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Abstract

Let H be a subgroup of some locally compact group G. Assume that H is approximable by discrete
subgroups and that G admits neighborhood bases which are almost invariant under conjugation by
finite subsets of H. Let m : G→ C be a bounded continuous symbol giving rise to an L p-bounded
Fourier multiplier (not necessarily completely bounded) on the group von Neumann algebra of G for
some 1 6 p 6∞. Then, m |H yields an L p-bounded Fourier multiplier on the group von Neumann
algebra of H provided that the modular function ∆G is equal to 1 over H. This is a noncommutative
form of de Leeuw’s restriction theorem for a large class of pairs (G,H). Our assumptions on
H are quite natural, and they recover the classical result. The main difference with de Leeuw’s
original proof is that we replace dilations of Gaussians by other approximations of the identity for
which certain new estimates on almost-multiplicative maps are crucial. Compactification via lattice
approximation and periodization theorems are also investigated.

2010 Mathematics Subject Classification: 42B15 (primary); 22D15, 46L52 (secondary)

1. Introduction

In 1965, Karel de Leeuw proved three fundamental theorems for Euclidean
Fourier multipliers. Given a bounded symbol m : Rn → C, let us consider the
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corresponding multiplier

T̂m f (ξ) = m(ξ) f̂ (ξ),

Tm f (x) =
∫
Rn

m(ξ) f̂ (ξ)e2π i〈x,ξ〉 dξ.

The main results in [15] may be stated as follows.

(i) Restriction. If m is continuous and Tm is L p(Rn)-bounded,

Tm|H :
∫

H
f̂ (h)χh dµ(h) 7→

∫
H

m(h) f̂ (h)χh dµ(h)

extends to a L p(Ĥ)-bounded multiplier for any subgroup H ⊂ Rn , where the
χh stand for the characters on the dual group and µ is the Haar measure.

(ii) Periodization. Given H ⊂ Rn any closed subgroup and mq : Rn/H → C
bounded, let mπ : Rn → C denote its H-periodization, which is defined by
mπ (ξ) = mq(ξ + H). Then we find that

‖Tmπ
: L p(Rn)→ L p(Rn)‖ = ∥∥Tmq : L p(R̂n/H)→ L p(R̂n/H)

∥∥.
(iii) Compactification. Let Rn

bohr be the Pontryagin dual of Rn
disc equipped with

the discrete topology. Given m : Rn → C bounded and continuous, the
L p(Rn)-boundedness of Tm is equivalent to the boundedness in L p(Rn

bohr)

of the multiplier with the same symbol,

Tm :
∑
Rn

disc

f̂ (ξ)χξ 7→
∑
Rn

disc

m(ξ) f̂ (ξ)χξ .

Together with Cotlar’s work [11], de Leeuw theorems may be regarded as
the first form of transference in harmonic analysis, prior to the Calderón and
Coifman and Weiss contributions [6, 9]. The combination of the above-mentioned
results produces a large family of previously unknown L p-bounded Fourier
multipliers—a sample of them will appear in Appendix A—and both restriction
and periodization are nowadays very well-known properties of Euclidean Fourier
multipliers. Although not so much known, the compactification theorem was the
core result of [15].

Our goal is to study these results within the context of general locally compact
groups. Shortly after de Leeuw, and Saeki [54] extended these theorems to
locally compact abelian (LCA) groups with an approach which relies more on
periodization and the structure theorem of LCA groups. In contrast, no analogous
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transference results in the frequency group seem to exist for nonabelian groups;
see [16, 17, 29, 60] for a dual approach. This gap is partly justified by the
noncommutative nature of the spaces involved. Namely, the action in de Leeuw
theorems occurs in the frequency groups, and the Fourier multipliers must be
defined in the corresponding duals. The L∞ space over the dual of a nonabelian
locally compact group should be understood as a noncommutative group von
Neumann algebra. IfµG denotes the left Haar measure on a locally compact group
G and λG : G → U(L2(G)) stands for the left regular representation on G, the
group von Neumann algebra LG is the weak-∗ closure in B(L2(G)) of operators
of the form

f =
∫

G
f̂ (g)λG(g) dµG(g) with f̂ ∈ Cc(G).

The Plancherel weight is determined by τG( f ) = f̂ (e) for f̂ in Cc(G) ∗ Cc(G),
and L p(Ĝ) denotes the noncommutative L p space on (LG, τG). Although very
natural in operator algebra and noncommutative geometry, group von Neumann
algebras are not yet standard spaces in harmonic analysis. The early remarkable
works of Cowling and Haagerup [13, 25] on approximation properties of these
algebras and [14, 26] were perhaps the first contributions in the line of harmonic
analysis. The L p-theory was not seriously considered until [28]. However, only
during very recent years has a prolific series of results appeared in the literature
[7, 34–36, 39, 43, 45].

In contrast with [15, 54], where compactification and periodization took the
lead respectively, we will first put the emphasis on restriction. Throughout the
paper we will assume that our groups are second countable. We say that a locally
compact group H is approximable by discrete subgroups (H ∈ ADS) when there
exists a family of lattices (Γ j) j>1 in H with associated fundamental domains
(X j) j>1 which form a neighborhood basis of the identity. On the other hand, we
say that G has small almost-invariant neighborhoods with respect to a subgroup
H (G ∈ [SAIN]H) if, for every F ⊂ H finite, there is a basis (V j) j>1 of symmetric
neighborhoods of the identity with

lim
j→∞

µG((h−1V j h)4V j)

µG(V j)
= 0 for all h ∈ F.

THEOREM A. Let H be a subgroup of some locally compact group G. Assume
that H ∈ ADS, G ∈ [SAIN]H, and ∆G |H= 1. Let m : G → C be a bounded
continuous symbol giving rise to an L p-bounded multiplier for some 1 6 p 6∞.
Then ∥∥Tm|H : L p(Ĥ)→ L p(Ĥ)

∥∥ 6
∥∥Tm : L p(Ĝ)→ L p(Ĝ)

∥∥.
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A natural difficulty for the proof of Theorem A comes from the fact that we only
assume boundedness of our multipliers. Indeed, when G is amenable, completely
bounded (cb-bounded) analogs easily follow from the recent transference results
in [7, 43] between Fourier and Schur multipliers. It should however be noted that
for L p-bounded multipliers, or even for cb-bounded multipliers over nonamenable
groups, our approach requires a different strategy which does not rely on
previously known techniques.

Pairs (G,H) satisfying Theorem A include restriction onto Heisenberg groups
and other classical nilpotent groups. In fact, amenable ADS subgroups of locally
compact groups with ∆G |H= 1 also fulfill the hypotheses. Other nonamenable
pairs will be considered in the paper. Our assumptions are indeed natural for this
degree of generality. The condition G ∈ [SAIN]H has its roots in de Leeuw’s
original argument. Although not explicitly mentioned, a key point in his proof is
the use of an approximate identity intertwining with the Fourier multiplier. In the
Euclidean setting of [15], this was naturally achieved by using dilations of the
Gaussian, which is fixed by the Fourier transform. In our general setting, the heat
kernel must be replaced by other approximations and the SIN condition—small
invariant neighborhoods, which have been studied in the literature—yields certain
approximations intertwining with the Fourier multiplier. Our jump from SIN to
the more flexible almost-invariant class SAIN requires a more functional analytic
approach which circumvents the technicalities required for a heat kernel approach
in such a general setting. The crucial novelty are certain estimates for almost-
multiplicative maps of independent interest. Surprisingly, our argument is equally
satisfactory and much cleaner. We will prove a limiting intertwining behavior of
our approximation of the identity as a consequence of the following result. The
mapping T :M →M defined in its statement acts on L p(M) (1 6 p 6 ∞)
boundedly by interpolation.

THEOREM B. Let (M, τ ) be a semifinite von Neumann algebra equipped with a
normal semifinite faithful trace. Let T :M →M be a subunital positive map
with τ ◦ T 6 τ . Then, given any 1 6 p 6∞ and x ∈ L+2p(M),∥∥T (x)− T (

√
x)2
∥∥

2p 6 1
2

∥∥T (x2)− T (x)2
∥∥1/2

p .

We will use Haagerup’s reduction method [27] to extend the implications of
Theorem B for type III von Neumann algebras. This will be the key subtle
point in proving Theorem A for nonunimodular G. Theorem B seems to provide
new insight even in the commutative setting. Namely, arguing as in the proof of
Theorem A, we can use Theorem B to control the frequency support of a fractional
power of a function in terms of the frequency support of the original function, up
to certain small L p-correction terms. We refer to Remark 2.6 for further details.
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Let us now go back to the other assumption in Theorem A. The ADS property of
H was implicitly used in de Leeuw’s original argument, and it could be a natural
limitation for restriction of Fourier multipliers in this general setting; perhaps
more powerful restrictions could be used for nice Lie groups [59]. In our case,
we will just prove the validity of Theorem A for discrete subgroups Γ of a
locally compact group G in the class [SAIN]Γ . Then, assuming that H ∈ ADS
is approximated by (Γ j) j>1, the complete statement follows from the inclusion

[SAIN]H ⊂
⋂
j>1

[SAIN]Γ j ,

and the following noncommutative form of Igari’s lattice approximation [31, 32].

THEOREM C. If G ∈ ADS is approximated by (Γ j) j>1,∥∥Tm : L p(Ĝ)→ L p(Ĝ)
∥∥ 6 sup

j>1

∥∥Tm|Γ j
: L p(Γ̂ j)→ L p(Γ̂ j)

∥∥
for any 1 6 p 6∞ and any bounded symbol m : G→ C continuous µG—almost
everywhere.

Apart from arbitrary discrete groups and many LCA groups, other nontrivial
examples in the ADS class include again Heisenberg groups and other nilpotent
groups. Although Theorem C is not very surprising, its proof is certainly
technical, and it becomes a key point in our compactification theorem. Let G
be a locally compact group, and write Gdisc for the same group equipped with the
discrete topology. Our next goal is to determine under which conditions∥∥Tm : L p(Ĝ)→ L p(Ĝ)

∥∥ ∼ ∥∥Tm : L p(Ĝdisc)→ L p(Ĝdisc)
∥∥

for bounded continuous symbols. Of course, we may not expect that such an
equivalence holds for arbitrary locally compact groups, since this would mean
that Fourier multiplier L p-theory reduces to the class of discrete group von
Neumann algebras. Note also that restriction in the pair (G,H) always holds
when both group algebras admit L p-compactifications, since restriction within the
family of discrete groups follows by taking conditional expectations. This gives
more evidence that compactification only holds under additional assumptions. We
finally consider the periodization problem. Let H be a normal closed subgroup of
some locally compact group G. Consider any bounded symbol mq : G/H → C
(not necessarily continuous), and construct the H-periodization given by mπ (g) =
mq(gH). The periodization problem consists in giving conditions under which∥∥Tmπ

: L p(Ĝ)→ L p(Ĝ)
∥∥ ∼ ∥∥Tmq : L p(Ĝ/H)→ L p(Ĝ/H)

∥∥.
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THEOREM D. Let G be a locally compact unimodular group and H a normal
closed subgroup of G. Let us consider a bounded continuous symbol m : G→ C,
and let mq : G/H→ C be bounded with H-periodization mπ (g) = mq(gH). Then,
the following inequalities hold for 1 6 p 6∞.

(i) If G is ADS,∥∥Tm : L p(Ĝ)→ L p(Ĝ)
∥∥ 6

∥∥Tm : L p(Ĝdisc)→ L p(Ĝdisc)
∥∥.

(ii) If Gdisc is amenable,∥∥Tm : L p(Ĝdisc)→ L p(Ĝdisc)
∥∥ 6

∥∥Tm : L p(Ĝ)→ L p(Ĝ)
∥∥.

(iii) If G is LCA,∥∥Tmπ
: L p(Ĝ)→ L p(Ĝ)

∥∥ 6
∥∥Tmq : L p(Ĝ/H)→ L p(Ĝ/H)

∥∥.
(iv) If H is compact,∥∥Tmq : L p(Ĝ/H)→ L p(Ĝ/H)

∥∥ 6
∥∥Tmπ

: L p(Ĝ)→ L p(Ĝ)
∥∥.

The unimodularity of G seems crucial for compactification, given the fact that
Gdisc is always unimodular. The ADS condition is certainly natural to control
Fourier multipliers on G by the same ones defined on Gdisc. It is an interesting
problem to decide whether this assumption is in fact necessary. As we will see the
amenability in (ii) and the commutativity in (iii) (which goes back to Saeki) are
very close to optimal. The inequality in (iv) also holds for nonunimodular G.

Our conditions above can be substantially relaxed for amenable groups on the
assumption that our multipliers are completely bounded. This follows from the
transference results in [7, 43] between Fourier and Schur multipliers—which
work in the cb setting for amenable groups—together with an approximation
result for Schur multipliers from [39]. In particular, de Leeuw theorems hold in
full generality in this context, as we shall prove in Section 9. The validity of our
results for nonamenable groups is what forces us to find new arguments in this
paper. We will close this article with two appendices. In Appendix A, we analyze
a certain family of idempotent Fourier multipliers in R. By using restriction and
lattice approximation we will relate these multipliers with Fefferman’s theorem
for the ball [18] and solve a question from [36]. Appendix B contains an overview
of what is known in the context of Jodeit’s multiplier extension theorem [32] for
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locally compact groups (see Appendix B for the statement of the original Jodeit
theorem).

2. Almost-multiplicative maps

In this section we shall prove Theorem B and some consequences of it which
will be crucial in our approach to noncommutative restrictions. Our results are
of independent interest in the context of almost-multiplicative maps on L p.
Throughout this section (M, τ ) will be a semifinite von Neumann algebra with
a given normal semifinite faithful trace. We will need the following classical
inequalities. They are well known for Schatten classes and can be found in
Bhatia’s book [4, Theorems IX.4.5 and X.1.1]. The proofs given there can be
generalized to any semifinite von Neumann algebra, but we will provide more
direct arguments. The second result is a one-sided generalization of the Powers–
Størmer inequality.

LEMMA 2.1. Given 1 6 p 6∞, the identity

α1/2γβ1/2 = 1
2

∫
R
α−is(αγ + γβ)β is ds

cosh(πs)

holds in L p(M) for any α, β, γ in L2p(M) with α, β > 0. In particular, the
following hold.

(i)
∥∥α1/2γβ1/2

∥∥
p 6 1

2

∥∥αγ + γβ∥∥p,

(ii) If γ = γ ∗, ∥∥α1/2γα1/2
∥∥

p 6
∥∥αγ ∥∥p.

Proof. Inequalities (i) and (ii) follow from the first identity. By an approximation
argument we may assume that α1/2 and β1/2 have discrete spectrum, so they are
linear combinations of pairwise disjoint projections. By direct substitution this
reduces the problem to α, β ∈ R+ and γ = 1. Since the map z 7→ α1−zβ z is
holomorphic on the strip ∆ = {0 < Re z < 1} and continuous on its closure, its
value at z = 1

2 is given by the integral formula

α1/2β1/2 =
∫
∂∆

α1−zβ z dµ(z),

where µ is the harmonic measure on ∂∆ relative to the point z = 1
2 . Now, since

this measure gives the probability for a random walk from the point 1
2 of hitting the

boundary ∂∆, it coincides at both components ∂ j = {Re z = j} of the boundary
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( j = 0, 1). This means that there is a probability measure ν on R satisfying the
identity

α1/2β1/2 = 1
2

(∫
R
α1−isβ is dν(s)+

∫
R
α−isβ1+is dν(s)

)
= 1

2

∫
R
α−is(α + β)β is dν(s).

An inspection of the harmonic measure in ∂∆ yields dν(s) = ds/cosh(πs).
Indeed, this can be obtained from the harmonic measure on the unit circle
by means of a conformal map; see for instance [3, page 93]. The proof is
complete.

LEMMA 2.2. If 1 6 p 6∞, 0 < θ 6 1, and x, y ∈ L+θp(M),∥∥x θ − yθ
∥∥

p 6 ‖x − y‖θθp.

Proof. Cutting x and y by some of their spectral projections we may assume that
(M, τ ) is finite and that x, y ∈M. Indeed, let pn (respectively, qn) be the spectral
projection of x (respectively, y) of the interval [1/n, n]. Assume that the lemma
holds in every corner (pn∨qn)M(pn∨qn), and note that pn∨qn = pn+qn−pn∧qn

is finite. As pn ↗ supp(x) and qn ↗ supp(y) strongly, [37, Lemma 2.3] yields,
for 1 6 p <∞,∥∥x θ − yθ

∥∥
p = lim

n

∥∥pn x θ − yθqn

∥∥
p 6 lim

n

∥∥pn x − yqn

∥∥θ
θp = ‖x − y‖θθp.

For p = ∞, the latter (in)equalities are obvious. We may also reduce the above
estimate to the case when x > y > 0. To that end, note that, if 1 6 p <∞,

‖a − b‖p
p 6 ‖a‖p

p + ‖b‖p
p

for a, b > 0. Indeed, let q+ = 1a−b>0 and q− = 1a−b<0; then

‖a − b‖p
p = ‖q+(a − b)q+‖p

p + ‖q−(b − a)q−‖p
p

6 ‖q+aq+‖p
p + ‖q−bq−‖p

p 6 ‖a‖p
p + ‖b‖p

p (1)

as 0 6 q+(a − b)q+ 6 q+aq+, and similarly for the other term. Now let δ+, δ−
be the positive and negative parts of δ = x − y = δ+ − δ−. Let us consider the
operators

a = (x + δ−)θ − x θ and b = (y + δ+)θ − yθ .
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Since y + δ+ = x + δ−, we deduce that x θ − yθ = b − a. Moreover, by operator
monotonicity of s 7→ sθ , a and b are positive. Then the result for x + δ− > x > 0
and y + δ+ > y > 0 yields∥∥x θ − yθ

∥∥p

p = ‖a−b‖p
p 6 ‖a‖p

p+‖b‖p
p 6 ‖δ−‖θp

θp+‖δ+‖θp
θp = ‖δ‖θp

θp = ‖x− y‖θp
θp.

