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A MEASURE VALUED DIFFUSION PROCESS DESCRIBING

AN n LOCUS MODEL INCORPORATING GENE CONVERSION

AKINOBU SHIMIZU

§ 1. Introduction

Probability measure valued diffusion processes have been discussed
by many authors, in connection with population genetics. Most papers
studying probability measure valued diffusions are mainly concerned with
the ones describing single locus models. In this paper, we will discuss a
measure valued diffusion describing an n locus model. Random sampling,
mutation and gene conversion, a kind of interaction between loci, which
was introduced and investigated by T. Ohta in [5], [6], will be taken into
consideration.

The first aim of this paper is to give a mathematical justification to
the Ohta's results. Let E be the set [0,1]Λ in Rn, Here, the interval [0,1]
describes the set of alleles, and a point of E, which is an ra-ple of alleles,
means a chromosome with n loci. The bounded operator Bλ introduced
in § 2 describes mutation of the neutral infinitely many allele model in n
locus case. A positive constant υ is mutation rate. We assume that
mutation occurs independently at each locus. The operator B2 defined
in § 2 describes the Ohta's gene conversion. A positive constant λ stands
for gene conversion rate. Let ^(E) be the space of probability measures
on E. We consider the ^(E)-valued diffusion process with the generator
G given in § 2. The known results on the diffusion with the generator
G will be stated in Propositions 2.1 and 2.2. For simplicity, it will be
omitted to explain the reason why our diffusion process is the stochastic
process existing behind the Ohta's arguments. See the paper [8], where
the author explained the reason by means of giving a discrete model
describing the Ohta's model in 2 locus case with the diffusion approxima-
tion. The argument on discrete models and the diffusion approximation
in n locus case is essentially the same as in [8].
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The quantity φ) defined in § 3 is the average identity probability of

genes at different loci. The quantities f{t) and φ) are the average proba-

bility of allelic identity and the average identity probability of two genes taken

from different loci of two homologous chromosomes of the population

respectively. In this paper, the quantities φ), φ) and f(t) are defined

in terms of the first and the second moments of the measure valued diffu-

sion. We will show that these quantities satisfy the system of ordinary

differential equations

{djdt)φ) = -2(λ + υ)φ) + 2λ,

(dldt)f(t) = 1 - (1 + 2v + 2(n - ΐ)λ)f(t) + 2(n - l)λφ),

(dldt)φ) = φ) + 2λf(t) - (1 + 2v + 2X)φ).

The relation between our results and the Ohta's results will be explained

at the end of §3.

The second aim is to give another proof of the formula given by the

author in [9], which has been further investigated by G.A. Watterson [10].

We consider the average probability at stationarity that we find βΓkinds

of alleles appearing I times, I = 1, 2, , n9 in randomly chosen one chro-

mosome. The author showed in [9] that the probability is given by

{n\/θ(θ + ΐ)(θ + 2) . . . (0 + 71 - 1)} nU{0βΨJβs} }>

where θ = v/λ. In [9], the author discussed a diffusion process taking

values in probability distributions on the Young diagrams. The proof does

not explain the reason why the sampling formula similar to the well-

known Ewens one holds in this case. Here, we will try to explain the

reason, giving the proof in terms of the measure valued diffusion.

The most important problem on our diffusion in the application to

population genetics is to count the average actual number of alleles

existing in a finite population at stationarity. However, it seems rather

difficult, and it is still open.

§ 2. Measure valued diffusion process describing an n locus model

In the following, for a topological space X, C(X) denotes the space

of bounded continuous functions on 'X, and &(X) stands for the space of

bounded Borel functions on X. Let N be the set of natural numbers.

