A NOTE ON GENERALIZED POLYNOMIAL IDENTITIES

BY
WALLACE S. MARTINDALE, III

Let A be an algebra with 1 over a field F and let B be a fixed F-basis of A. Let $F\langle x\rangle=F\left\langle x_{1}, \ldots, x_{n}, \ldots\right\rangle$ be the free algebra over F in noncommutative indeterminates $x_{1}, \ldots, x_{n}, \ldots$, and denote by $A_{F}\langle x\rangle$ the free product of A and $F\langle x\rangle$ over F. The elements of $A_{F}\langle x\rangle$ of the form $a_{i_{0}} x_{j_{1}} a_{i_{1}} \ldots x_{j_{n}} a_{i_{n}}\left(a_{i_{k}} \in B, n\right.$ varies, repetitions allowed) form an F-basis of $A_{F}\langle x\rangle$. They will be referred to as basis monomials, and the $a_{i_{k}}$'s involved in a particular basis monomial will be called the coefficients of that basis monomial. In case $1 \in B$ a basis monomial of the form $x_{j_{1}} x_{j_{2}} \cdots x_{j_{n}}$ (i.e., 1 is the only coefficient) will be called ordinary. If $f \in A_{F}\langle x\rangle$ is written $f=\sum_{i} \alpha_{i} g_{i}, g_{i}$ distinct basis monomials, then those g_{i} for which $\alpha_{i} \neq 0$ are said to belong to f. If $f_{1}, f_{2}, \ldots, f_{m}$ are nonzero elements of $A_{F}\langle x\rangle$ such that for $i \neq j$ no basis monomial belonging to f_{i} belongs to f_{j}, then we shall say that $f_{1}, f_{2}, \ldots, f_{m}$ are strongly independent.

A nonempty subset S of A is said to satisfy a generalized polynomial identity $f=0$ over F if there is a nonzero element $f=f\left(x_{1}, \ldots, x_{n}\right) \in A_{F}\langle x\rangle$ such that $f\left(s_{1}, \ldots, s_{n}\right)=0$ for all n-tuples $\left(s_{1}, \ldots, s_{n}\right) \in S^{n}$. In case each basis monomial belonging to f is ordinary S is said to satisfy a polynomial identity.

The purpose of this note is to show that in formulating the definition of generalized polynomial identity the scalars α_{i} involved in the equation $f=\sum_{i} \alpha_{i} g_{i}=0, g_{i}$ basis monomial, need not be constants but may be allowed to depend on the n-tuple $\left(s_{1}, \ldots, s_{n}\right)$ being substituted in. In other words, we shall show that if there exist a finite number of distinct basis monomials having the property that for each substitution of n-tuples from S^{n} the resulting elements of A are F-dependent, then S actually satisfies a generalized polynomial identity.

Lemma. Let S be a subset of A, let $f_{1}, f_{2}, \ldots, f_{m}, m>1$, be strongly independent elements of $A_{F}\langle x\rangle$ (involving just $\left.x_{1}, x_{2}, \ldots, x_{n}\right)$, and let C be the set of coefficients of all the basis monomials belonging to the f_{j}^{\prime} s. Suppose $\gamma_{j}, j=1,2, \ldots, m$ are arbitrary functions of S^{n} into F such that $\sum_{j=1}^{m} \gamma_{j}\left(s_{1}, \ldots, s_{n}\right) f_{j}\left(s_{1}, \ldots, s_{n}\right)=0$ for all $s_{i} \in S$. Set $g_{j}=f_{j} x_{n+1} f_{m}-f_{m} x_{n+1} f_{j}, j=1,2, \ldots, m-1$ and define $\beta_{j}: S^{n+1} \rightarrow F$, $j=1,2, \ldots, m-1$, by $\beta_{j}\left(s_{1}, \ldots, s_{n}, s_{n+1}\right)=\gamma_{j}\left(s_{1}, \ldots, s_{n}\right)$. Then g_{1}, g_{2}, \ldots, g_{m-1} are strongly independent, with same coefficient set C, and $\sum_{j=1}^{m-1} \beta_{j}\left(s_{1}, \ldots\right.$, $\left.s_{n}, s_{n+1}\right) g\left(s_{1}, \ldots, s_{n}, s_{n+1}\right)=0$ for all $s_{i} \in S$.