(2)
For p = ∞, (1) becomes

‖a − b‖∞ 6 max{‖a‖∞, ‖b‖∞}
for a, b > 0. This can be proved similarly by using the fact that the equality holds
true whenever a and b have disjoint supports. Using that ‖z‖θ∞ = ‖zθ‖∞ for any
z > 0, (2) for p = ∞ becomes the following:∥∥x θ − yθ

∥∥
∞ = ‖a − b‖∞ 6 max

{‖a‖∞, ‖b‖∞}
6 max

{‖δ−‖θ∞, ‖δ+‖θ∞} = max
{‖δθ−‖∞, ‖δθ+‖∞}

= ‖δθ− + δθ+‖∞ = ‖|δ|θ‖∞ = ‖δ‖θ∞ = ‖x − y‖θ∞.
Let us then prove the assertion when x > y > 0. We will also assume that y > ε1
to avoid unnecessary technical complications. Using the integral representation
for s ∈M invertible,

sθ = cθ

∫
R+

t θs
s + t

dt
t

with cθ =
(∫

R+

uθ

u(1+ u)
du
)−1

.

Differentiating the above integral formula and putting δ = x − y, we get

x θ − yθ = cθ

∫ 1

0

∫
R+

t θ (y + uδ + t)−1δ(y + uδ + t)−1 dt du.

Now, for a fixed u ∈ [0, 1], we consider the continuous function

t 7→ ut = 1√
θ

(y + uδ)(1−θ)/2

(y + uδ + t)

with positive values in the commutative algebra generated by y + uδ. Moreover,

cθ

∫
R+

t θu2
t dt = cθ

θ

∫
R+

t θ
(y + uδ)1−θ

(y + uδ + t)2
dt = cθ

θ

∫
R+

t θ

(1+ t)2
dt = 1.

Therefore, the map on M defined by

z 7→ cθ

∫
R+

t θut zut dt
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is unital, completely positive, and trace preserving. In particular, it extends to a
contraction on L p(M) for all 1 6 p 6 ∞; see [27, Theorem 5.1] for further
details. We deduce that∥∥x θ − yθ

∥∥
p 6 θ

∫ 1

0

∥∥(y + uδ)(θ−1)/2δ(y + uδ)(θ−1)/2
∥∥

p du

= θ
∫ 1

0

∥∥δ1/2(y + uδ)θ−1δ1/2
∥∥

p du 6 θ

∫ 1

0
uθ−1‖δθ‖p du = ‖δ‖θθp,

where the last inequality follows from the operator monotonicity of s 7→ s1−θ , so
(y + uδ)1−θ > (uδ)1−θ , and hence (y + uδ)θ−1 6 (uδ)θ−1.

Proof of Theorem B. Given 1 6 p 6∞, we claim that∥∥R(x)− R(
√

x)2
∥∥

2p 6 1
2

∥∥R(x2)− R(x)2
∥∥1/2

p (3)

for any subunital positive map R : `n
∞ →M with values in M ∩ L1(M) and

any positive x ∈ `n
∞. The assumption above about the range of R is to ensure that

R : `n
∞→ L p(M) is well defined. Before proving this claim, let us show how this

implies the assertion. Indeed, if T :M →M is a subunital positive map with
τ◦T 6 τ , it follows from [27, Remark 5.6] that T extends to a positive contraction
on L p(M). Now, when x ∈ L+2p(M) has a finite spectrum x =∑n

j=0 λ j p j with
λ0 = 0 and p j spectral projections, then p j ∈ M ∩ L1(M) for j > 1, and
we may define R : `n

∞ → M by R(e j) = T (p j), where (e j)
n
j=1 denotes the

canonical basis of `n
∞. The map R clearly satisfies the assumptions of our claim,

and R(zα) = T (xα) for z =∑n
j=1 λ j e j and any α > 0. Hence (3) gives∥∥T (x)− T (
√

x)2
∥∥

2p 6 1
2

∥∥T (x2)− T (x)2
∥∥1/2

p ,

as desired. The general case x ∈ L+2p(M) follows by standard approximations.
Let

xn =
n2∑

k=1

k
n

1[k/n,(k+1)/n)(x).

Then an easy check shows that, for α ∈ {1, 2, 1
2 }, xαn → xα in the appropriate

Lq-space.
Let us now prove claim (3). As usual, (ei j)

n
i, j=1 will denote the canonical basis

of the matrix algebra Mn . We first use an explicit Stinespring’s decomposition for
R. Let π : `n

∞→Mn be the usual diagonal inclusion, and put

u∗ =
n∑

j=1

e j1 ⊗ R(e j)
1/2 ∈Mn,1(M),
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so that we have R(x) = uπ(x)u∗. As R is subunital, uu∗ 6 1M, and u∗u 6
1Mn(M). For any positive y ∈ `n

∞, we get

R(y2)− R(y)2 = uπ(y)(1− u∗u)π(y)u∗ = ∣∣√1− u∗uπ(y)u∗
∣∣2.

Let us consider the following operators:

a = R(
√

x) = uπ(
√

x)u∗ ∈M,

b = √1− u∗uπ(
√

x)
√

1− u∗u ∈Mn(M).

Then we find z ∈ Mn,1(M) with ‖z‖∞ 6 1, so
√

1− u∗uπ(
√

x)u∗ = b1/2za1/2

and
√

1− u∗uπ(x)u∗ = √1− u∗uπ(
√

x)((1− u∗u)+ u∗u)π(
√

x)u∗

= b3/2za1/2 + b1/2za3/2.

We apply Lemma 2.1 twice to conclude. First,∥∥R(x)− R(
√

x)2
∥∥

2p =
∥∥b1/2za1/2

∥∥2

4p =
∥∥a1/2z∗bza1/2

∥∥
2p

6
∥∥az∗bz

∥∥
2p 6

∥∥az∗b
∥∥

2p.

Then, taking (α, γ, β) = (a, a1/2z∗b1/2, b), we obtain∥∥az∗b
∥∥

2p 6 1
2

∥∥a3/2z∗b1/2 + a1/2z∗b3/2
∥∥

2p = 1
2

∥∥R(x2)− R(x)2
∥∥1/2

p .

This completes the proof of our claim and also the proof of Theorem B.

COROLLARY 2.3. Let T :M→M be a subunital positive map with τ ◦ T 6 τ .
Then there exists a universal constant C > 0 such that the following inequality
holds for any x ∈ L+2 (M) and any 0 < θ 6 1:∥∥T (x θ )− x θ

∥∥
2/θ 6 C

∥∥T (x)− x
∥∥θ/2

2 ‖x‖θ/22 .

Proof. Given x ∈ L+2 (M), note that

‖T (x)− x‖2
2 6 ‖T x‖2

2 + ‖x‖2
2 6 τ(T (x2))+ ‖x‖2

2 6 2 ‖x‖2
2

by Kadison’s inequality for T and the fact that τ ◦ T 6 τ . In particular, the result
is trivially true for θ = 1 with constant 21/4. We claim the assertion holds for
θ = 2−n with constant 3

2 . We will proceed by induction, since we know it holds
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for n = 0. By Lemma 2.2 and n + 1 applications of Theorem B,∥∥T (x2−(n+1)
)− x2−(n+1)∥∥2

2n+2

6
∥∥T (x2−(n+1)

)2 − x2−n∥∥
2n+1

6
∥∥T (x2−(n+1)

)2 − T (x2−n
)
∥∥

2n+1 +
∥∥T (x2−n

)− x2−n∥∥
2n+1

6
n∏

j=0

2−2− j

︸ ︷︷ ︸
Cn=22−n−2

∥∥T (x2)− T (x)2
∥∥2−(n+1)

1 + ∥∥T (x2−n
)− x2−n∥∥

2n+1 .

On the other hand, Kadison’s inequality and the fact that τ ◦ T 6 τ yield∥∥T (x2)− T (x)2
∥∥

1 = τ(T (x2)− T (x)2) 6 τ(x2 − T (x)2)

6
∥∥x2 − T (x)2

∥∥
1 6 2

∥∥T (x)− x
∥∥

2‖x‖2,

since T extends to a contraction on L2(M) by [27, Remark 5.6]. Combining the
above estimates with the induction hypothesis for θ = 2−n , we finally deduce that∥∥T (x2−(n+1)

)− x2−(n+1)∥∥2

2n+2 6
[

3
2 + 22−(n+1)

Cn
]‖x‖2−(n+1)

2

∥∥T (x)− x
∥∥2−(n+1)

2 .

However, the constant in the right-hand side is less than 9
4 , and the result follows

for θ = 2−(n+1), which completes the induction argument. For other values of 0 <
θ < 1, we write θ = α2−(n+1) for some α ∈ (1, 2). Recall that s 7→ sα is operator
convex and s 7→ sα/2 is operator concave on R+, so, by Choi’s inequalities [8],

T (x2−(n+1)
)α 6 T (x θ ) 6 T (x2−n

)α/2.

In conjunction with Lemma 2.2, Theorem B, and our result for θ = 2−n , this
yields∥∥T (x θ )− x θ

∥∥
2/θ 6

∥∥T (x θ )− T (x2−n
)α/2

∥∥
2/θ +

∥∥T (x2−n
)α/2 − x θ

∥∥
2/θ

6
∥∥T (x2−n

)α/2 − T (x2−(n+1)
)α
∥∥

2/θ +
∥∥T (x2−n

)α/2 − x θ
∥∥

2/θ

6
∥∥T (x2−n

)− T (x2−(n+1)
)2
∥∥α/2

2n+1 +
∥∥T (x2−n

)− x2−n∥∥α/2
2n+1

6
[(

22−(n+1)
Cn
)α/2 + ( 3

2 )
α/2
]∥∥T x − x

∥∥θ/2
2 ‖x‖θ/22 .

Hence, a simple calculation shows that the result follows for some C 6
(3+√2)/2.
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COROLLARY 2.4. Let T :M→M be a subunital positive map with τ ◦ T 6 τ .
Then there exists a universal constant C > 0 such that the following inequality
holds for any self-adjoint y ∈ L2(M) with polar decomposition y = u|y| and
any 0 < θ 6 1:∥∥T (u|y|θ )− u|y|θ∥∥2/θ 6 C

∥∥T (y)− y
∥∥θ/4

2 ‖y‖3θ/4
2 .

Proof. Let us write y = y+ − y− for the decomposition of y into its positive and
negative parts, so that u|y|θ = yθ+ − yθ−. By positivity of the trace and T , we have

τ(T (y+)y+)+ τ(T (y−)y−) > τ(T (y)y).

In particular,

‖T (y+)− y+‖2
2 + ‖T (y−)− y−‖2

2 6 2‖y‖2
2 − 2τ(T (y)y) 6 2‖T (y)− y‖2‖y‖2.

Using this and Corollary 2.3, we deduce that

‖T (u|y|θ )− u|y|θ‖4/θ
2/θ

6
[∥∥T (yθ+)− yθ+

∥∥
2/θ +

∥∥T (yθ−)− yθ−
∥∥

2/θ

]4/θ

6 24/θ−1
[∥∥T (yθ+)− yθ+

∥∥4/θ

2/θ +
∥∥T (yθ−)− yθ−

∥∥4/θ

2/θ

]
6
(2C)4/θ

2

[‖T (y+)− y+‖2
2‖y+‖2

2 + ‖T (y−)− y−‖2
2‖y−‖2

2

]
6
(2C)4/θ

2

[‖T (y+)− y+‖2
2 + ‖T (y−)− y−‖2

2

]‖y‖2
2

6 (2C)4/θ‖T (y)− y‖2‖y‖3
2.

The assertion follows by taking powers θ/4 on both sides of the above estimate.

REMARK 2.5. In the above corollary, one can remove the assumption that y = y∗

but assuming that T is 2-positive by a standard 2× 2-matrix trick (see [53]).

REMARK 2.6. The above corollary will be useful to localize the frequency
support of square roots for elements in L p(Ĝ). This is even interesting in the
commutative case where we may control the frequency support of a fractional
power f θ in terms of the frequency support of f , up to small L p-corrections. As
an illustration, if the Fourier transform of f ∈ L2(R) is supported by (−α, α), we
may consider the positive definite functions

ζβ(x) =
(

1− |x |
2β

)
+

for β > 0.
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The associated Fourier multipliers are positive, unital, and trace preserving, so
we are in position to apply our results above. When β = α/2ε, we obtain that
supp ζβ ⊂ 1/ε(−α, α) and 1− ζβ(x) 6 ε for |x | 6 α. This yields, for p > 2,∥∥(ζβ( f 2/p)∧ − ( f 2/p)∧

)∨∥∥p

p 6 C
∥∥ζβ f̂ − f̂

∥∥
2‖ f ‖2 . ε‖ f ‖2

2.

REMARK 2.7. It is well known that, if T : M → M satisfies the above
hypothesis and τ is finite, then its fixed points form a ∗-subalgebra. This is
not true anymore when τ is semifinite: take for instance the map x 7→ s∗xs
on B(`2), where s is a one-sided shift. Nevertheless, in general, it is not
difficult to show using the generalized singular value decomposition that, if
x ∈ L+1 (M) ∪ L+2 (M) satisfies T (x) = x , then T (x θ ) = x θ for θ ∈ [0, 1].
Hence one could think of an ultraproduct argument to get perturbation results as
given explicitly in Corollary 2.3, with an upper bound of the form F(‖T (x)−x‖2)

for a certain continuous function F vanishing at 0. Unfortunately, semifiniteness
is not preserved by ultraproducts, and one would have to deal with type III von
Neumann algebras. The situation is then much more intricate (even to define T on
L p(M)), that is why we choose to deduce the type III result from the semifinite
one in Section 8.2. The fact that there exists a unital completely positive map
T : (M, ϕ)→ (M, ϕ) with ϕ ◦T = ϕ but T does not commute with the modular
group of ϕ (think of a right multiplier on a quantum group with its left Haar
measure) is an evidence that in the type III situation one needs extra arguments
such as the ones in Corollary 8.4.

3. Group algebras

Let G be a locally compact group equipped with its left Haar measure µG. Let
λG : G → B(L2(G)) be the left regular representation λG(g)(ξ)(h) = ξ(g−1h)
for any ξ ∈ L2(G). When no confusion can arise, we shall write µ, λ for the left
Haar measure and the left regular representation of G. Recall the definition of the
convolution in G:

ξ ∗ η(g) =
∫

G
ξ(h)η(h−1g) dµ(h).

We say that ξ ∈ L2(G) is left bounded if the map η ∈ Cc(G) 7→ ξ ∗ η ∈ L2(G)
extends to a bounded operator on L2(G), denoted by λ(ξ). This operator defines
the Fourier transform of ξ . The weak operator closure of the linear span of λ(G)
defines the group von Neumann algebra LG. It can also be described as the weak
closure in B(L2(G)) of operators of the form

f =
∫

G
f̂ (g)λ(g) dµ(g) = λ( f̂ ) with f̂ ∈ Cc(G).
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The Plancherel weight τG : LG+→ [0,∞] is determined by the identity

τG( f ∗ f ) =
∫

G
| f̂ (g)|2 dµ(g)

when f = λ( f̂ ) for some left-bounded f̂ ∈ L2(G) and τG( f ∗ f ) = ∞ for any
other f ∈ LG. Again, we shall just write τ for τG when the underlying group
is clear from the context. After breaking into positive parts, this extends to a
weight on a weak-∗ dense domain within the algebra LG. It will be instrumental
to observe that the standard identity

τ( f ) = f̂ (e)

applies for f = λ( f̂ ) ∈ λ(Cc(G) ∗ Cc(G)); see [47, Section 7.2] and [56, Section
VII.3] for a detailed construction of the Plancherel weight. Note that, for G
discrete, τ coincides with the natural finite trace given by τ( f ) = 〈 f δe, δe〉. It
is clear that the Plancherel weight is tracial if and only if G is unimodular, which
will be the case until Section 8. In the unimodular case, (LG, τ ) is a semifinite
von Neumann algebra, and we may construct the noncommutative L p-spaces

L p(LG, τ ) = L p(Ĝ) =
{
λ(Cc(G) ∗ Cc(G))

‖ ‖p for 1 6 p < 2,
λ(Cc(G))

‖ ‖p for 2 6 p <∞,
where the norm is given by

‖ f ‖p = τ(| f |p)1/p

and the pth power is calculated by functional calculus applied to the (possibly
unbounded) operator f ; we refer to Pisier and Xu’s survey [51] for more details
on noncommutative L p-spaces. On the other hand, since left-bounded functions
are dense in L2(G), the map λ : ξ 7→ λ(ξ) extends to an isometry from L2(G) to
L2(Ĝ). We will refer to it as the Plancherel isometry and use it repeatedly in what
follows, with no further reference. Given a symbol m : G→ C, we may consider
the associated multiplier Tm defined by

Tm( f ) =
∫

G
m(g) f̂ (g)λ(g) dµ(g) for f̂ ∈ Cc(G) ∗ Cc(G).

