = 𝜅𝑢 · 𝑥1𝑦1 − 𝜅 · 𝑥2𝑦2,

where 𝜅 = 𝜅1/2. We take a basis

x1 = 𝑒 ⊗ (𝑒, 0), y1 =
1
𝜅𝑢
· 𝑒 ⊗ (𝑒′, 0),

x2 = 𝑒′′ ⊗ (𝑒, 0), y2 = −1
𝜅
· 𝑒′′ ⊗ (𝑒′, 0),

x3 = 𝑒 ⊗ (0, 𝑒), y3 =
1
𝜅𝑢
· 𝑒 ⊗ (0,−𝑒′),

x4 = 𝑒′′ ⊗ (0, 𝑒), y4 = −1
𝜅
· 𝑒′′ ⊗ (0,−𝑒′)

of V� = 𝑉† ⊗𝐹 𝑊†� so that

X′� = 𝐹x1 + · · · + 𝐹x4, Y′� = 𝐹y1 + · · · + 𝐹y4, 〈〈x𝑖 , y 𝑗〉〉 = 𝛿𝑖 𝑗 .

Using this basis, we identify Sp(V�) with Sp8 (𝐹). Then we have

h0 =

�������������

1
2 − 1

2
1
2 − 1

2
𝜅𝑢
2

𝜅𝑢
2

− 𝜅
2 − 𝜅

2
1 −1

1 −1
− 1
𝜅𝑢 − 1

𝜅𝑢
1
𝜅

1
𝜅

�������������
,

𝜄(g, 1) =

�������������

1
2 (𝑐 + 1) 𝑑𝑢

2 − 𝑑𝜅𝑢2
𝜅
2 (𝑐 − 1)

𝑑
2

1
2 (𝑐 + 1) − 𝜅

2 (𝑐 − 1) 𝑑𝜅
2

1
1

− 𝑑
2𝜅 − 1

2𝜅 (𝑐 − 1) 1
2 (𝑐 + 1) − 𝑑2

1
2𝜅 (𝑐 − 1) 𝑑𝑢

2𝜅 − 𝑑𝑢2
1
2 (𝑐 + 1)

1
1

�������������
,
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where

𝑐 =
𝑎2 + 𝑏2𝑢

𝑎2 − 𝑏2𝑢
≠ ±1, 𝑑 = − 2𝑎𝑏

𝑎2 − 𝑏2𝑢
≠ 0

so that 𝑐2 − 𝑑2𝑢 = 1. Recall that

𝜇′(𝜄(g, 1)) = 𝑧Y′� (h0, 𝜄(g, 1))−1 · 𝑧Y′� (h0 · 𝜄(g, 1) · h−1
0 , h0).

Since h0 ∈ 𝑃Y′� · 𝜏2 ·m(a1) and 𝜄(g, 1) = n(b1) · 𝜏 · 𝑃Y′� , where

a1 =
�����
1

1
1 1

1 1

����� , b1 =
𝑑𝜅

𝑐 − 1
·
�����
−𝑢

1
0

0

����� , 𝜏 =
�����

−12
12

12
12

����� ,
we have

𝑧Y′� (h0, 𝜄(g, 1)) = 𝑧Y′� (𝜏2 ·m(a1), n(b1) · 𝜏)
= 𝑧Y′� (𝜏2,m(a1) · n(b1) · 𝜏).

If we put

b2 =
𝑑𝜅

𝑐 − 1
·
�����
−𝑢 −𝑢

1 1
−𝑢

1

����� , b3 =
𝑑𝜅

𝑐 − 1
·
�����
0

0
−𝑢

1

����� ,
then we have m(a1) · n(b1) = n(b2) · n(b3) ·m(a1) and hence

𝑧Y′� (h0, 𝜄(g, 1)) = 𝑧Y′� (𝜏2 · n(b2), n(b3) ·m(a1) · 𝜏).

