A NOTE ON GENERALIZED POLYNOMIAL IDENTITIES

BY WALLACE S. MARTINDALE, III

Let A be an algebra with 1 over a field F and let B be a fixed F-basis of A. Let $F\langle x \rangle = F\langle x_1, \ldots, x_n, \ldots \rangle$ be the free algebra over F in noncommutative indeterminates x_1, \ldots, x_n, \ldots , and denote by $A_F\langle x \rangle$ the free product of A and $F\langle x \rangle$ over F. The elements of $A_F\langle x \rangle$ of the form $a_{i_0}x_{j_1}a_{i_1}\ldots x_{j_n}a_{i_n}$ ($a_{i_k} \in B$, n varies, repetitions allowed) form an F-basis of $A_F\langle x \rangle$. They will be referred to as basis monomials, and the a_{i_k} 's involved in a particular basis monomial will be called the coefficients of that basis monomial. In case $1 \in B$ a basis monomial of the form $x_{j_1}x_{j_2}\cdots x_{j_n}$ (i.e., 1 is the only coefficient) will be called ordinary. If $f \in A_F\langle x \rangle$ is written $f = \sum_i \alpha_i g_i$, g_i distinct basis monomials, then those g_i for which $\alpha_i \neq 0$ are said to belong to f. If f_1, f_2, \ldots, f_m are nonzero elements of $A_F\langle x \rangle$ such that for $i \neq j$ no basis monomial belonging to f_i belongs to f_j , then we shall say that f_1, f_2, \ldots, f_m are strongly independent.

A nonempty subset S of A is said to satisfy a generalized polynomial identity f=0 over F if there is a nonzero element $f=f(x_1, \ldots, x_n) \in A_F(x)$ such that $f(s_1, \ldots, s_n)=0$ for all n-tuples $(s_1, \ldots, s_n) \in S^n$. In case each basis monomial belonging to f is ordinary S is said to satisfy a polynomial identity.

The purpose of this note is to show that in formulating the definition of generalized polynomial identity the scalars α_i involved in the equation $f = \sum_i \alpha_i g_i = 0$, g_i basis monomial, need not be constants but may be allowed to depend on the *n*-tuple (s_1, \ldots, s_n) being substituted in. In other words, we shall show that if there exist a finite number of distinct basis monomials having the property that for each substitution of *n*-tuples from S^n the resulting elements of A are *F*-dependent, then S actually satisfies a generalized polynomial identity.

LEMMA. Let S be a subset of A, let $f_1, f_2, \ldots, f_m, m > 1$, be strongly independent elements of $A_F \langle x \rangle$ (involving just x_1, x_2, \ldots, x_n), and let C be the set of coefficients of all the basis monomials belonging to the f_j 's. Suppose $\gamma_j, j=1, 2, \ldots, m$ are arbitrary functions of S^n into F such that $\sum_{j=1}^m \gamma_j(s_1, \ldots, s_n)f_j(s_1, \ldots, s_n)=0$ for all $s_i \in S$. Set $g_j=f_jx_{n+1}f_m-f_mx_{n+1}f_j, j=1, 2, \ldots, m-1$ and define $\beta_j:S^{n+1} \rightarrow F$, $j=1, 2, \ldots, m-1$, by $\beta_j(s_1, \ldots, s_n, s_{n+1})=\gamma_j(s_1, \ldots, s_n)$. Then $g_1, g_2, \ldots, g_{m-1}$ are strongly independent, with same coefficient set C, and $\sum_{j=1}^{m-1} \beta_j(s_1, \ldots, s_n, s_{n+1})g(s_1, \ldots, s_n, s_{n+1})=0$ for all $s_i \in S$.

Proof. We make the key observation that if p_1, p_2, q_1, q_2 are basis monomials (involving just x_1, x_2, \ldots, x_n) such that $p_1x_{n+1}q_1=p_2x_{n+1}q_2$, then $p_1=p_2$ and

 $q_1=q_2$. This remark, in conjunction with the strong independence of the f_j 's and the definition of the g_j 's, shows that $g_1, g_2, \ldots, g_{m-1}$ are also strongly independent. The remaining parts of the lemma are straightforward.

THEOREM. Let A be an algebra with 1 over a field F, let B be an F-basis of A, let S be a nonempty subset of A, and let f_1, f_2, \ldots, f_m be distinct basis monomials of $A_F\langle x \rangle$ with coefficient set C and involving just x_1, x_2, \ldots, x_n . Suppose that for each n-tuple $(s_1, \ldots, s_n) \in S^n$ the elements $f_j(s_1, \ldots, s_n), j=1, 2, \ldots, m$, are Fdependent. Then S satisfies a generalized polynomial identity f=0 over F, where f also has C as its coefficient set.

Proof. We may assume that m>1, since otherwise $f_1=0$ would already be a generalized polynomial identity for S. We are given that for each *n*-tuple $(s_1, \ldots, s_n) \in S^n \sum_{j=1}^m \gamma_j(s_1, \ldots, s_n) f_j(s_1, \ldots, s_n) = 0$, where some $\gamma_j(s_1, \ldots, s_n) \neq 0$. Define elements g_{ij} of $A_F(x)$ as follows:

$$g_{1j} = f_j, \qquad j = 1, 2, \dots, m$$
$$g_{i+1,j} = g_{ij} x_{n+i} g_{i,m-i+1} - g_{i,m-i+1} x_{n+i} g_{ij}$$

 $i = 1, 2, \ldots, m-1; j = 1, 2, \ldots, m-i$

Successive applications of the preceding lemma then show that g_{m1} is a nonzero element of $A_F \langle x \rangle$ such that for each

$$(s_1, \ldots, s_n, \ldots, s_{n+m-1}) \in S^{n+m-1} \gamma_1(s_1, \ldots, s_n) g_{m1}(s_1, \ldots, s_n, \ldots, s_{n+m-1}) = 0.$$

A repetition of this argument (by appropriate reordering of subscripts) shows that for each j=1, 2, ..., m there exists a nonzero element $h_j=h_j(x_1, ..., x_n, ..., x_{n+m-1})$ of $A_F\langle x \rangle$ such that for each $(s_1, ..., s_n, ..., s_{n+m-1}) \in S^{n+m-1}$ we have

$$\gamma_i(s_1,\ldots,s_n)h_i(s_1,\ldots,s_n,\ldots,s_{n+m-1})=0.$$

The element

 $f = f(x_1,\ldots,x_n,\ldots,x_{n+m}) = h_1 x_{n+m} h_2 \ldots x_{n+m} h_m$

is clearly a nonzero element of $A_F(x)$ whose coefficient set is again C. Let

 $(s_1,\ldots,s_n,\ldots,s_{n+m})\in S^{n+m}.$

For some j, $\alpha = \gamma_j(s_1, \ldots, s_n) \neq 0$. Thus $f(s_1, \ldots, s_n, \ldots, s_{n+m}) = \alpha^{-1}(\alpha f) = \alpha^{-1}[h_1s_{n+m}h_2 \ldots (\alpha h_j) \ldots h_m] = 0$. Therefore f=0 serves as a generalized polynomial identity for S.

In particular, it is immediate from the theorem that if f_1, f_2, \ldots, f_m are ordinary basis monomials, than S in fact satisfies a polynomial identity.

University of Massachusetts, Amherst, Massachusetts Bedford College, London, England

606