Tm is called an L p-Fourier multiplier if it extends to a bounded map on L p(Ĝ).
The rest of this section will be devoted to collecting some elementary results

around amenability and Fell absorption principles that will be used in what
follows. We will also need the following result, which we prove for completeness.
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LEMMA 3.1. Let G be a second countable locally compact unimodular group.
Then the group von Neumann algebra LH is a von Neumann subalgebra of LG
for any closed unimodular subgroup H of G.

Proof. By the Effros–Mackey cross section theorem [55, Theorem 5.4.2], there
exists a Borel measurable map σ : H \G → G defined on the space of right
cosets of G. Hence, we have a Borel measurable correspondence between G and
H \ G× H given by

Υ : G 3 g 7→ (Hg, h(g)) ∈ H\G× H,

where g = h(g)σ (Hg). According to [20, Theorem 2.49] for right cosets, and
since both G and H are unimodular, we know that there exists a G-invariant Radon
measure on right cosets. Therefore, the map

ξ 7→ ξ ◦ Υ −1

defines an isometry between L2(G) and L2(H\G×H). This allows us to identify
the algebras B(L2(G)) and B(L2(H\G)⊗2 L2(H)). Then, for any h ∈ H, we get
the identity

(id⊗ λH(h))(ξ ◦ Υ −1)(Hg, h(g)) = ξ(h−1h(g)σ (Hg))
= ξ(h−1g) = λG(h)(ξ)(g)

for ξ ∈ L2(G) and g ∈ G, which proves that LH ' {λG(h) : h ∈ H}′′ ⊂ LG.

In what follows, if no confusion is possible and when Lemma 3.1 applies,
we might use the notation λ(h) to denote both λG(h) and λH(h). Let us now
recall some well-known characterizations of amenability. Recall that amenability
is stable under closed subgroups, quotients, direct products, and group extensions.

LEMMA 3.2. TFAE for any locally compact group G, the following hold.

(i) G is amenable.

(ii) Følner condition. Given ε > 0 and F ⊂ G finite, there exists UF,ε ⊂ G of
finite positive measure such that µ(UF,εg 4UF,ε) < εµ(UF,ε) for all g ∈ F.

(iii) Almost-invariant vectors. Given ε > 0 and F ⊂ G finite, there exists a norm-
one function ξ ∈ L2(G) such that ‖λ(g)ξ − ξ‖L2(G) < ε for all g ∈ F.

(iv) The inequality ∥∥∥∥∥∑
g∈F

ag

∥∥∥∥∥
M

6

∥∥∥∥∥∑
g∈F

ag ⊗ λ(g)
∥∥∥∥∥
M⊗LG

holds for any finite F ⊂ G, any von Neumann algebra M, and (ag)g∈F ⊂M.
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Proof. The equivalence between the first three properties is well known and can
be found for instance in [48]. Let us show that (iv) is an equivalent condition.
Assume that G is amenable, and fix a von Neumann algebra M, a finite subset
F ⊂ G, a finite family (ag)g∈F ⊂M, and ε > 0. According to property (iii), we
may find a unit vector ξ ∈ L2(G) satisfying

‖λ(g)ξ − ξ‖L2(G) < ε

∥∥∥∥∥∑
g∈F

ag

∥∥∥∥∥
−1

M

.

Then, if M acts on H, we have, for any η ∈ H with ‖η‖H = 1,∣∣∣∣∣∣
〈(∑

g∈F

ag

)
η, η

〉
H

∣∣∣∣∣∣ =
∣∣∣∣∣∣
〈(∑

g∈F

ag

)
η ⊗ ξ, η ⊗ ξ

〉
H⊗2 L2(G)

∣∣∣∣∣∣
6

∣∣∣∣∣∣
〈(∑

g∈F

ag

)
η ⊗ (ξ − λ(g)ξ), η ⊗ ξ

〉
H⊗2 L2(G)

∣∣∣∣∣∣
+
∣∣∣∣∣∣
〈(∑

g∈F

ag ⊗ λ(g)
)
η ⊗ ξ, η ⊗ ξ

〉
H⊗2 L2(G)

∣∣∣∣∣∣
6 ε +

∥∥∥∥∥∑
g∈F

ag ⊗ λ(g)
∥∥∥∥∥
M⊗LG

.

This yields the required inequality. Reciprocally, fix F ⊂ G a finite set containing
the identity e, and let ε > 0. Moreover, we may assume that F is symmetric. Then
x := ∑g∈F λ(g) is self-adjoint, and we may write x = x+ − x− with x+ and x−
positive and having orthogonal supports. We claim that ‖x‖LG = ‖x+‖LG. Indeed,
otherwise we would have ‖x‖LG = ‖x−‖LG, and according to (iv) this would
imply that ‖x−‖LG = |F |. However, x = 1+∑g∈F\{e}

1
2 (λ(g)+λ(g−1)) > 2−|F|,

which implies that ‖x−‖LG 6 |F|−2. This proves the claim and implies that there
exists a unit vector ξ ∈ L2(G) in the support of x+, with∥∥∥∥∥∑

g∈F

λ(g)

∥∥∥∥∥
LG

6

〈(∑
g∈F

λ(g)

)
ξ, ξ

〉
+ ε

2
.

Then, taking M = C and ag = 1, for any g ∈ F, we get∑
g∈F

∥∥λ(g)ξ − ξ∥∥2

L2(G)
= 2

∑
g∈F

(1− Re〈λ(g)ξ, ξ〉)
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= 2

(
|F| −

〈∑
g∈F

λ(g)ξ, ξ

〉)

6 2

∥∥∥∥∥∑
g∈F

λ(g)

∥∥∥∥∥
LG

−
〈∑

g∈F

λ(g)ξ, ξ

〉 < ε,

where the second identity used the symmetry of F. This completes the proof.

4. Lattice approximation

In this section, we want to deduce the boundedness of an L p-Fourier multiplier
from the uniform boundedness of its restriction to certain families of lattices.
As stated in Theorem C, this will be possible if G is approximated by these
lattices in the sense G ∈ ADS defined in Section 1. Observe that, if G ∈ ADS
is approximated by (Γ j) j>1, then the union

⋃
j Γ j of the approximating lattices

is dense in G. Indeed, let g ∈ G, and let V be an open neighborhood of g.
Then V g−1 is an open neighborhood of e, and for j large enough we have
X j ⊂ V g−1, where X j denotes the fundamental domain associated to Γ j . Let
g j be the representant of g−1 in X j . In other words, there exists γ j ∈ Γ j such
that g j = γ j g−1. This implies that γ j = g j g ∈ X j g ⊂ V , so Γ j ∩ V 6= ∅, and
we deduce the density result mentioned above. Also note that, by [52, Remark
1.9], any group admitting a lattice is unimodular. In particular, any ADS group is
unimodular. Thus our preliminaries on group von Neumann algebras from Section
3 suffice for our lattice approximation result. In the proof of Theorem C we shall
need the following elementary result.

LEMMA 4.1. Let G be a locally compact group, and let K ⊂ Ω ⊂ G with K
compact and Ω open. Let (V j) j>1 be a basis of neighborhoods of the identity.
Then, there exists an index j0 > 1 such that, for any j > j0,

K ⊂
⋃
g∈K

gV j ⊂ Ω.

Proof. Take a left invariant distance d on G, so that d(K ,Ωc) = δ > 0. Since
diam(V j)→ 0, any j0 with diam(V j) < δ for j > j0 satisfies the conclusion.

Proof of Theorem C. The case when p = 2 is straightforward, since m is
continuous almost everywhere and the union of lattices Γ j is dense in G, so the
L∞-norm of m is determined by lattice approximation. On the other hand, by a
standard duality argument, we may assume that p < 2. Moreover, the case when
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p = 1 follows from the assertion for 1 < p < 2 and the three-lines lemma,

‖Tm‖1→1 6 lim
p→1
‖Tm‖p→p 6 lim

p→1
sup
j>1
‖Tm|Γ j

‖p→p 6 sup
j>1
‖Tm|Γ j

‖1→1.

Therefore, we may and will assume in what follows that 1 < p < 2. The strategy
will be to approximate Tm f weakly in L p by a sequence S j f constructed from a
family (S j) j>1 of uniformly bounded maps as follows. For each j > 1, we first
define the map

Φ j : LΓ j 3 λ(γ ) 7→ h∗jλ(γ )h j ∈ LG,

where h j = λ(1X j ) ∈ LG and 1X denotes the characteristic function of X. Since
X j is a fundamental domain associated to the lattice Γ j , we have 0 < µ(X j) <∞.
It is clear thatΦ j is completely positive, and we may define the family of operators

Φ
p
j = µ(X j)

−2+1/pΦ j for any 1 6 p 6∞.
Now we note the straightforward inequality

‖Φ∞j (1)‖LG = µ(X j)
−2‖h j‖2

LG 6 µ(X j)
−2‖1X j‖2

L1(G) = 1.

Moreover, since the sets (γX j)γ∈Γ j are disjoint, we also have, for γ ∈ Γ j ,

τ(Φ j(λ(γ ))) = τ(h∗jλ(γ )h j) = 〈λ(γ )h j , h j 〉L2(Ĝ)

= 〈1γX j ,1X j 〉L2(G) = µ(X j)δγ,e = µ(X j)τ (λ(γ )).

By complete positivity of Φ j , the first estimate implies that Φ∞j : LΓ j → LG is
a contractive map. The second identity implies that Φ1

j is trace preserving, and
hence defines a contraction L1(LΓ j)→ L1(LG) by means of [27, Theorem 5.1].
Using interpolation of analytic families of operators, we get∥∥Φ p

j : L p(Γ̂ j)→ L p(Ĝ)
∥∥ 6 1 for 1 6 p 6∞.

On the other hand, the L2-adjoints Ψ j = Φ∗j are given by

Ψ j( f ) =
∑
γ∈Γ j

τ
(
h∗jλ(γ

−1)h j f
)
λ(γ )

for f ∈ LG. Moreover, given 1 6 p 6∞, consider the contractions

Ψ
p
j = (Φ p′

j )
∗ = µ(X j)

−1−1/pΨ j : L p(Ĝ)→ L p(Γ̂ j),

where p′ denotes the conjugate of p. We are finally ready to introduce the maps

S j = Φ p
j Tm|Γ j

Ψ
p
j = µ(X j)

−3Φ j Tm|Γ j
Ψ j : L p(Ĝ)→ L p(Ĝ),
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which are uniformly bounded by

C p := sup
j>1

∥∥Tm|Γ j
: L p(Γ̂ j)→ L p(Γ̂ j)

∥∥.
If we fix f ∈ λ(Cc(G) ∗ Cc(G)), the sequence (S j f ) j>1 is uniformly bounded in
L p(Ĝ) by C p‖ f ‖L p(Ĝ), and it accumulates in the weak topology. We claim that
S j f weakly converges to Tm f = w-L p- lim j S j f for 1 < p < 2. The theorem
will follow by the L p-density of λ(Cc(G) ∗ Cc(G)). To prove it, we can reduce
ourselves to showing that

Tm f = L2- lim
j→∞

S j f for any f ∈ λ(Cc(G) ∗ Cc(G)). (4)

Indeed, if it holds true and q is any τ -finite projection,

lim
j→∞

∥∥qTm f − q S j f
∥∥

L p(Ĝ)
6 ‖q‖Lr (Ĝ) lim

j→∞
‖Tm f − S j f ‖L2(Ĝ) = 0,

where 1/p = 1/r + 1/2. Hence

qTm f = L p- lim
j→∞

(q S j f ) = w-L p- lim
j→∞

(q S j f ) = q
(
w-L p- lim

j→∞
S j f

)
for any τ -finite projection q , which implies that Tm f = w-L p- lim j S j f . We now
turn to the proof of the key result, (4). Let us introduce some notation. For j > 1,
define

L j : L2(Ĝ) 3 f 7→ µ(X j)
−1h j f ∈ L2(Ĝ)

and

Pj : L2(Ĝ) 3 f 7→ 1
µ(X j)

∑
γ∈Γ j

〈 f, λ(γ )h j 〉L2(Ĝ)λ(γ )h j ∈ L2(Ĝ).

Given g ∈ G, and since (γX j)γ∈Γ j forms a partition of G, there exists a unique
γ ∈ Γ j such that g ∈ γX j . Let us write γ j(g) for this element, and consider the
map m j : G→ C given by m j(g) = m(γ j(g)). We claim that the following hold.

(i) S j = L∗j Pj Tm j L j on L2(Ĝ).

(ii) L j , L∗j , Pj : L2(Ĝ)→ L2(Ĝ) are contractive, and∥∥Tm j : L2(Ĝ)→ L2(Ĝ)
∥∥ 6 ‖m‖∞.

(iii) Given f ∈ λ(Cc(G)), the following identity holds:

lim
j→∞
‖L j f − f ‖L2(Ĝ) + ‖L∗j f − f ‖L2(Ĝ) + ‖Pj f − f ‖L2(Ĝ)

+‖Tm j f − Tm f ‖L2(Ĝ) = 0.

In fact, the first three summands also converge to 0 for f ∈ L2(Ĝ).
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The L2-convergence (4) follows from this. Indeed, (i) gives, for f ∈ λ(Cc(G)),

‖Tm f − S j f ‖L2(Ĝ) 6 ‖Tm f − L∗j Tm f ‖L2(Ĝ)

+‖L∗j Tm f − L∗j Pj Tm f ‖L2(Ĝ)

+‖L∗j Pj Tm f − L∗j Pj Tm j f ‖L2(Ĝ)

+‖L∗j Pj Tm j f − L∗j Pj Tm j L j f ‖L2(Ĝ),

which clearly tends to 0 as j →∞ by (ii) and (iii). Therefore, it suffices to justify
properties (i)–(iii). Let us start by noticing the following identity, which follows
from Plancherel’s isometry:〈

Tm j f, λ(γ )h j
〉
L2(Ĝ)
= 〈m j f̂ ,1γX j

〉
L2(G)
= m(γ )

〈
f, λ(γ )h j

〉
L2(Ĝ)

.

Applying this to h j f , we get

S j f = µ(X j)
−3
∑
γ∈Γ j

m(γ )
〈
f, h∗jλ(γ )h j

〉
L2(Ĝ)

h∗jλ(γ )h j

= µ(X j)
−3
∑
γ∈Γ j

〈
Tm j (h j f ), λ(γ )h j

〉
L2(Ĝ)

h∗jλ(γ )h j = L∗j Pj Tm j L j f,

which proves (i). Claim (ii) for L j follows from ‖µ(X j)
−1h j‖LG 6

‖µ(X j)
−11X j‖L1(G) 6 1. The boundedness for Pj is clear, since it is the orthogonal

projection onto the closed linear span of (λ(γ )h j)γ∈Γ j . The last assertion in (ii)
is trivial, since ‖m j‖∞ 6 ‖m‖∞. Let us finally prove the convergence results in
property (iii). By [20, Proposition 2.42], the family ĥ j = µ(X j)

−11X j forms an
approximation of the identity, so

lim
j→∞

∥∥ĥ j ∗ ξ − ξ
∥∥

L2(G)
= 0 for ξ ∈ L2(G).

By Plancherel’s isometry, this yields vanishing limits for the first two terms in
(iii). Moreover, the third term will converge to 0 if and only if the orthogonal
projection P̃j of L2(G) onto span{1γX j : γ ∈ Γ j } satisfies

lim
j→∞

∥∥P̃jξ − ξ
∥∥

L2(G)
= 0 for any ξ ∈ L2(G). (5)

By the density of the simple functions in L2(G), we may assume that ξ = 1Ω for
a Borel subset Ω of G with finite measure. Moreover, since the Haar measure is
outer regular, Ω can be assumed to be open. On the other hand, given any ε > 0,
and since µ is inner regular on open sets, there exists a compact set K ⊂ Ω such
that µ(Ω \K) 6 ε. By applying Lemma 4.1 to the basis of neighborhoods of the
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identity given by (X−1
j X j) j>1, we obtain that there exists j0 > 1 such that, for any

j > j0,
K ⊂

⋃
g∈K

γ j(g)X j ⊂
⋃
g∈K

gX−1
j X j ⊂ Ω.

The sets (γX j)γ∈Γ j being disjoint, we can find a subset F ⊂ K satisfying

K ⊂
⊔
g∈F

γ j(g)X j ⊂ Ω.

Moreover, since the sets Ω and γ j(g)X j are of finite measure, the set F has to be
finite. Hence, the function η =∑g∈F 1γ j (g)X j satisfies ‖ξ−η‖2

L2(G) 6 µ(Ω\K) 6 ε,
and the limit (5) is proved. It remains to consider the last term in (iii). Let ε > 0,
and let f ∈ λ(Cc(G)) be frequency supported by a compact set K. Since γ j(g)→
g as j →∞ and m is continuous µ-a.e., we have m j → m µ-a.e. Moreover, by
Egoroff’s theorem [21, Theorem 2.33], there exists a set E ⊂ K with µ(E) < ε

and such that m j → m uniformly on K\E. Pick j0 > 1 satisfying

sup
g∈K\E
|m j(g)− m(g)| 6 ε1/2

for all j > j0. Then we get, for j > j0,

‖Tm j f − Tm f ‖2
L2(Ĝ)
= ‖(m j − m) f̂ ‖2

L2(G)

6
∫

K\E
| f̂ (g)|2|m j(g)− m(g)|2 dµ(g)+

∫
E
| f̂ (g)|2|m j(g)− m(g)|2 dµ(g),

which is dominated by ε
(‖ f̂ ‖2

L2(G)+4‖m‖2
L∞(G)‖ f̂ ‖2

L∞(G)
)
, and proves (iii) for the

last term.