Since 𝜏2 · n(b2) ∈ 𝑃Y′� · 𝜏2 and n(b3) ·m(a1) · 𝜏 ∈ 𝜏 · 𝑃Y′� , we have

𝑧Y′� (h0, 𝜄(g, 1)) = 𝑧Y′� (𝜏2, 𝜏) = 1.

On the other hand, we have h0 ∈ 𝜏2 · 𝑃Y′� and

h0 · 𝜄(g, 1) · h−1
0

=

��������������

1
4 (𝑐 + 3) 𝑑𝑢

4 − 𝑑
4 − 1

4 (𝑐 − 1) − 𝑑𝜅𝑢
8

𝜅
8 (𝑐 − 1) − 𝜅𝑢

8 (𝑐 − 1) 𝑑𝜅𝑢
8

𝑑
4

1
4 (𝑐 + 3) − 1

4𝑢 (𝑐 − 1) − 𝑑
4 − 𝜅

8 (𝑐 − 1) 𝑑𝜅
8 − 𝑑𝜅𝑢

8
𝜅
8 (𝑐 − 1)

− 𝑑𝑢
4 − 𝑢4 (𝑐 − 1) 1

4 (𝑐 + 3) 𝑑𝑢
4

𝜅𝑢
8 (𝑐 − 1) − 𝑑𝜅𝑢

8
𝑑𝜅𝑢2

8 − 𝜅𝑢
8 (𝑐 − 1)

− 1
4 (𝑐 − 1) − 𝑑𝑢

4
𝑑
4

1
4 (𝑐 + 3) 𝑑𝜅𝑢

8 − 𝜅
8 (𝑐 − 1) 𝜅𝑢

8 (𝑐 − 1) − 𝑑𝜅𝑢
8

− 𝑑
2𝜅 − 1

2𝜅 (𝑐 − 1) 1
2𝜅𝑢 (𝑐 − 1) 𝑑

2𝜅
1
4 (𝑐 + 3) − 𝑑

4
𝑑𝑢
4 − 1

4 (𝑐 − 1)
1

2𝜅 (𝑐 − 1) 𝑑𝑢
2𝜅 − 𝑑

2𝜅 − 1
2𝜅 (𝑐 − 1) − 𝑑𝑢

4
1
4 (𝑐 + 3) − 𝑢4 (𝑐 − 1) 𝑑𝑢

4
− 1

2𝜅𝑢 (𝑐 − 1) − 𝑑
2𝜅

𝑑
2𝜅𝑢

1
2𝜅𝑢 (𝑐 − 1) 𝑑

4 − 1
4𝑢 (𝑐 − 1) 1

4 (𝑐 + 3) − 𝑑
4

𝑑
2𝜅

1
2𝜅 (𝑐 − 1) − 1

2𝜅𝑢 (𝑐 − 1) − 𝑑
2𝜅 − 1

4 (𝑐 − 1) 𝑑
4 − 𝑑𝑢

4
1
4 (𝑐 + 3)

��������������
∈ 𝑃Y′� · 𝜏 ·m(a2) · n(b4),
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where

a2 =
�����
1 −1

1 − 1
𝑢

1
1

����� , b4 =
(𝑐 + 1)𝜅

𝑑
·
�����
0

0
𝑢
−1

����� .
Since 𝜏 · n(b4) ∈ 𝑃Y′� · 𝜏 and n(b4)−1 ·m(a2) · n(b4) · 𝜏2 ∈ 𝜏2 · 𝑃Y′� , we have

𝑧Y′� (h0 · 𝜄(g, 1) · h−1
0 , h0) = 𝑧Y′� (𝜏 ·m(a2) · n(b4), 𝜏2)

= 𝑧Y′� (𝜏 · n(b4), n(b4)−1 ·m(a2) · n(b4) · 𝜏2)
= 𝑧Y′� (𝜏, 𝜏2)
= 1.

This completes the proof. �
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