Proof. We make the key observation that if $p_{1}, p_{2}, q_{1}, q_{2}$ are basis monomials (involving just $x_{1}, x_{2}, \ldots, x_{n}$) such that $p_{1} x_{n+1} q_{1}=p_{2} x_{n+1} q_{2}$, then $p_{1}=p_{2}$ and
$q_{1}=q_{2}$. This remark, in conjunction with the strong independence of the f_{j} 's and the definition of the g_{j} 's, shows that $g_{1}, g_{2}, \ldots, g_{m-1}$ are also strongly independent. The remaining parts of the lemma are straightforward.

Theorem. Let A be an algebra with 1 over a field F, let B be an F-basis of A, let S be a nonempty subset of A, and let $f_{1}, f_{2}, \ldots, f_{m}$ be distinct basis monomials of $A_{F}\langle x\rangle$ with coefficient set C and involving just $x_{1}, x_{2}, \ldots, x_{n}$. Suppose that for each n-tuple $\left(s_{1}, \ldots, s_{n}\right) \in S^{n}$ the elements $f_{j}\left(s_{1}, \ldots, s_{n}\right), j=1,2, \ldots, m$, are F dependent. Then S satisfies a generalized polynomial identity $f=0$ over F, where f also has C as its coefficient set.

Proof. We may assume that $m>1$, since otherwise $f_{1}=0$ would already be a generalized polynomial identity for S. We are given that for each n-tuple $\left(s_{1}, \ldots, s_{n}\right) \in S^{n} \sum_{j=1}^{m} \gamma_{j}\left(s_{1}, \ldots, s_{n}\right) f_{j}\left(s_{1}, \ldots, s_{n}\right)=0$, where some $\gamma_{j}\left(s_{1}, \ldots, s_{n}\right) \neq$ 0 . Define elements $g_{i j}$ of $A_{F}\langle x\rangle$ as follows:

$$
\begin{aligned}
& g_{1 j}=f_{j}, \quad j=1,2, \ldots, m \\
& g_{i+1, j}=g_{i j} x_{n+i} g_{i, m-i+1}-g_{i, m-i+1} x_{n+i} g_{i j} \\
& \quad i=1,2, \ldots, m-1 ; \quad j=1,2, \ldots, m-i
\end{aligned}
$$

Successive applications of the preceding lemma then show that $g_{m 1}$ is a nonzero element of $A_{F}\langle x\rangle$ such that for each
$\left(s_{1}, \ldots, s_{n}, \ldots, s_{n+m-1}\right) \in S^{n+m-1} \gamma_{1}\left(s_{1}, \ldots, s_{n}\right) g_{m 1}\left(s_{1}, \ldots, s_{n}, \ldots, s_{n+m-1}\right)=0$.
A repetition of this argument (by appropriate reordering of subscripts) shows that for each $j=1,2, \ldots, m$ there exists a nonzero element $h_{j}=h_{j}\left(x_{1}, \ldots, x_{n}, \ldots\right.$, x_{n+m-1}) of $A_{F}\langle x\rangle$ such that for each $\left(s_{1}, \ldots, s_{n}, \ldots, s_{n+m-1}\right) \in S^{n+m-1}$ we have

$$
\gamma_{j}\left(s_{1}, \ldots, s_{n}\right) h_{j}\left(s_{1}, \ldots, s_{n}, \ldots, s_{n+m-1}\right)=0
$$

The element

$$
f=f\left(x_{1}, \ldots, x_{n}, \ldots, x_{n+m}\right)=h_{1} x_{n+m} h_{2} \ldots x_{n+m} h_{m}
$$

is clearly a nonzero element of $A_{F}\langle x\rangle$ whose coefficient set is again C. Let

$$
\left(s_{1}, \ldots, s_{n}, \ldots, s_{n+m}\right) \in S^{n+m}
$$

For some $j, \alpha=\gamma_{j}\left(s_{1}, \ldots, s_{n}\right) \neq 0$. Thus $f\left(s_{1}, \ldots, s_{n}, \ldots, s_{n+m}\right)=\alpha^{-1}(\alpha f)=$ $\alpha^{-1}\left[h_{1} s_{n+m} h_{2} \ldots\left(\alpha h_{j}\right) \ldots h_{m}\right]=0$. Therefore $f=0$ serves as a generalized polynomial identity for S.

In particular, it is immediate from the theorem that if $f_{1}, f_{2}, \ldots, f_{m}$ are ordinary basis monomials, than S in fact satisfies a polynomial identity.

[^0]
[^0]: University of Massachusetts, Amherst, Massachusetts
 Bedford College, London, England