REMARK 4.2. Modifying the proof above, we may extend Theorem C. Namely,
let G ∈ ADS be approximated by (Γ j) j>1, m : G → C be a.e. continuous, and
m̃ j : Γ j → C. If we assume that m̃ j ◦γ j → m a.e., and that sup j‖m̃ j ◦γ j‖L∞(G) 6
C , then ∥∥Tm : L p(Ĝ)→ L p(Ĝ)

∥∥ 6 sup
j>1

∥∥Tm̃ j : L p(Γ̂ j)→ L p(Γ̂ j)
∥∥

for any 1 6 p 6∞. Indeed, it suffices to define

S j = µ(X j)
−3Φ j Tm̃ jΨ j

and consider m j = m̃ j ◦ γ j in the proof of Theorem C. Then our assumptions
ensure that the fourth summand in (iii) converges to 0, and we conclude as in the
proof of Theorem C.
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REMARK 4.3. We have not performed an extensive study of groups satisfying the
ADS condition. Apart from discrete groups and many LCA groups, of particular
interest to us is the Heisenberg group, defined as the set Hn = Rn × Rn × R with
inner law (a, b, c) · (a′, b′, c′) = (a+a′, b+b′, c+c′+ 1

2 (〈a, b′〉−〈a′, b〉)). It is a
simple example of an ADS group. Namely, take for instance the family of lattices
Γ j = (1/j)Zn × (1/j)Zn × (1/2 j 2)Z which trivially satisfy the ADS condition.
Other nilpotent groups satisfying the ADS condition are the groups H(K, n) of
upper triangular matrices over the field K = R,C with 1s on the diagonal. In this
case, a simple choice of lattices is Γ j = Idn + 〈 j r−sZ⊗ er,s : 1 6 r < s 6 n〉.

5. The restriction theorem

In this section, we prove Theorem A for unimodular groups. In other words,
we prove that, under the SAIN condition, L p-Fourier multipliers of a unimodular
group G restrict to multipliers of any ADS subgroup H, and this restriction map
is norm decreasing. Observe that, by unimodularity of G, no condition on the
modular function is needed. All our work so far will be needed in the proof.

Proof of Theorem A: unimodular case. Let m : G→ C be a bounded continuous
symbol, and let 1 6 p 6∞. We first reduce the proof to the particular case of the
restriction from a locally compact unimodular group G to a discrete subgroup H.
Indeed, assume that Theorem A is valid under the additional assumption that the
subgroup is discrete. Consider an ADS subgroup H approximable by the family
(Γ j) j>1, and assume that G ∈ [SAIN]H. Since Γ j ⊂ H ⊂ G and

[SAIN]H ⊂
⋂
j>1

[SAIN]Γ j ,

we may restrict from G to any Γ j . In conjunction with Theorem C this yields∥∥Tm|H : L p(Ĥ)→ L p(Ĥ)
∥∥

6 sup
j>1

∥∥Tm|Γ j
: L p(Γ̂ j)→ L p(Γ̂ j)

∥∥ 6
∥∥Tm : L p(Ĝ)→ L p(Ĝ)

∥∥.
Hence, we shall consider in what follows a discrete subgroup Γ of a locally
compact unimodular group G satisfying G ∈ [SAIN]Γ . We have reduced the
proof of Theorem A for G unimodular to this particular case. Arguing as we
did at the beginning of the proof of Theorem C and using the continuity of the
symbol for p = 2, it suffices to consider 2 < p <∞. Moreover, by density of the
trigonometric polynomials in L p(Γ̂ ), it is enough to prove that∥∥Tm|Γ f

∥∥
L p(Γ̂ )

6
∥∥Tm : L p(Ĝ)→ L p(Ĝ)

∥∥ ‖ f ‖L p(Γ̂ ) (6)
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for any trigonometric polynomial f ∈ LΓ . As we explained in Section 1, the
basic idea is to construct an approximation of the identity in G which intertwines
with the pair (Tm, Tm|Γ ) in the limit. Let us fix such a trigonometric polynomial
f0 ∈ LΓ , and let F ⊂ Γ denote its frequency support,

f0 =
∑
γ∈F

f̂0(γ )λ(γ ).

Let (V j) j>1 be the symmetric neighborhood basis of the identity associated to
F by the SAIN condition. Moreover, since Γ is discrete, we may take j large
enough and assume that the sets (γ V j)γ∈Γ are disjoint. Let us define the self-
adjoint elements h j = µ(V j)

−1/2λ(1V j ) with polar decomposition h j = u j |h j |,
and set

Φ
q
j : λ(γ ) 7→ λ(γ )u j |h j |2/q for γ ∈ Γ and 2 6 q 6∞.

Then the proof will rely on the two following results.

Claim A. Given 2 6 q 6∞, we have the following.

(i) Φq
j extends to a contraction Lq(Γ̂ )→ Lq(Ĝ).

(ii) Given any f ∈ LΓ frequency supported by F, we have

lim
j→∞
‖Φq

j f ‖Lq (Ĝ) = ‖ f ‖Lq (Γ̂ ).

Claim B. Let p be as we fixed at the beginning of the proof. Given 2 6 q < p and
any trigonometric polynomial f in LΓ ,

lim
j→∞
‖Φq

j (Tm|Γ f )− Tm(Φ
q
j f )‖Lq (Ĝ) = 0.

Let us finish the proof of Theorem A before proving these two claims. Let f0

be the trigonometric polynomial in LΓ frequency supported by F that we have
fixed above. We claim that,

‖Tm|Γ f0‖L p(Γ̂ ) = lim
q↗p
‖Tm|Γ f0‖Lq (Γ̂ ).

Indeed, q 7→ log ‖Tm|Γ f0‖Lq (Γ̂ ) is convex by complex interpolation, and hence
continuous at p.

Since Tm|Γ f0 is also frequency supported by F, Claims A and B yield
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‖Tm|Γ f0‖L p(Γ̂ ) = lim
q↗p

lim
j→∞
‖Φq

j (Tm|Γ f0)‖Lq (Ĝ)

= lim
q↗p

lim
j→∞
‖Tm(Φ

q
j f0)‖Lq (Ĝ)

6 lim
q↗p

lim
j→∞

∥∥Tm : Lq(Ĝ)→ Lq(Ĝ)
∥∥‖Φq

j f0‖Lq (Ĝ)

= lim
q↗p
‖Tm‖q→q‖ f0‖Lq (Γ̂ ) 6

∥∥Tm : L p(Ĝ)→ L p(Ĝ)
∥∥‖ f0‖L p(Γ̂ ).

The latter inequality follows by interpolation, since

‖Tm‖q→q 6 ‖Tm‖1−θ
2→2‖Tm‖θp→p

for 1/q = (1− θ)/2+ θ/p, so θ → 1 as q → p. This completes the proof of (6).

Proof of Claim A. Since the SAIN condition implies that G is second countable,
we may consider LΓ as a von Neumann subalgebra of LG by Lemma 3.1. Thus
Claim A(i) is clear for q = ∞ by writing ‖Φ∞j f ‖LG = ‖ f u j‖LG 6 ‖ f ‖LG =
‖ f ‖LΓ . Moreover, by Plancherel’s isometry and disjointness of the sets (γ V j)γ∈Γ ,
we get

‖Φ2
j f ‖2

L2(Ĝ)
= ‖ f h j‖2

L2(Ĝ)
= µ(V j)

−1

∥∥∥∥∥∑
γ∈Γ

f̂ (γ )1γ V j

∥∥∥∥∥
2

L2(G)

= ‖ f ‖2
L2(Γ̂ )

. (7)

Claim A(i) then follows using interpolation for analytic families of operators; we
leave the details to the reader. The upper estimate in Claim A(ii) follows from
(i), and it suffices to show that lim j ‖Φq

j ( f )‖Lq (Ĝ) > ‖ f ‖Lq (Ĝ) for trigonometric
polynomials f in LΓ frequency supported by F. Let q∗ be the L2-conjugate index
of q , so that 1/q + 1/q∗ = 1/2. We have

‖ f ‖Lq (Γ̂ ) = ‖ f ∗‖Lq (Γ̂ ) = sup
‖k‖Lq∗ (Γ̂ )61

k trigonometric polynomial

‖k f ∗‖L2(Γ̂ ).

Fix such a polynomial k = ∑γ∈M k̂(γ )λ(γ ). Then, since Φ2
j is an isometry, by

(7),

‖k f ∗‖L2(Γ̂ ) = ‖Φ2
j (k f ∗)‖L2(Ĝ) = ‖k f ∗h j‖L2(Ĝ)

6 ‖k f ∗h j −Φq∗
j (k)u jΦ

q
j ( f )∗‖L2(Ĝ) + ‖Φq∗

j (k)u jΦ
q
j ( f )∗‖L2(Ĝ).

By Hölder’s inequality and Claim A(i),

‖Φq∗
j (k)u jΦ

q
j ( f )∗‖L2(Ĝ) 6 ‖Φq∗

j (k)‖Lq∗ (Ĝ)‖Φq
j ( f )∗‖Lq (Ĝ) 6 ‖Φq

j ( f )‖Lq (Ĝ).
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For the first summand, let us prove that

lim
j→∞
‖k f ∗h j −Φq∗

j (k)u jΦ
q
j ( f )∗‖L2(Ĝ) = 0.

This will complete the proof of Claim A. Since h j is self-adjoint,

Φ
q∗
j (k)u jΦ

q
j ( f )∗ = ku j |h j |2/q∗u j |h j |2/qu∗j f ∗ = kh j f ∗.

Then, by Plancherel’s isometry and the Cauchy–Schwarz inequality, we get

‖k f ∗h j − kh j f ∗‖L2(Ĝ)

=
∥∥∥∥∥∥
∑

γ ′∈M,γ∈F

k̂(γ ′) f̂ (γ )
(
λ(γ ′)λ(γ −1)h j − λ(γ ′)h jλ(γ

−1)
)∥∥∥∥∥∥

L2(Ĝ)

6
∑

γ ′∈M,γ∈F

∣∣̂k(γ ′) f̂ (γ )
∣∣ ∥∥λ(γ ′)λ(γ −1)h j − λ(γ ′)h jλ(γ

−1)
∥∥

L2(Ĝ)

=
∑

γ ′∈M,γ∈F

∣∣̂k(γ ′) f̂ (γ )
∣∣µ(V j)

−1/2
∥∥1γ−1V jγ − 1V j

∥∥
L2(G)

=
∑

γ ′∈M,γ∈F

∣∣̂k(γ ′) f̂ (γ )
∣∣(µ(γ −1V jγ4V j)

µ(V j)

)1/2

6

 ∑
γ ′∈M,γ∈F

|̂k(γ ′) f̂ (γ )|2
1/2  ∑

γ ′∈M,γ∈F

µ(γ −1V jγ4V j)

µ(V j)

1/2

= ‖k‖L2(Ĝ)‖ f ‖L2(Ĝ)|M|1/2
(∑
γ∈F

µ(γ −1V jγ4V j)

µ(V j)

)1/2

, (8)

which converges to 0 as j →∞, since we have assumed that G ∈ [SAIN]Γ .

Proof of Claim B. Without loss of generality, we may assume that f = λ(γ ) for
some γ ∈ Γ by the triangle inequality in Lq(Ĝ). Replacing m by m(γ ·), we may
assume that γ = e (we leave the details to the reader here). This means that we
are reduced to proving that

lim
j→∞

∥∥m(e)u j |h j |2/q − Tm(u j |h j |2/q)
∥∥

Lq (Ĝ)
= 0. (9)

Given ε > 0, and since m is continuous in e ∈ G, there exists a neighborhood Uε

of the identity such that |m(g) − m(e)| < ε for every g ∈ Uε. Since G is locally
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compact, we may assume that Uε is relatively compact, and so µ(Uε) < ∞. Let
Wε be a symmetric neighborhood of e with W 2

ε ⊂ Uε, and define

ζ(g) = µ(Wε ∩ gWε)

µ(Wε)
= 〈λ(g)1Wε

,1Wε
〉

µ(Wε)
.

Hence, ζ is a coefficient function of the left regular representation, and the
coefficient is given by the positive vector state with respect to the vector
µ(Wε)

−1/21Wε
. It is then standard that ζ is continuous, positive definite, and

ζ(e) = 1. Furthermore, by construction, supp ζ ⊂ Uε. Let Tζ be the associated
Fourier multiplier; then Tζ : LG → LG is a normal, trace-preserving, unital,
completely positive map. This implies that it extends to a contraction

Tζ : L p(Ĝ)→ L p(Ĝ)

for every 1 6 p 6∞. By Plancherel isometry, we have∥∥Tζh j − h j

∥∥2

L2(Ĝ)
= ∥∥(ζ − 1)µ(V j)

−1/21V j

∥∥2

L2(G)
= 1
µ(V j)

∫
V j

|ζ(g)− 1|2 dµ(g),

which converges to 0 as j → ∞, since V j → {e} and ζ is continuous at e. At
this point we need our result on almost-multiplicative maps. Indeed, since h j is a
self-adjoint operator of L2-norm one, we deduce from Corollary 2.4 that

lim
j→∞

∥∥Tζ (u j |h j |2/q)− u j |h j |2/q
∥∥

Lq (Ĝ)
= 0. (10)

Let us now prove (9). Setting z j = u j |h j |2/q , we write

‖m(e)z j − Tm z j‖Lq (Ĝ) 6 ‖m(e)(z j − Tζ z j)‖Lq (Ĝ)

+‖m(e)Tζ z j − Tm(Tζ z j)‖Lq (Ĝ)

+‖Tm(Tζ z j)− Tm z j‖Lq (Ĝ) = A j + B j + C j .

By (10), lim j A j = lim j C j = 0. By definition of Uε, we have∥∥T(m(e)−m)ζ : L2(Ĝ)→ L2(Ĝ)
∥∥ = ‖(m(e)− m)ζ‖L∞(G) < ε.

On the other hand, since ‖Tζ : L p(Ĝ)→ L p(Ĝ)‖ = 1, we get∥∥T(m(e)−m)ζ : L p(Ĝ)→ L p(Ĝ)
∥∥ 6 |m(e)| + ∥∥Tm : L p(Ĝ)→ L p(Ĝ)

∥∥.
By the three-line lemma, we obtain

B j 6
∥∥T(m(e)−m)ζ : L2(Ĝ)→ L2(Ĝ)

∥∥1−θ∥∥T(m(e)−m)ζ : L p(Ĝ)→ L p(Ĝ)
∥∥θ

6 ε1−θ(|m(e)| + ∥∥Tm : L p(Ĝ)→ L p(Ĝ)
∥∥)θ for

1
q
= 1− θ

2
+ θ

p
.

This implies (9), which gives Claim B and completes the proof of Theorem A.
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We end this section by giving some examples of groups satisfying the
conditions of Theorem A. We have already considered the ADS condition in
the previous section, so let us analyze the SAIN condition. There are two general
conditions which imply small almost-invariant neighborhoods.

• G ∈ [SIN]H (small invariant neighborhoods) if there exists a neighborhood
basis of the identity of G consisting of open sets that are invariant under
conjugation with respect to H; see for instance [24, 41] for this class of pairs
(G,H) when G = H. Of course, we have [SIN]H ⊂ [SAIN]H.

• Another interesting class of pairs satisfying the SAIN condition is given by
amenable discrete subgroups Γ satisfying ∆G |Γ= 1; see Theorem 8.7 below.
As a consequence of it, we shall show that Theorem A holds for pairs (G,H)
with H any ADS amenable group.

Concrete examples (even in the nonunimodular setting) will be given in
Section 8.

REMARK 5.1. Both properties above are strictly stronger than the SAIN
condition, since none of them is included in the other one. To see this, let
us construct examples of pairs (G, Γ ), where Γ is a discrete subgroup of a
unimodular locally compact group G, satisfying only one of these two following
properties.

(i) The free group with two generators F2 can be represented as a (nonclosed)
subgroup of SO(3). This way F2 acts on R3, and the open balls Br (0) ⊂
R3 with center 0 and radius r are invariant under the action of F2. We may
consider the semidirect product G = R3 o F2, which is unimodular since
the action of F2 is measure preserving. Then the sets Br (0) are naturally
contained in G, and in fact form a basis of neighborhoods of the identity
which are invariant under conjugation with respect to F2. Hence R3 o F2 ∈
[SIN]F2 , but F2 is not amenable.

(ii) Let G be the Heisenberg group in Rn , and let Γ = Zn ×{0}× {0} ⊂ G. Then
Γ satisfies our second property above, but G /∈ [SIN]Γ . Indeed, let U be a
small neighborhood of (0, 0, 0) invariant under conjugation by Γ . Assume
that U ⊂ Rn × Rn × [−L , L] for some L > 0. Since conjugation in the
Heisenberg group gives

(−a,−b,−c) · (x, y, t) · (a, b, c) = (x, y, t − 〈a, y〉 + 〈b, x〉),
we deduce that (x, y, t) ∈ U ⇒ (x, y, t −〈a, y〉) ∈ U for all a ∈ Zn . But we
can find an element (x, y, t) ∈ U with y 6= 0 and a sequence (a j) j>1 in Zn

verifying |〈a j , y〉| → ∞, which contradicts this property.
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REMARK 5.2. We already know that every ADS group is unimodular. On the
other hand, it also holds that G ∈ [SAIN]H with ∆H = ∆G |H implies that H is
unimodular, since

∆H(h) = ∆G(h) = lim
j→∞

µ(h−1V j h)
µ(V j)

= lim
j→∞

µ(h−1V j h)− µ(h−1V j h\V j)

µ(V j)

= lim
j→∞

µ(h−1V j h ∩ V j)

µ(V j)
= 1− lim

j→∞
µ(V j \h−1V j h)

µ(V j)
= 1

for every h ∈ H. In particular, all our conditions in Theorem A point to the
unimodularity of H. As we shall see in Section 9, this is not the case when we
work with amenable groups in the category of operator spaces. We leave as an
open problem to decide whether unimodularity is an essential assumption for
restriction of Fourier multipliers.

6. The compactification theorem

We now extend de Leeuw’s compactification theorem. In other words, given a
locally compact group G, let us write Gdisc to denote the same group equipped
with the discrete topology. Under the conditions in Theorem D, we prove that the
L p-boundedness of a Fourier multiplier on G is equivalent to the L p-boundedness
of that multiplier defined on Gdisc. In this section, and for the sake of clarity, we
will write λ = λG and λ′ = λGdisc for the left regular representation on G and
Gdisc, respectively. Moreover, we shall use a similar terminology for trigonometric
polynomials in both LG and LGdisc:

f =
∑
g∈F

f̂ (g)λ(g)↔ f ′ =
∑
g∈F

f̂ (g)λ′(g).

Before proving the compactification theorem, let us first discuss the conditions on
the group G that we impose. In de Leeuw’s proof of the compactification theorem
for Rn , the following basic properties were crucial.

(P1) We have

Rn =
⋃
j>1

2− jZn.

(P2) There is an injective homomorphism Ψ : Rn → Rn
bohr—the dual to the

canonical inclusion map Rn
disc → Rn—with dense image and such that
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f = f ′ ◦ Ψ for any pair ( f, f ′) ∈ L∞(Rn) × L∞(Rn
bohr) of trigonometric

polynomials with matching Fourier coefficients. In particular,

‖ f ′‖L∞(Rn
bohr)
= sup

ξ∈Rn
| f ′ ◦ Ψ (ξ)| = sup

ξ∈Rn
| f (ξ)| = ‖ f ‖L∞(Rn).

Of course, we will replace (P1) by our ADS condition. On the other hand, (P2)
is not a general property of locally compact groups. Indeed, according to Lemma
3.2(iv) for M = C (see the proof), if ‖ f ‖LG = ‖ f ′‖LGdisc for any trigonometric
polynomial f in LG, then the amenability of G is equivalent to the amenability of
Gdisc. However, this is false in general. Consider for instance the group G = SO(3)
which is compact, and hence amenable. In contrast, since the free group F2 is a
subgroup of Gdisc = SO(3)disc, the discretized group Gdisc is not amenable. In the
following result we show that ‖ f ‖LG = ‖ f ′‖LGdisc when Gdisc is amenable.

LEMMA 6.1. If f is a trigonometric polynomial in LG, then the following hold.

(i) We always have ‖ f ′‖LGdisc 6 ‖ f ‖LG.

(ii) The reverse inequality holds true whenever Gdisc is amenable.

Proof. Let (V j) j>1 be a symmetric basis of neighborhoods of the identity in G
(recalling that G is second countable), and let F ⊂ G be finite. Then, for j > 1
large enough and h j = µ(V j)

−1/2λ(1V j ), the following map is isometric:

Lh j : `2(F) 3 (ag)g∈F 7→
(∑

g∈F

agλ(g)

)
h j ∈ L2(Ĝ). (11)

Indeed, since (gV j)g∈F are disjoint for j large enough,

‖Lh j (a)‖2
L2(Ĝ)
= µ(V j)

−1

∥∥∥∥∥∑
g∈F

agλ(1gV j )

∥∥∥∥∥
2

L2(Ĝ)

=
∑
g∈F

|ag|2 = ‖a‖2
`2(F).

To prove (i), we first write

‖ f ′‖LGdisc = sup〈 f ′ξ1, ξ2〉`2(Gdisc),

where the supremum runs over all finite subset X ⊂ G and all ξ1, ξ2 ∈ `2(X)
with ‖ξ1‖2 = ‖ξ2‖2 = 1. Pick any such X and ξ1, ξ2. Since f ′ξ1 is supported by
FX, the inner product above can be taken in `2(S), where S = FX ∪ X. Applying
(11) to this finite set S, we may find an isometry Lh : `2(S) → L2(Ĝ). Since
Lh( f ′ξ1) = f Lh(ξ1),

〈 f ′ξ1, ξ2〉`2(S) = 〈Lh( f ′ξ1), Lh(ξ2)〉L2(Ĝ) = 〈 f Lh(ξ1), Lh(ξ2)〉L2(Ĝ) 6 ‖ f ‖LG.
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Taking suprema, we obtain (i). If Gdisc is amenable, Lemma 3.2 yields

‖ f ‖LG =
∥∥∥∥∥∑

g∈F

f̂ (g)λ(g)

∥∥∥∥∥
LG

6

∥∥∥∥∥∑
g∈F

f̂ (g)λ(g)⊗ λ′(g)
∥∥∥∥∥
LG⊗LGdisc

= ‖ f ′‖LGdisc,

where the last equality comes from Fell’s absorption principle [44].

REMARK 6.2. It follows that Gdisc amenable⇒ G amenable, but not reciprocally.

We can now prove Theorem D(i) and (ii), the noncommutative version of
de Leeuw’s compactification theorem. The first implication requires an analog
of (P1), and it follows easily from the lattice approximation in Theorem C.
The second one requires an analog of (P2)—Gdisc amenable, as suggested by
Lemma 6.1—and it follows by adapting our restriction argument in Theorem A.

Proof of Theorem D(i) and (ii). If G ∈ ADS is approximated by lattices (Γ j) j>1,
then Γ j ⊂ Gdisc for j > 1. Since both groups are discrete, we may restrict by
taking a conditional expectation. In conjunction with Theorem C, we obtain∥∥Tm : L p(Ĝ)→ L p(Ĝ)

∥∥ 6 sup
j>1

∥∥Tm|Γ j
: L p(Γ̂ j)→ L p(Γ̂ j)

∥∥
6
∥∥Tm : L p(Ĝdisc)→ L p(Ĝdisc)

∥∥.
This proves (i). For the converse implication, we may and will assume as in the
proof of Theorem A that 2 < p <∞. Now, since Gdisc is amenable, we claim that
G ∈ [SAIN]G. Namely, it follows by the exact same argument as in Theorem 8.7,
since our proof there does not use the fact that the topology on the subgroup is
induced by the topology of G. Once we know that the SAIN condition holds, the
goal is to show that

‖Tm f ′‖L p(Ĝdisc)
6
∥∥Tm : L p(Ĝ)→ L p(Ĝ)

∥∥ ‖ f ′‖L p(Ĝdisc)

for any trigonometric polynomial f ′ ∈ LGdisc. Fix such a trigonometric
polynomial f ′0 =

∑
γ∈F f̂ ′0(γ )λ

′(γ ) ∈ LG, and let F ⊂ G denote its frequency
support. Let (V j) j>1 be the neighborhood basis of the identity associated
to F by the SAIN condition. Following the proof of Theorem A, define
h j = µ(V j)

−1/2λ(1V j ) with polar decomposition h j = u j |h j |. The main
difference with the restriction theorem is that we may no longer assume that
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the sets (gV j)g∈G are disjoint. Then we cannot define properly the maps Φ p
j for

all j , since they are not contractive any longer. However, this still holds true at
the limit.

Claim A′. Let 2 6 q 6∞. Then the following hold.

(i) If f ′ ∈ LGdisc is any trigonometric polynomial

lim
j→∞

∥∥ f u j |h j |2/q
∥∥

Lq (Ĝ)
6 ‖ f ′‖Lq (Ĝdisc)

.

(ii) If f ′ ∈ LGdisc is frequency supported by F, we also have

lim
j→∞

∥∥ f u j |h j |2/q
∥∥

Lq (Ĝ)
= ‖ f ′‖Lq (Ĝdisc)

.

The intertwining result we gave in Claim B of the proof of Theorem A—restated
conveniently without using the maps Φ p

j —holds on replacing Γ by Gdisc with
verbatim the same argument. Moreover, Theorem D(ii) follows from it and Claim
A′ above exactly as in the proof of Theorem A. Thus, it suffices to justify this
claim.

Proof of Claim A′. Let ε > 0, and let f ′ be any trigonometric polynomial in
LGdisc. Since interpolation cannot be used any longer in our case, Claim A′(i) will
simply follow from the three-lines lemma. Let a = a( f ′, ε, q) be a trigonometric
polynomial in LG such that∥∥| f |q/2 − a

∥∥
LG =

∥∥| f ′|q/2 − a′
∥∥
LGdisc

< 1
2ε

q/2, (12)

where the equality comes from Lemma 6.1 (together with a standard
approximation argument in the norm-topology), since Gdisc is amenable, and
a′ denotes the trigonometric polynomial in LGdisc associated to a. By (11), there
exists an index j0 = j0( f ′, ε, q) such that

‖ah j‖L2(Ĝ) = ‖a′‖L2(Ĝdisc)
for any j > j0. (13)

The map F j(z) = u| f |qz/2u j |h j |z , where f = u| f | is the polar decomposition of
f ∈ LG, is holomorphic on the strip ∆ = {0 < Re z < 1} and continuous on its
closure. Since F j(i t) = u| f |iqt/2u j |h j |i t is a partial unitary,

sup
t∈R
‖F j(i t)‖LG 6 1.
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On the other hand, by (12) and (13), we get, for all t ∈ R,

‖F j(1+ i t)‖L2(Ĝ)

= ∥∥| f |q/2h j

∥∥
L2(Ĝ)

6
∥∥(| f |q/2 − a

)
h j

∥∥
L2(Ĝ)
+ ‖ah j‖L2(Ĝ) 6

εq/2

2
+ ‖a′‖L2(Ĝdisc)

6
εq/2

2
+ ∥∥a′ − | f ′|q/2∥∥L2(Ĝdisc)

+ ∥∥| f ′|q/2∥∥L2(Ĝdisc)
6 εq/2 + ‖ f ′‖q/2

Lq (Ĝdisc)
.

Therefore, the three-lines lemma implies that, for any j > j0,

‖F j(2/q)‖Lq (Ĝ) = ‖ f u j |h j |2/q‖Lq (Ĝ)

6
(
εq/2 + ‖ f ′‖q/2

Lq (Ĝdisc)

)2/q
6 ε + ‖ f ′‖Lq (Ĝdisc)

, (14)

which proves Claim A′(i). To prove Claim A′(ii), we proceed exactly as in
the proof of Theorem A, but using our version of Claim A′(i). For a fixed
trigonometric polynomial f ′ in LGdisc frequency supported by F, let k ′ = k ′( f ′, ε,
q) be another trigonometric polynomial in LGdisc (frequency supported by M ⊂ G
finite) and satisfying ‖k ′‖Lq∗ (Ĝdisc)

= 1 with

‖ f ′‖Lq (Ĝdisc)
6 ‖k ′ f ′∗‖L2(Ĝdisc)

+ ε
2
,

where 1/q + 1/q∗ = 1/2. We may choose j0 = j0( f ′, ε, q) such that, for any
j > j0, the following hold.

(i) ‖k ′ f ′∗‖L2(Ĝdisc)
= ‖k ′ f ′∗h j‖L2(Ĝ).

(ii)
∥∥ku j |h j |2/q∗

∥∥
Lq∗ (Ĝ)

6 1+ ε.

(iii)
∑

g∈F
µ(g−1V j g4V j )

µ(V j )
6

ε2

‖k‖2
2‖ f ‖2

2|M|
.

Namely, the first property follows from (11), the second one from (14), and the
third one from the SAIN condition. By the same argument as in the proof of
Theorem A, we obtain that, for any j > j0,

‖ f ′‖Lq (Ĝdisc)
6 ε + (1+ ε)‖ f u j |h j |2/q‖Lq (Ĝ).

Letting ε→ 0+, this implies Claim A′(ii) and completes Theorem D(ii).
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REMARK 6.3. According to Remark 4.3, we know that the Heisenberg group Hn

and the upper triangular matrix groups H(K, n) are ADS. Moreover, since they
are nilpotent, the same happens for their discretized forms, which implies in turn
that the discretized forms are amenable. In summary, if G denotes any of these
groups, it satisfies the two-sided compactification result in Theorem D(i) and (ii)
for bounded continuous symbols∥∥Tm : L p(Ĝ)→ L p(Ĝ)

∥∥ = ∥∥Tm : L p(Ĝdisc)→ L p(Ĝdisc)
∥∥.

7. The periodization theorem

We finish our collection of noncommutative de Leeuw’s theorems in the
Banach space setting for unimodular groups with the periodization theorem;
nonunimodular groups and statements in the operator space setting will be
considered below. In this section, we consider a locally compact, unimodular,
second countable group G; a normal closed subgroup H of G; a bounded symbol
mq : G/H→ C and its H-periodization mπ : G→ C given by mπ (g) = mq(gH).
As mentioned in Section 1, the abelian case has been solved by Saeki [54], but
we cannot go further in the line of Theorem D(iii). More precisely, in general,

Tmq : L p(Ĝ/H)→ L p(Ĝ/H) bounded ; Tmπ
: L p(Ĝ)→ L p(Ĝ) bounded.

Indeed, consider for instance the infinite permutation group H = S∞, and
construct the Cartesian product G = T × S∞, so that G/H ' T. By [49,
Proposition 8.1.3], for 1 < p 6= 2 < ∞, we can find a bounded mq : T → C
giving rise to a Fourier multiplier which is bounded in `p(Z) but not completely
bounded. Then, its H-periodization mπ = mq⊗id cannot define a bounded Fourier
multiplier on

L p(Ĝ) = `p(Z; L p(R)),
where R = LS∞ denotes the hyperfinite II1 factor. Hence, Theorem D(iii) fails
for this pair (G,H). In fact, since Pisier’s result on the existence of bounded/not
cb multipliers has been extended to any infinite LCA groups [1, 28], with that
process we can construct a large class of counterexamples by taking any group of
the form G = K× H with K an infinite LCA group and H a group satisfying that
LH contains arbitrarily large matrix algebras Mn . This suggests that there is not
so much to do in this direction outside the class of abelian groups. The result in
Theorem D(iii) was already proved by Saeki [54]. Hence, we now focus on the
reverse implication given in Theorem D(iv) for G nonabelian and H compact.

Proof of Theorem D(iv). Assume that H is compact, and let µH denote the
normalized Haar measure on H. By duality it is enough to consider the case when
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p > 2. By Lemma 3.1, we may see LH as a von Neumann subalgebra of LG and
identify λG(h) and λH(h) for any h ∈ H. Consider the operator

Π =
∫

H
λ(h) dµH(h) ∈ LH ⊂ LG.

Since H is a normal compact (unimodular) subgroup of G, we deduce that Π
is a central H-invariant projection of LG onto the functions of L2(G) which are
constant on H-cosets, denoted by

H = ΠL2(G) = {ξ ∈ L2(G) : ξ(g) = ξ(g′) when gH = g′H}.
The map π : G → M := (LG)Π given by π(g) = λ(g)Π defines a ∗-
representation of G over the Hilbert space H. Moreover, π is invariant on
cosets; hence this yields a ∗-representation of the quotient G/H still denoted
by π : G/H → M. Observe that π(gH) = vλG/H(gH)v∗, where the unitary
v : L2(G/H) → H is the natural identification. Hence π can be extended to
a normal map π : L(G/H) → M by setting π( f ) = v f v∗. Since this map is
isometric and surjective at the L∞ and L2 levels, this yields by interpolation an
isometric map

π : L p(Ĝ/H)→ L p(M) = L p(Ĝ)Π

for any 2 6 p 6 ∞. On the other hand, π intertwines the Fourier multipliers
so that π ◦ Tmq = Tmπ

◦ π . Indeed, let f ∈ λ(Cc(G/H)). Since the G-invariant
measure on left cosets [20, Theorem 2.49] coincides with the Haar measure on
the quotient group G/H when H is normal, we get

π ◦ Tmq ( f ) =
∫

G/H
mq(gH) f̂ (gH)λ(g)Π dµG/H(gH)

=
∫

G/H
mq(gH) f̂ (gH)

(∫
H
λ(gh) dµH(h)

)
dµG/H(gH)

=
∫

G
mπ (g) f̂ (gH)λ(g) dµG(g)Π = Tmπ

◦ π( f ).

Using this property, we conclude with the estimate

‖Tmq f ‖L p(Ĝ/H) = ‖π ◦ Tmq ( f )‖L p(M) = ‖Tmπ
◦ π( f )‖L p(Ĝ)Π

6
∥∥Tmπ

: L p(Ĝ)→ L p(Ĝ)
∥∥‖π( f )‖L p(Ĝ)Π

= ∥∥Tmπ
: L p(Ĝ)→ L p(Ĝ)

∥∥‖ f ‖L p(Ĝ/H)

for f ∈ L p(Ĝ/H). This completes the proof of Theorem D(iv).
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8. Nonunimodular groups

This section is devoted to extending our results to nonunimodular groups.
Again the main focus will be on restriction, since compactification and
periodization admit fewer generalizations; see Remark 8.9. When G is
nonunimodular, the modular function ∆G is not trivial, and the Plancherel
weight—defined in Section 3 and denoted by ϕ in this section—is not a trace. This
forces us to introduce noncommutative L p-spaces associated with arbitrary von
Neumann algebras. We will consider the Haagerup definition [57]. Equivalently,
one could use the Connes–Hilsum one [30]. Recall that the proof of Theorem A
in the unimodular case is based on crucial results derived from Theorem B.
Thus we will need to extend these results to arbitrary von Neumann algebras by
using Haagerup’s reduction method. After that, we will derive Theorem A for
nonunimodular groups and give some examples.

8.1. Haagerup’s reduction for weights. We start by recalling the reduction
method from [27] adapted to a von Neumann algebra M⊂ B(H) equipped with a
fixed normal semifinite faithful (nsf) weight ϕ. Note that the constructions in [27]
are carried out with respect to a normal faithful state ϕ instead of a weight. This
is not sufficient for our purposes. The weight case is treated in an unpublished
extended version of [27] by Xu. For the sake of completeness, we will indicate
below the technical modifications of the arguments in [27] to obtain the analogous
results for weights instead of states. Here, we consider the so-called Haagerup L p-
spaces defined in [57]; see also [27] for a standard introduction to the concepts
involved. Since they are only used in this auxiliary technical subsection and the
next one, we will not detail the construction but refer to the above-mentioned
works. Let σ ϕ be the modular automorphism group of ϕ, and denote

nϕ = {x ∈M : ϕ(x∗x) <∞} and mϕ = n∗ϕnϕ = span{y∗x : x, y ∈ nϕ}.
In this subsection, we fix G =⋃n>1 2−nZ with the discrete topology and consider
the crossed product R =M oσ ϕ G. Recall that R is the von Neumann algebra
acting on L2(G,H) generated by the operators

(λ(t)ξ)(s) = ξ(s − t) and (π(x)ξ)(s) = σ ϕ−s(x)ξ(s)

for s, t ∈ G, x ∈M and ξ ∈ L2(G,H). We define the unitary operator

(w(γ )ξ)(s) = γ (s)ξ(s)
for (s, γ, ξ) ∈ G × Ĝ × L2(G,H) and α̂γ (z) = w(γ )zw(γ )∗ for z ∈ R. Then
π(M) is the fixed-point algebra for α̂, and the conditional expectation E : R→
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M is given by E(x) = ∫Ĝ α̂γ (x) dγ . The dual weight ϕ̂ on R is defined as ϕ̂ =
ϕ ◦π−1 ◦ E . Let Rϕ̂ be the centralizer of ϕ̂ in R, and denote by Z(Rϕ̂) its center.
Consider

bn = −i Log(λ(2−n)) and an = 2nbn,

with Log the principal branch of the logarithm, so that 0 6 Im(Log(z)) < 2π .
Then bn ∈ Z(Rϕ̂) and ϕn( · ) = ϕ̂(e−an · ) formally defines an nsf weight. More
precisely, ϕn has Connes cocycle derivative (Dϕn/Dϕ̂)s = e−isan for s ∈ R.

THEOREM 8.1. Let Rn be the centralizer of ϕn in R. The sequence (Rn)n>1

forms an increasing sequence of von Neumann subalgebras of R. Moreover, the
following properties hold.

(i) Rn is semifinite for each n > 1 with trace ϕn .

(ii) There exist conditional expectations En : R→ Rn such that

ϕ̂ ◦ En = ϕ̂ and En ◦ σ ϕ̂s = σ ϕ̂s ◦ En for all s ∈ R.

(iii) En(x)→ x σ -strongly for x ∈ nϕ̂ and
⋃

n>1 Rn is σ -strongly dense in R.

Proof. The proof is a mutatis mutandis copy of the arguments in [27, Section 2].
We indicate the main adaptations. Observe that [27, Lemma 2.2] does not remain
valid. This lemma is applied only in two places, where the arguments need to be
adapted. First, it is needed to prove the uniqueness of bn in [27, Lemma 2.3], but
this does not play a role in the subsequent proofs. Second, it is used in the proof
of [27, Lemma 2.6]. However, we claim that the following fact still holds true:
for every x ∈ nϕ̂ and every ε > 0 there exists a trigonometric polynomial P on T
with

‖[bn − P(λ(2−n)), x]‖ϕ̂ 6 ε for all n ∈ N, (15)

where [x, y] = xy − yx denotes the commutator of two operators x and y and
‖y‖2

ϕ̂ = ϕ̂(y∗y) for any y ∈ R. This fact is what is actually needed. Let us now
prove it. If x ∈ nϕ̂ , then

‖(bn − P(λ(2−n)))x‖2
ϕ̂ = ϕ̂(x∗|bn − P(λ(2−n))|2x).

Now ϕ̂(x∗ · x) is a normal functional on R, and hence it restricts to a normal
functional ω on the von Neumann subalgebra generated by λ(2−n), which equals
L∞(T). So ω corresponds to integration against a function in L1(T). Recalling
that bn = −iLog(λ(2−n)), we see that we may choose P such that for every n we
have ω(|bn − P(λ(2−n))|2) < ε. On the other hand, we first consider

x ∈ Tϕ̂ := {x ∈ R : x is analytic for σ ϕ̂ and σ ϕ̂z (x) ∈ nϕ ∩ n∗ϕ ∀ z ∈ C}.
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In that case, from Tomita–Takesaki theory (see [56, Lemma VII.2.5]), we have

‖x(bn − P(λ(2−n)))‖2
ϕ̂

= ϕ̂((bn − P(λ(2−n)))∗x∗x(bn − P(λ(2−n))))

= ϕ̂(x(bn − P(λ(2−n)))σ
ϕ̂

−i((bn − P(λ(2−n)))∗x∗))

= ϕ̂(x |bn − P(λ(2−n))|2σ ϕ̂−i(x
∗)
)
,

and as above we may find P such that for every n this expression becomes smaller
than ε. This proves our claim (15) when x ∈ Tϕ̂ . For a general operator x ∈ nϕ̂ ,
the claim follows by taking a net (x j) j∈J in Tϕ̂ such that ‖x j − x‖ϕ̂ → 0 (see for
instance [56]) and using that ‖bn‖ 6 2π .

Let us now return to the constructions of [27, Section 2]. The statements and
proofs of [27, Lemmas 2.3–2.5] remain unchanged except that bn might not be
unique, which is not relevant for the proof. Note in particular that the restriction of
ϕn to its centralizer is semifinite. Then Lemma 2.6 remains true provided that x ∈
nϕ̂ instead of general x ∈R, and also Lemma 2.7 remains valid for x ∈ nϕ̂ . Indeed,
as in the proof of Lemma 2.7, this follows from Lemma 2.6 when x ∈ nϕ̂ (and also
in the weight case one invokes Lemma 2.5 to derive strong convergence, which
implies σ -strong convergence for a bounded net). This completes the proof.

Let L p(M), L p(R) and L p(Rn) be the Haagerup L p-spaces constructed from
the weights ϕ, ϕ̂, and ϕ̂ restricted to Rn , respectively; see [57] or [27, Section
1.2]. The modular automorphism group σ ϕ̂ restricted to M ' π(M) equals σ ϕ .
By Theorem 8.1, the restriction of ϕ̂ to Rn is semifinite. This implies that the
crossed products Moσ ϕR and Rnoσ ϕ̂R are well-defined subalgebras of Roσ ϕ̂R.
Let D be the generator of the left regular representation in each of these crossed
products; then D is the usual density operator in the Haagerup L p-space L p(R).
Recall that we have two ϕ̂-preserving conditional expectations E : R→M and
En : R→ Rn . For 1 6 p <∞, by [27, Remark 5.6 and Example 5.8], we obtain
contractive projections

E p : L p(R)→ L p(M) and E p
n : L p(R)→ L p(Rn)

given by E p(D1/2px D1/2p) = D1/2pE(x)D1/2p for any x ∈ mϕ̂ , and similarly for
En . More generally, for any p 6 r, s 6 ∞ such that 1/r + 1/s = 1/p, we have
E p(D1/r x D1/s) = D1/rE(x)D1/s for x ∈ mϕ̂; see [27, Proposition 5.5] for the
proof in the state case.

REMARK 8.2. The notation D1/r x D1/s for x ∈ mϕ̂ used in [27] and which
we keep using in what follows is formal. If x can be decomposed as a finite
sum x = ∑

j y∗j z j with y j , z j ∈ nϕ̂ , then the notation D1/r x D1/s stands for
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j D1/r y∗j · [z j D1/s], which is a well-defined element of L p(R) by [58, Theorem

26] and Hölder’s inequality. Here, [ · ] denotes the closure of a preclosed operator.
Arguing as in [22], one can derive that this expression does not depend on the
decomposition of x .

The following can be shown as in [27].

LEMMA 8.3. Given 1 6 p <∞ and x ∈ L p(R), we have

lim
n→∞
‖E p

n (x)− x‖p = 0.

8.2. Almost-multiplicative maps on arbitrary von Neumann algebras. We
now apply the reduction method detailed above to the results of Section 2 needed
to prove Theorem A in the nonunimodular setting. Let M be a von Neumann
algebra with an nsf weight ϕ, and let T :M→M be a positive map such that
ϕ ◦ T 6 ϕ. Given 1 6 p < ∞, and according to [27, Remark 5.6], the map T
induces a bounded map Tp on the Haagerup L p-space L p(M) determined by

Tp(D1/2p
ϕ x D1/2p

ϕ ) = D1/2p
ϕ T (x)D1/2p

ϕ

for x ∈ mϕ , where Dϕ denotes the density operator of ϕ. With that notation, we
can state and prove the following analogs of Corollaries 2.3 and 2.4 for arbitrary
von Neumann algebras.

COROLLARY 8.4. Let M be a von Neumann algebra equipped with an nsf weight
ϕ, and let T :M→M be a subunital completely positive map with ϕ ◦ T 6 ϕ

and T ◦σ ϕs = σ ϕs ◦T for every s ∈ R. Then there exists a universal constant C > 0
such that the following inequality holds for any x ∈ L+2 (M) and any 0 < θ 6 1:

‖T2/θ (x θ )− x θ‖2/θ 6 C‖T2(x)− x‖θ/22 ‖x‖θ/22 .

Proof. We use the notation of Section 8.1. By [27, Section 4], we know that the
map T admits a subunital completely positive normal extension, which is given
by

T̂ : R 3 π(x)λ(s) 7→ π(T (x))λ(s) ∈ R
for any (s, x) ∈ G ×M. Note that LG is in the multiplicative domain of T̂ .
Moreover, we also have

ϕ̂ ◦ T̂ 6 ϕ̂ and σ ϕ̂t ◦ T̂ = T̂ ◦ σ ϕ̂t .
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Recall that σ ϕn
t and En are defined in [27] respectively by

σ ϕn
s (x) = e−isanσ ϕ̂s (x)e

isan and En(x) = 2n
∫ 2−n

0
σ ϕn

s (x) ds

for any (x, s) ∈ R× R. Note that these expressions were used in [27] for states,
although the same construction is valid for weights, and the resulting conditional
expectations commute with the action of the modular automorphism group. Since
eisan ∈ LG, we deduce that T̂ commutes with En . Hence, we may consider its
restriction to Rn , and deduce that we still have that

ϕn ◦ T̂ 6 ϕn.

By Theorem 8.1(i), (Rn, ϕn) is semifinite, and we may extend T̂ to a contractive
map on the tracial L p-space L p(Rn, ϕn). This extension does not depend on p.
On the other hand, for 1 6 p <∞, the map given by

T̂p
(
D1/2p
ϕ̂ x D1/2p

ϕ̂

) = D1/2p
ϕ̂ T̂ (x)D1/2p

ϕ̂ for x ∈ mϕ̂

extends to a bounded map T̂p : L p(R, ϕ̂)→ L p(R, ϕ̂) by [27, Remark 5.6]. Since
E ◦ T̂ = T ◦ E , where E : R→M is the ϕ̂-preserving conditional expectation,
the restriction of T̂p to L p(M) equals Tp. Moreover, it commutes with E p

n , and
we may consider the restriction

T̂p : L p(Rn, ϕ̂)→ L p(Rn, ϕ̂).

As is proved in [57, Section IV, Corollaries 5 and 6], we have L p(Rn, ϕ̂) '
L p(Rn, ϕn) isometrically, and the isomorphism preserves positive elements. The
two restriction maps T̂ and T̂p are compatible with respect to that isomorphism.
Namely, let κp : L p(Rn, ϕ̂) → L p(Rn, ϕn) be the isometric isomorphism given
by κp(D

1/2p
ϕ̂ x D1/2p

ϕ̂ ) = ean/2pxean/2p for any x ∈ mϕ̂; then

κp ◦ T̂p = T̂ ◦ κp on L p(Rn, ϕ̂),

since an lies in the multiplicative domain of T̂ . Fix x ∈ L+2 (M). Then, by Lemma
8.3 and the fact that T̂p commutes with E p

n , we can write∥∥T2/θ (x θ )− x θ
∥∥

L2/θ (M)
= ∥∥T̂2/θ (x θ )− x θ

∥∥
L2/θ (R)

= lim
n→∞

∥∥E2/θ
n ◦ T̂2/θ (x θ )− E2/θ

n (x θ )
∥∥

L2/θ (Rn ,ϕ̂)

= lim
n→∞

∥∥T̂2/θ
(
E2/θ

n (x θ )
)− E2/θ

n (x θ )
∥∥

L2/θ (Rn ,ϕ̂)

= lim
n→∞

∥∥T̂
(
κ2/θ

(
E2/θ

n (x θ )
))− κ2/θ

(
E2/θ

n (x θ )
)∥∥

L2/θ (Rn ,ϕn)
.
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By Corollary 2.3, in (Rn, ϕn) applied to the map T̂ and to κ2/θ
(
E2/θ

n (x θ )
)1/θ ∈

L+2 (Rn, ϕn),∥∥T2/θ (x θ )− x θ
∥∥

2/θ

6 C lim
n→∞

∥∥T̂
(
κ2/θ

(
E2/θ

n (x θ )
)1/θ)− κ2/θ

(
E2/θ

n (x θ )
)1/θ∥∥θ/2

L2(Rn ,ϕn)

×
∥∥∥κ2/θ

(
E2/θ

n (x θ )
)1/θ

∥∥∥θ/2
L2(Rn ,ϕn)

= C lim
n→∞

∥∥T̂2
(
E2/θ

n (x θ )1/θ
)− E2/θ

n (x θ )1/θ
∥∥θ/2

L2(Rn ,ϕ̂)

∥∥E2/θ
n (x θ )1/θ

∥∥θ/2
L2(Rn ,ϕ̂)

.

We finally claim that
lim

n→∞
‖E2/θ

n (x θ )1/θ − x‖2 = 0,

which yields the result, since ‖T̂2(x) − x‖2 = ‖T2(x) − x‖2. This claim follows
from Lemma 8.3 and the fact that, for any operators x, y ∈ L2(R)+ such that
‖y‖2 6 ‖x‖2 and any parameter 0 < θ 6 1, we have

‖x − y‖2 6
3
θ
‖x θ − yθ‖1/θ

2/θ‖x‖1−θ
2 ;

see [53] or [38] for slightly worse estimates.

COROLLARY 8.5. Let M be a von Neumann algebra equipped with an nsf weight
ϕ, and let T :M→M be a subunital completely positive map with ϕ ◦ T 6 ϕ

and T ◦ σ ϕs = σ ϕs ◦ T for every s ∈ R. Then there exists a universal constant
C > 0 such that the following inequality holds for any y ∈ L2(M) with polar
decomposition y = u|y| and any 0 < θ 6 1:

‖T2/θ (u|y|θ )− u|y|θ‖2/θ 6 C‖T2(y)− y‖θ/42 ‖y‖3θ/4
2 .

Proof. The proof is similar to the ones of Corollary 2.4 and Remark 2.5, so details
are omitted.

8.3. Nonunimodular restriction theorem. To fix notation, recall that when G
is not unimodular the Plancherel weight ϕ is nsf, and its modular group is given
by

∀ f ∈ Cc(G), σ ϕt (λ( f )) = λ(∆i t
G f ). (16)

Thus the set λ(Cc(G)) consists of analytic elements, and λ(Cc(G) ∗ Cc(G)) ⊂ mϕ

is weak-∗ dense; see [56, Proposition VII.3.1].
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Let D denote the density operator of ϕ. The construction of noncommutative
L p-spaces gives

L p(Ĝ) =
{
λ(Cc(G) ∗ Cc(G))D1/p

‖ ‖p
for 1 6 p < 2,

λ(Cc(G))D1/p
‖ ‖p

for 2 6 p <∞.
Note that D1/2pλ(Cc(G) ∗ Cc(G))D1/2p = λ(Cc(G) ∗ Cc(G))D1/p due to
relation (16).

Let 2 6 p 6 ∞, and consider any symbol m ∈ L∞(G). We may consider the
associated multiplier defined by, for f ∈ Cc(G),

T p
m : L p(Ĝ) 3 λ( f )D1/p 7→ λ(m f )D1/p ∈ L p(Ĝ),

which is called an L p-Fourier multiplier if it extends boundedly to L p(Ĝ) (to a
normal map if p = ∞).

For 1 6 p 6 2 and a given bounded symbol m, we define the associated
multiplier by

T 1
m := (T∞mop

)∗ and T p
m = (T p′

mop
)∗ where mop(s) = m(s−1).

We are ready to sketch the proof of the restriction theorem in the
nonunimodular setting, enlightening the main changes. Note that, in the
nonunimodular case, the Fourier multipliers depend on p. However, for the
sake of clarity we just used the notation Tm in the statement of Theorem A
given in Section 1. After the proof, we shall construct some natural examples
illustrating Theorem A which complement what we did in Section 5. We shall
also give a brief discussion on Theorem D in Remark 8.9.

Proof of Theorem A: nonunimodular case. The proof follows the same strategy
as in the unimodular case, the main ingredient being that in this case the operator
h j should be defined as

h j = ‖1V j∆
−1/4
G ‖−1

L2(G)λ(1V j∆
−1/4
G )D1/2 ∈ L2(Ĝ).

Note that h j is a self-adjoint operator. Indeed, according to [22, Lemma 2.5] and
the fact that V j is symmetric (recalling that ξ ∗(g) = ∆G(g)−1ξ(g−1)), we obtain
the following identity:

h∗j = ‖1V j∆
−1/4
G ‖−1

L2(G)D
1/2λ(1V j∆

−1/4
G )∗

= ‖1V j∆
−1/4
G ‖−1

L2(G)D
1/2λ(1V j∆

−3/4
G )

= ‖1V j∆
−1/4
G ‖−1

L2(G)λ(1V j∆
−1/4
G )D1/2 = h j .
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Then one defines again Φq
j : Lq(Γ̂ ) 3 f 7→ f u j |h j |2/q ∈ Lq(Ĝ), where h j =

u j |h j | is the polar decomposition. The proof proceeds then exactly as in the
unimodular case in Section 5, which relies on two claims. Claims A and B can be
proved mutatis mutandis except for two conceptual points. First, Claim A(ii) is the
place where we need the condition ∆G|Γ = 1. Indeed, this condition implies that
for every γ ∈ Γ the operators λ(γ ) and ∆G acting on L2(G) strongly commute.
Therefore, with the same notation, the estimate (8) is now as follows:

‖k f ∗h j − kh j f ∗‖L2(Ĝ)

=
∥∥∥∥ ∑
γ ′∈M,γ∈F

k̂(γ ′) f̂ (γ )(λ(γ ′)λ(γ −1)h j − λ(γ ′)h jλ(γ
−1))

∥∥∥∥
L2(Ĝ)

6
∑

γ ′∈M,γ∈F

∣∣̂k(γ ′) f̂ (γ )
∣∣ ∥∥λ(γ ′)λ(γ −1)h j − λ(γ ′)h jλ(γ

−1)
∥∥

L2(Ĝ)

=
∑

γ ′∈M,γ∈F

∣∣̂k(γ ′) f̂ (γ )
∣∣‖1V j∆

−1/4
G ‖−1

L2(G)

× ∥∥λ(γ −1)λ(1V j∆
−1/4
G )D1/2 − λ(1V j∆

−1/4
G )λ(γ −1)D1/2

∥∥
L2(Ĝ)

=
∑

γ ′∈M,γ∈F

∣∣̂k(γ ′) f̂ (γ )
∣∣ ‖1V j∆

−1/4
G ‖−1

L2(G)

∥∥(1γ−1V jγ − 1V j )∆
−1/4
G

∥∥
L2(G)

,

which, continuing as in (8), converges to 0 as j → ∞, since we have assumed
that G ∈ [SAIN]Γ and ∆G is a continuous function which attains the value 1 in
the identity of G. Second, we need Corollary 2.4 for noncommutative L p-spaces
associated with type III algebras. Recall that we applied this result to the Fourier
multiplier Tζ for some unital, continuous, positive definite function ζ ∈ L∞(G).
Then Tζ is a unital completely positive ϕ-preserving map, and by [27, Example
5.9] it commutes with the modular automorphism group. Thus, we may apply
Corollary 8.5.

We now illustrate Theorem A with some examples, the main of which will be
to show that we can apply restriction to any ADS amenable subgroup for which
the modular function restricts properly. We need a preliminary technical result.

LEMMA 8.6. Let G be a locally compact group. Let ε > 0 and ξ, η1, . . . , ηn be
positive functions in L1(G) satisfying

∑n
`=1 ‖ξ − η`‖1 < ε and ‖ξ‖1 = 1. Then

there exists t > 0 such that

n∑
`=1

‖1{ξ>t} − 1{η`>t}‖L1(G) < ε‖1{ξ>t}‖L1(G).
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Proof. Given g ∈ G and 1 6 ` 6 n, we have

|ξ(g)| =
∫ ∞

0
1{ξ(g)>t} dt,

|ξ(g)− η`(g)| =
∫ ∞

0
|1{ξ(g)>t} − 1{η`(g)>t}| dt.

Hence the hypothesis can be written as follows:∫ ∞
0

n∑
`=1

‖1{ξ>t} − 1{η`>t}‖L1(G) dt =
n∑
`=1

‖ξ − η`‖L1(G)

< ε‖ξ‖L1(G) = ε
∫ ∞

0
‖1{ξ>t}‖L1(G) dt.

This immediately implies the existence of some t > 0 satisfying the assertion.

THEOREM 8.7. Let G be a second countable locally compact group. We have

G ∈ [SAIN]Γ
for any discrete amenable subgroup Γ satisfying that ∆G |Γ= 1.

Proof. Fix a finite set F ⊂ Γ . Since Γ is amenable and discrete, we know from
the Følner condition (see Lemma 3.2) that for any j > 1 there exist a finite subset
UF, j ⊂ Γ such that

|UF, jγ4UF, j |
|UF, j | <

1
j |F| for any γ ∈ F.

Let (Z j) j>1 be a basis of symmetric neighborhoods of e such that µ(Z j) < ∞.
Since the sets (UF, j) j>1 are finite, by continuity of the multiplication on G we can
find a sequence (W j) j>1 of symmetric neighborhoods of the identity such that⋃

g∈UF, j
g−1W j g ⊂ Z j . Define for each j > 1

ξ j = 1
|UF, j |µ(W j)

∑
g∈UF, j

1g−1W j g.

Since ∆G |Γ = 1, we have ‖ξ j‖L1(G) = 1, and we can prove that

‖ξ j(γ · γ −1)− ξ j‖L1(G) <
1

j |F| for any γ ∈ F.
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Indeed, using that for any j > 1, we have

ξ j(γ · γ −1)− ξ j = 1
|UF, j |µ(W j)

 ∑
g∈UF, jγ\UF, j

1g−1W j g −
∑

g∈UF, j\UF, jγ

1g−1W j g

 ,
and by construction of the Følner sets (UF, j) j>1 we get

‖ξ j(γ · γ −1)− ξ j‖L1(G) 6
|UF, jγ4UF, j |
|UF, j | <

1
j |F| .

Here we also used that UF, jγ ∪ UF, j ⊂ Γ for any γ ∈ F and ∆G |Γ = 1. Hence,
by applying Lemma 8.6, for each j > 1 we can find t j > 0 such that the set
V j = {ξ j > t j } satisfies

∑
γ∈F

µ(γ −1V jγ4V j)

µ(V j)
=
∑
γ∈F

‖1V j − 1γ−1V jγ ‖L1(G)

‖1V j‖L1(G)
<

1
j
. (17)

It remains to check that (V j) j>1 is a basis of symmetric neighborhoods of the
identity. Since W j is symmetric, we have ξ j(g−1) = ξ j(g) for any g ∈ G, and V j

is clearly symmetric. On the other hand, note that ‖ξ j‖∞ = ξ j(e)= µ(V j)
−1. Thus

ξ j(e) > t j ; otherwise, we would have 1V j = 0, which contradicts (17). Finally,
the inclusions

V j ⊂ supp(ξ j) ⊂
⋃

g∈UF, j

g−1W j g ⊂ Z j

ensure that (V j) j>1 is a basis of neighborhoods of the identity.

COROLLARY 8.8. Let G be a second countable locally compact group. We have∥∥Tm|H : L p(Ĥ)→ L p(Ĥ)
∥∥ 6

∥∥Tm : L p(Ĝ)→ L p(Ĝ)
∥∥

for any ADS amenable subgroup H satisfying the identity ∆G |H= 1.

Proof. According to Theorem C, we have∥∥Tm|H : L p(Ĥ)→ L p(Ĥ)
∥∥ 6 sup

j>1

∥∥Tm|Γ j
: L p(Γ̂ j)→ L p(Γ̂ j)

∥∥
for any family (Γ j) j>1 of discrete subgroups approximating H. By amenability of
H, and since ∆G |H= 1, each Γ j clearly satisfies the hypothesis of Theorem 8.7,
from which the assertion follows. This completes the proof.
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Beyond discrete amenable subgroups of unimodular groups, other pairs (G,
H) satisfying Corollary 8.8 are given by G unimodular and H belonging to the
families in Remark 4.3. Corollary 8.8 also admits pairs with G nonunimodular:
consider for instance the affine group G = Rn oGLn(R) which is nonunimodular
[20]. However, ∆G restricts to SLn(R) (which is unimodular) trivially, and hence
also to every ADS subgroup. In particular, ADS subgroups of On(R) will form
examples of subgroups of G that satisfy the criteria of Theorem A.

REMARK 8.9. Outside the cb setting (Section 9), the compactification
Theorem D(i) and (ii) does not have a suitable analog in the nonunimodular
setting (at least not from our techniques), since we require that ∆G = ∆Gdisc ≡ 1.
Similarly the periodization Theorem D(iii) is meaningless, since we showed that
commutativity of G (hence unimodularity) is an essential assumption. However,
Theorem D(iv) does generalize to nonunimodular groups provided that∆G |H= 1
(recalling that compact groups are unimodular); the proof is analogous to the one
we gave for unimodular groups.

9. Operator space results

The goal of this section is to study de Leeuw’s theorems for locally compact
groups in the category of operator spaces. More precisely, we are interested in
restriction, compactification, and periodization results under the assumption that
our multipliers are not only bounded, but completely bounded when we equip our
L p-spaces with their natural operator space structure [49, 50]. Then we aim to
show that the conclusions also give cb-bounded multipliers. It is easily seen that
this is the case when we keep the hypotheses of Theorems A, C, and D. In other
words, we have the following for 1 6 p 6∞.

• If H ∈ ADS and G ∈ [SAIN]H, we have∥∥Tm|H : L p(Ĥ)→ L p(Ĥ)
∥∥

cb 6
∥∥Tm : L p(Ĝ)→ L p(Ĝ)

∥∥
cb

for bounded continuous symbols m : G→ C provided ∆G |H= 1.

• If G ∈ ADS is approximated by (Γ j) j>1,∥∥Tm : L p(Ĝ)→ L p(Ĝ)
∥∥

cb 6 sup
j>1

∥∥Tm|Γ j
: L p(Γ̂ j)→ L p(Γ̂ j)

∥∥
cb

for bounded m : G→ C which are continuous µG—almost everywhere.

• If G is ADS, Gdisc is amenable, and m continuous ,∥∥Tm : L p(Ĝ)→ L p(Ĝ)
∥∥

cb =
∥∥Tm : L p(Ĝdisc)→ L p(Ĝdisc)

∥∥
cb.

The 6 holds for G ∈ ADS, and the > for Gdisc amenable and G unimodular.
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• If H C G is compact and mπ (g) = mq(gH) is bounded ,∥∥Tmπ
: L p(Ĝ)→ L p(Ĝ)

∥∥
cb >

∥∥Tmq : L p(Ĝ/H)→ L p(Ĝ/H)
∥∥

cb.

Indeed, except for Theorem D(iii), our results remain valid when we apply
them to the Cartesian product of G with any finite group, since our ADS and
SAIN assumptions are stable under that operation. This operation allows us to
generalize our results to the cb setting in a trivial way.

REMARK 9.1. The upper estimate 6 in our cb periodization result can be
extended to any pair (G,H) as long as G is discrete and LG is QWEP. Indeed,
the discreteness of G and G/H allows us to apply Fell’s absorption principle [44]
to the unitary representation π : g 7→ λG/H(gH), and the existence of an invariant
measure is then used to factorize the integral over G as an integral over G/H×H.
After rearrangement and using Fubini’s theorem (for which we use the QWEP
property following [33]) one concludes.

Motivated by the transference results from [5, 7, 43] between Fourier and Schur
multipliers, an alternative approach to obtain de Leeuw type theorems is to exploit
that such results are much more elementary for Schur multipliers. Namely, given
a bounded symbol m : G→ C, recall that the associated Herz–Schur multiplier
is formally defined as the linear map

Sm :
∑

g1,g2∈G

ag1,g2 eg1,g2 7→
∑

g1,g2∈G

m(g−1
1 g2)ag1,g2 eg1,g2 .

By the boundedness of m, it is clear that Sm is (completely) bounded on the
Schatten class S2(L2(G)). When it maps S2(L2(G)) ∩ Sp(L2(G)) to Sp(L2(G))
and extends to a cb map on Sp(L2(G)), we say that Sm is a cb-bounded
Schur multiplier on Sp(L2(G)). Let us analyze de Leeuw operations for Schur
multipliers.

LEMMA 9.2. If 1 6 p 6∞ and m : G→ C is continuous,

‖Sm : Sp(L2(G))→ Sp(L2(G))‖cb = ‖Sm : Sp(`2(Gdisc))→ Sp(`2(Gdisc))‖cb.

Moreover, let H be a closed subgroup of G. Then we additionally have the
following.

(i) If m : G→ C is continuous,∥∥Sm|H : Sp(L2(H))→ Sp(L2(H))
∥∥

cb

6
∥∥Sm : Sp(L2(G))→ Sp(L2(G))

∥∥
cb.
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(ii) If H C G and mq : G/H→ C is continuous,∥∥Smπ
: Sp(L2(G))→ Sp(L2(G))

∥∥
cb

6
∥∥Smq : Sp(L2(G/H))→ Sp(L2(G/H))

∥∥
cb.

Proof. Lafforgue and de la Salle established in [39, Theorem 1.19] (extending an
unpublished result of Haagerup in the L∞-case) that, for any locally compact
group G and any continuous symbol m : G → C, the cb norm of the Schur
multiplier is given by∥∥Sm : Sp(L2(G))→ Sp(L2(G))

∥∥
cb

= sup
F⊂G

F finite

∥∥Sm|F : Sp(`2(F))→ Sp(`2(F))
∥∥

cb. (18)

The first assertion (compactification) and property (i) (restriction) follow directly
from this. The cb periodization (ii) for Schur multipliers can also be deduced from
[39] as follows (compare to [39, Lemma 1.5]). For a fixed fundamental domain
X, we consider the natural map σ : G/H→ X. Then we may identify the group G
with the Cartesian product G/H×H as in the proof of Lemma 3.1 via the bijective
map

Υ : G 3 g 7→ (gH, h(g)) ∈ G/H× H,

where g = σ(gH)h(g). For 1 6 p 6∞, this gives a map

Υ : Sp(L2(G))→ Sp(L2(G/H)⊗ L2(H)),

which is completely isometric on finite subsets. By using this identification, [39,
Lemma 1.5 and Remark 1.6] directly implies the cb periodization (ii). Indeed, it
suffices to consider the measure space (H, µH), which is σ -finite since H is locally
compact and second countable.

This shows that de Leeuw theorems extend in almost full generality to the
context of Schur multipliers: only continuity of the symbols is needed. In
particular, we do not impose any of our former conditions like ADS, SAIN, the
compatibility of modular functions, or the amenability of Gdisc. We now want
to use certain transference results to obtain de Leeuw type theorems for Fourier
multipliers from the results in Lemma 9.2. More precisely, we will use that we
have ∥∥Tm : L p(Ĝ)→ L p(Ĝ)

∥∥
cb =

∥∥Sm : Sp(L2(G))→ Sp(L2(G))
∥∥

cb (19)

for 1 6 p 6∞ under the following conditions.
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(i) G is an amenable group.

(ii) m ∈ L∞(G) defines a completely bounded Fourier multiplier on L p(Ĝ).

When p = 1,∞, this was proved by Bożejko and Fendler [5]. Other values of p
were first considered by Neuwirth and Ricard [43], who proved (19) for amenable
discrete groups. Caspers and de la Salle [7] then obtained this result for arbitrary
amenable groups and 1 < p <∞. We shall need this identity to transfer Lemma
9.2 to Fourier multipliers. Hence the price to avoid our conditions listed at the
beginning of this section is to assume amenability of G.

REMARK 9.3. Observe that the transference theorem proved in [7] requires the
extra assumption that the symbol m : G→ C gives rise to a completely bounded
Fourier multiplier on LG. The set of such symbols is denoted by Mcb(G). By
approximation we may extend the identity (19) to any bounded symbol m : G→
C satisfying the above condition (ii) whenever G is amenable. Indeed, consider
a symbol m ∈ L∞(G) verifying (ii). Notice that when G is amenable there is a
continuous contractive approximate unit (m i)i>1 in the Fourier algebra A(G) with
compact support. Take also (χ j) j>1 a contractive approximate unit in L1(G) that
also belongs to L2(G). Define

m i, j = χ j ∗ (m i m) ∈ L∞(G).

Clearly m i, j ∈ A(G), and hence lies in Mcb(G). On the other hand, one can check
that ∥∥Tm : L p(Ĝ)→ L p(Ĝ)

∥∥
cb = lim

i, j

∥∥Tmi, j : L p(Ĝ)→ L p(Ĝ)
∥∥

cb,∥∥Sm : Sp(L2(G))→ Sp(L2(G))
∥∥

cb = lim
i, j

∥∥Smi, j : Sp(L2(G))→ Sp(L2(G))
∥∥

cb.

Indeed, the lower estimates easily follow from standard properties of Fourier and
Schur multipliers, and we may deduce the upper estimates from the fact that
Tmi, j → Tm (respectively, Smi, j → Sm) pointwise in the weak topology of L p(Ĝ)
(respectively, Sp(L2(G))). Using Caspers and de la Salle’s result for the symbols
m i, j in Mcb(G), this allows us to conclude that (19) holds true for the symbol m.

THEOREM 9.4. Let 1 6 p 6∞, and let G be amenable.

(i) If m : G→ C is bounded and continuous and H is a closed subgroup of G,∥∥Tm|H : L p(Ĥ)→ L p(Ĥ)
∥∥

cb 6
∥∥Tm : L p(Ĝ)→ L p(Ĝ)

∥∥
cb.
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(ii) If m : G→ C is bounded and continuous and Gdisc is amenable, we have∥∥Tm : L p(Ĝ)→ L p(Ĝ)
∥∥

cb =
∥∥Tm : L p(Ĝdisc)→ L p(Ĝdisc)

∥∥
cb.

(iii) If mq : G/H → C is bounded and continuous and H is a normal closed
subgroup of G,∥∥Tmπ

: L p(Ĝ)→ L p(Ĝ)
∥∥

cb =
∥∥Tmq : L p(Ĝ/H)→ L p(Ĝ/H)

∥∥
cb.

Proof. The proof follows from Lemma 9.2, the transference theorem (19) from
[7], and Remark 9.3.

REMARK 9.5. Recall that the lattice approximation Theorem C only works in the
unimodular setting (since we need to assume that G ∈ ADS); hence applying the
transference in that case would not improve the cb result obtained directly from
Theorem C. In fact, applying the transference theorem from [7] and Remark 9.3
in conjunction with Theorem 9.4(i) to that result, we deduce the analog for Schur
multipliers. Namely, for any group G ∈ ADS approximated by (Γ j) j>1, 1 6 p 6
∞ and any bounded a.e. continuous symbol m : G→ C, we have

‖Sm : Sp(L2(G))→ Sp(L2(G))‖cb = sup
j>1
‖Sm|Γ j

: Sp(`2(Γ j))→ Sp(`2(Γ j))‖cb.

Acknowledgements

M. Caspers is partially supported by the grant SFB 878 ‘Groups, geometry and
actions’; J. Parcet and M. Perrin are partially supported by the ERC StG-256997-
CZOSQP (UE) and ICMAT Severo Ochoa SEV-2011-0087 (Spain); and É. Ricard
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Appendix A. Idempotent multipliers in R

Idempotent Fourier multipliers are those whose symbols are the characteristic
functions of a measurable setΣ . Intervals in R or polyhedrons in Rn are examples
of idempotent symbols which yield L p-bounded Fourier multipliers (1 < p <
∞) as a consequence of the boundedness of the Hilbert transform. When n >
1, we know from the work of Fefferman [18] a fundamental restriction for L p-
boundedness of idempotent Fourier multipliers over (say) convex sets Σ with
boundary ∂Σ . Namely, let

∂Σ⊥ = {v ∈ Sn−1 | v ⊥ ∂Σ}.
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Then, given Π ⊂ Rn any two-dimensional vector space, Ω = ∂Σ⊥ ∩ Π cannot
admit Kakeya sets of directions in the sense of [18] or [23, Lemma 10.1.1] when
Σ leads to an L p-bounded idempotent multiplier. To be more precise we need
a bit of terminology. Given a rectangle R in R2, denote by R′ one of the two
translations of R which are adjacent to R along its shortest side. A subset Ω
of the unit circle in R2 admits Kakeya sets of directions when for every N > 1
there exists a finite collection of pairwise disjoint rectangles RΩ(N) with longest
side pointing in a direction of Ω , and there exists a family R′Ω(N) formed by
rectangles R′ adjacent to the members of RΩ(N) along their shortest side and
such that ∣∣∣∣∣ ⋃

R∈RΩ (N)

R

∣∣∣∣∣ > N

∣∣∣∣∣∣
⋃

R′∈R′Ω (N)
R′

∣∣∣∣∣∣ .
This definition is extracted from Fefferman’s original argument; see [18, 23].
The above symbol | | refers to the Lebesgue measure. This notion is closely
related to Bateman’s notion of Kakeya sets of directions [2]. Fefferman’s theorem
implies that ∂Σ must have vanishing curvature for L p-boundedness, as for
polyhedrons. Other regions with flat boundary—polytopes with infinitely many
faces—may or may not admit Kakeya sets of directions. This is very connected
to the boundedness of directional maximal operators [2, 46], but we shall
not analyze these subtleties here. Apart from the geometric aspect of Σ , one
may consider which topological structures of Σ yield L p-boundedness. In
dimension 1, Lebedev and Olevskii [40] showed thatΣ must be open up to a set of
zero measure; see also Mockenhaupt and Ricker [42] for L p-bounded idempotents
which are not Lq-bounded.

Our aim in this appendix is motivated by a problem left open in [36]. The
authors provided there a noncommutative Hörmander–Mikhlin multiplier
theorem using group cocycles in discrete groups as substitutes of more standard
geometric tools for Lie groups. This gave rise to some exotic Euclidean
multipliers which are L p-bounded in Rn . Consider the cocycle b : R → R4

given by

s 7→ b(s) = (cos(2πs)− 1, sin(2πs), cos(2πβs)− 1, sin(2πβs))

associated with the action α : R y R4 ' C2:

αs(x1, x2, x3, x4) ' αs(z1, z2) = (e2π is z1, e2π iβs z2).

Then, any symbol of the form m(s) = m̃(b(s)) satisfying that

|∂βs m̃(s)| . |s|−|β| for s ∈ R4\{0} and 0 6 |β| 6 3
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defines an L p-bounded Fourier multiplier in R for 1 < p <∞. Take for instance
m̃ a Hörmander–Mikhlin smoothing of the characteristic function of an open set
Σ in R4 intersecting the range of b. If β ∈ R \Q, the cocycle b has a dense
orbit, and m oscillates from 0 to 1 infinitely often with no periodic pattern. A
moment of thought shows that the L p-boundedness of such a multiplier follows
from the combination of de Leeuw’s restriction and periodization theorems, but
this cocycle formulation led Junge, Mei, and Parcet to pose a similar problem in
[36] when the lifted multiplier m̃ is not smooth anymore. More precisely, let m̃ be
the characteristic function of certain setΣ which yields an L p-bounded multiplier
in R4 and intersects the range of the cocycle b. Is m = m̃ ◦ b an L p-bounded
idempotent multiplier on R?

In order to answer the question above, let us formulate the problem in a more
transparent way. The image of the cocycle b is an helix in a two-dimensional
torus which up to a translation we may identify with T2 ' [0, 1]2. Moreover,
under this identification, the helix corresponds to the straight line γ in R2 passing
through the origin with slope β. Let us consider the set Ω which results from
the intersection between Σ and the two-dimensional torus where b takes values.
We shall identify this set with the corresponding set in [0, 1]2, still denoted by
Ω . According to the results in [18], we know that Σ must have a flat boundary.
Assume for simplicity that Σ is a simple object like a semispace or a convex
polyhedron—finite unions and certain infinite unions of this kind of sets also
define L p-bounded idempotent multipliers—so thatΩ is a open simply connected
set. In summary, given a simply connected set Ω in [0, 1]2 and certain slope β,
we may consider the idempotent Fourier multiplier associated with the symbol
determined by Figure 1 below and given by

MΩ,β(s) = 1Ω((s, βs)+ Z2) for s ∈ R.

Our problem is to decide for which pairs (Ω, β)we get L p-bounded idempotent
multipliers on R. There are two cases for which the answer is simple. If the
slope β ∈ Q, the helix is periodic, and so is MΩ,β . Therefore, by de Leeuw’s
periodization theorem, the problem is reduced to a finite interval where the
multiplier jumps from 0 to 1 and inversely finitely many times. The result then
follows from the L p-boundedness of the one-dimensional Hilbert transform for
1 < p < ∞. On the other hand, we also obtain L p-boundedness when Ω is a
polyhedron (finitely many faces), since we know that its characteristic function
defines an L p-bounded idempotent multiplier in R2 (finitely many directional
Hilbert transforms). Namely, its Z2-periodization in L p(R2) and its restriction
to γ in L p(R) are still bounded by de Leeuw’s periodization and restriction
theorems. In particular, the interesting case arises for sets Ω admitting Kakeya
sets of directions—either having smooth boundary with nonzero curvature as
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Figure 1. The idempotent symbol MΩ,β . MΩ,β = 1 when γ intersectsΩ +Z2 and
0 otherwise.

in Figure 1 or with infinitely many flat faces admitting Kakeya sets—and slope
β ∈ R\Q. We will answer this problem in the negative by combining de Leeuw’s
restriction, lattice approximation, and Fefferman’s construction. Recall that a
bounded measurable function M on R is called regulated if

lim
ε→0

1
2ε

∫ ε

−ε
M(x + t) dt = M(x) for all x ∈ R.

THEOREM A.1. Let m : [0, 1]2 ⊂ R2 → C be almost everywhere continuous,
1 6 p 6 ∞, and β ∈ R\Q. Assume that M(s) = m

(
(s, βs) + Z2

)
is regulated.

Then

TM : L p(R)→ L p(R) bounded ⇒ Tm : L p(R2)→ L p(R2) bounded.

In particular, when m = 1Ω for some open simply connected set Ω ⊂ [0, 1]2
admitting Kakeya sets of directions, M = MΩ,β does not give rise to a bounded
multiplier in L p(R) for 1 < p 6= 2 <∞.

Proof. Let 1 6 p0 6∞ be such that

‖TM : L p0(R)→ L p0(R)‖ 6 C0 <∞. (A.1)

According to Dirichlet’s diophantine approximation, since β is irrational, we may
find infinitely many coprime integers p, q so that |β − p/q| < 1/q2. Denote by
I the set of such pairs of coprime integers, and pick (p, q) ∈ I . By dilation
invariance of the L p0 -operator norm of TM, (A.1) implies that

‖TMp,q : L p0(R)→ L p0(R)‖ 6 C0 for Mp,q(s) = M

(√
p2 + q2√
1+ β2

s

)
.
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Let us now consider the truncation Mp,q
trunc(s) = Mp,q(s)1[0,1](s). If HTp0 denotes

the norm of the Hilbert transform on L p0(R), it is clear that we have the following
bound:

‖TMp,q
trunc
: L p0(R)→ L p0(R)‖ 6 2C0HTp0 .

The truncated symbol can be seen as a symbol on the one-dimensional torus, and
by [32, Theorem 2.3] we obtain

‖TMp,q
trunc
: `p0(Z)→ `p0(Z)‖ . C0HTp0 . (A.2)

Divide the segment in γ running from the origin to the point (1, β) into pq
equidistributed points. Formally, we identify this segment with the torus T, and
the set of points{(

k
pq
, β

k
pq

)
: 0 6 k 6 pq − 1

}
' {k/pq : 0 6 k 6 pq − 1}

with the cyclic group Zpq . According to (A.2) and de Leeuw–Saeki’s restriction,∥∥T(Mp,q
trunc)|Zpq

: L p0(Ẑpq)→ L p0(Ẑpq)
∥∥ . C0HTp0 .

Here we use that M, and hence also Mp,q
trunc, is regulated. Since p and q are coprime,

we may consider the group isomorphism

Λ : Zpq 3 k
pq
7→

(
k
p
,

k
q

)
∈ Zp × Zq,

where Zp × Zq is viewed as a lattice of [0, 1]2. It is clear that Λ extends to an
isometry on L p0 of the corresponding dual groups (still denoted by Λ), and we
obtain ∥∥Tm p,q : L p0(Ẑp × Zq)→ L p0(Ẑp × Zq)

∥∥ . C0 HTp0, (A.3)

where m p,q(s1, s2)=Mp,q(Λ−1(s1, s2)). Given 0 6 k1 6 p−1 and 0 6 k2 6 q−1,
let k = k(k1, k2) be the only integer 0 6 k 6 pq− 1 satisfying that k mod p = k1

and k mod q = k2. Then, we can write

m p,q

(
k1

p
,

k2

q

)
= Mp,q

(
k
pq

)
= M

( √
p2 + q2

pq
√

1+ β2
k
)

= m
( √

p2 + q2

pq
√

1+ β2
k(1, β)+ Z2

)
.

Letting eβ and ep/q be the unit vectors in the directions of γ and (1/p, 1/q),
respectively, we have
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√

p2 + q2

pq
k
(1, β)√
1+ β2

−
(

k
p
,

k
q

)∣∣∣∣ = ∣∣∣∣
√

p2 + q2

pq
keβ −

√
p2 + q2

pq
kep/q

∣∣∣∣
6
√

p2 + q2|eβ − ep/q | .
√

p2 + q2

q2
.

1
q
,

since we may assume with no loss of generality that β < 1 and p < q. We obtain

m p,q

(
k
p
,

k
q

)
= m

((
k
p
,

k
q

)
+ αp,q(k)+ Z2

)
with |αp,q(k)| . 1

q
.

Then the family of symbols (m p,q)(p,q)∈I satisfies the conditions of the
lattice approximation result obtained in Remark 4.2. Indeed, [0, 1]2 is clearly
approximable by (Zp × Zq)(p,q)∈I . Recall that, if Xp,q is a fundamental domain
of Zp × Zq , then for any g ∈ [0, 1]2 we denote by γp,q(g) the unique element γ
in Zp × Zq satisfying g ∈ γ +Xp,q . Since m p,q is a small perturbation of the a.e.
continuous symbol m, we can show that m p,q ◦ γp,q → m a.e. Thus Remark 4.2
together with (A.3) yields that

‖Tm : `p0(Z2)→ `p0(Z2)‖ . C0HTp0 .

By de Leeuw’s periodization theorem combined with the L p0 -boundedness of the
Hilbert transform in R2, we obtain that Tm : L p(R2)→ L p(R2) is bounded. This
result can be applied to the particular case of a characteristic function m = 1Ω .
Indeed, in that situation M is equal a.e. to a regulated function, and the result
remains valid. Fefferman’s theorem [18] (proving that the indicator function of
the unit Euclidean ball in Rn, n > 2 is not a bounded L p-multiplier, p 6= 2) then
implies the conclusion.

REMARK A.2. This result also holds in higher dimensions with the same
argument for slopes giving rise to dense orbits. On the other hand, when β ∈ R\Q
and Ω is a polytope with infinitely many faces not admitting Kakeya sets of
directions, the conjecture is that such Ω defines a L p-bounded Fourier multiplier
(1 < p <∞), so that we may argue as we did for polyhedrons with finitely many
faces. In dimension 2, this is supported by the results in [2, 10] as for higher
dimensions by [46].

Appendix B. Noncommutative Jodeit theorems

Jodeit’s theorem [32] provides another approach to de Leeuw’s
compactification by looking at extensions of Fourier multipliers. He proved
that any L p-bounded Fourier multiplier on Zn is the restriction of a L p-bounded
Fourier multiplier on Rn . To be more precise, define
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Mq
p(G) = {m : G→ C | Tm : L p(Ĝ)→ Lq(Ĝ)}

for 1 6 p 6 q 6 ∞. One of the results in [32] is that there is a bounded linear
map φ : Mq

p(Zn) → Mq
p(Rn) so that the restriction of φ(m) to Zn is m. When

n = 1, the symbol φ(m) = m̃ is just the multiplier given by the piecewise linear
extension m̃ = 1[−1/2,1/2] ∗ m ∗ 1[−1/2,1/2] of m. Then the ADS property readily
gives compactification, but one loses on the norm by some constant depending
on n.

This question of extending multipliers from a subgroup makes sense for general
LCA groups and suits in our framework. A commutative solution was provided
by Figà-Talamanca and Gaudry in [19] by extending Jodeit’s result to arbitrary
discrete subgroups Γ of LCA groups G. Given any such pair, they construct a
contractive map φ : Mq

p(Γ )→ Mq
p(G) so that φ(m) = m̃ with m̃ = ∆ ∗ m ∗ ∆,

where∆ is a positive definite function with small support relative to Γ . This is not
the exact analog of Jodeit’s result (as∆ = 1[−1/2,1/2] ∗1[−1/2,1/2]), but one gains on
the constants. Shortly after, Cowling [12] generalized it to all pairs H ⊂ G where
H is closed but not open, G LCA, and m ∈ Cc(H). In the same paper, he also
looked at periodization. The underlying idea is to use suitably the disintegration
theory and with that respect are of commutative nature.

If we restrict ourselves only to discrete subgroups, such a result would perfectly
fit in our framework. In full generality, we yet do not have the right tools to
extend Fourier multipliers. However, for the completely bounded ones, we can
use transference from Schur multipliers as in Section 9. Indeed, the latter are
much more flexible, and it is proved in [39, Lemma 2.6] that a Jodeit’s theorem
for them is elementary. More precisely, if Γ ⊂ G is a lattice with a symmetric
fundamental domain X and m : Γ → C is a cb-bounded Schur multiplier on
Sp(`2(Γ )), then m̃ = 1X ∗m ∗1X is a cb-bounded Schur multiplier on Sp(L2(G)).
In particular, we obtain the following extension result.

THEOREM B.1. Let Γ ⊂ G be a lattice in an amenable locally compact group
G with a symmetric fundamental domain X. For any m : Γ → C with m̃ =
1X ∗ m ∗ 1X,∥∥Tm̃ : L p(Ĝ)→ L p(Ĝ)

∥∥
cb 6

∥∥Tm : L p(Γ̂ )→ L p(Γ̂ )
∥∥

cb.

In particular, the cb-bounded version of Jodeit’s theorem holds with constant 1.
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