For k e N, Xk denotes the Mold direct product of X.
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Let E be the set [0, l]n in Rn. Let Bγ be the bounded operator on

the space J*(E) given by

(2.1) BJ(xux2, - . . , s n )

= υ Σ?-i 11 f(χu x*> ' > χn)dxj - f(xl9 x2, , *»)) ,

where (x1? JC2, , xn) e E , / e ^ ( E ) . The operator Bλ for n = 1 has already

been discussed in Chapter 10 of [1]. Next, we introduce another bounded

operator B2 on ^ ( E ) . Define B2 by

(2.2) B2f{xux2, • • - , * „ )

^ ^ Σ i i Ja ii^Ja {Ψhhf (^l* X2> ' " ' , ^n) — / (̂ 1> ^2? , ^n)}

Here, ψ j i j 2 is the operator of ^(E) to J'(E), by which the variable xh is

replaced by the variable xh\

The operator β 2 in 2 locus case was discussed by the author [8]. Define

B by

(2.3) B = Si + B 2 .

Note that the operator β generates a Feller semigroup on C(E).

Let ^(E) be the space of probability measures on E, and

i>, , </fe, /i», fe e N,

F is a polynomial on Rk, fu ,/fe e C(E)},

and

i^+ = {̂  e J W ) ) : 0(/i) - </, //>, A e N, /e

where ^fc e ^(Efc) denotes the £-fold product measure for μ e ^ ( E ) . Note

that 2 (Z@\

For φe@+ of the form φ(μ) = </, //>, define

(2.4) Gφ(μ) = Σi^<i

where the operators ΨtJ: @{W) -> @(W~ι) and B ( ί ): ^(E fe) -> ̂ (E) are

given by

Ψ'tjf(Xu X2, - -, Xfe-i

and

X2) . .., Xk) =
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for fe @{W), and Xm e E, m = 1, 2, , k. The operator ΨtJ replaces the

variable Xά of / by Xu and it changes the numbering of the variables

Xj+m to Xj+m-i for m = 1, 2, , k — j . To operate B{ί) to / means to

operate B regarding the /^-variable function / as a function with one

variable Xt. For k = 1, the first term of the right-hand side of (2.4) is

equal to zero.

Set A = {(φ, Gφ): φe®} and A+ = {(φ, Gφ): φ e r } . The space of

continuous functions ω: [0, oo) ->^(E) is denoted by C([0, <χ>), ^(E)). The

C[(0, oo), ̂ (E))-martingale problem for A+ which we will discuss is for-

mulated as follows. A stochastic process {μ(t), t ^> 0} with sample paths

in C([0, oo), < (̂E)) is called a solution to the C([0, oo), ̂ (E))-martingale

problem for A (or for A+) if

(2.5) φMV) - Γ Φ2(μ(s))ds
Jo

is a martingale with respect to σ(μ(s): 0 < s < t) for any (φu φ2) e A (or

A+ respectively). The next statement is found in Ethier and Griffiths [3].

PROPOSITION 2.1. The martingale problem for A mentioned above is

well posed. That is, there exists a solution {μ(t), t ^ 0} of the martingale

problem for A with any initial distribution μ(0) = μ0, and every solution

with arbitrarily given initial distribution induces the same distribution on

C[(0, oo), ̂ (E)). The solution {μ(t)y t ^ 0} is also the solution of the mar-

tingale problem for A+, and the martingale given by (2.5) for (φu φ2) e A+

has sample paths belonging to C([0, oo), R) with probability 1.

Hence, the measure valued process {μ(t), t ;> 0} is a diffusion process.

The set of purely atomic measure on E is denoted by Pa(Έ). Then, we

have the next proposition.

PROPOSITION 2.2. The diffusion process {μ(t)> t ^ 0} with arbitrarily

given initial distribution satisfies

(2.6) P[μ(t) e Pβ(E) for any t > 0] = 1.

The process {μ(t), t ^ 0} has a unique stationary distribution, which is

denoted by μ and

(2.7)

Theorem 2.4 in [2] implies (2.6). The proof of the ergodocίty is essen-

tially the same as the ones in [4], [7] and [3], and it is omitted.
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§ 3. Average identity probabilities introduced by T. Ohta

From now on, we will discuss the diffusion process {μ{t), t >̂ 0} defined

in the previous section.

Define

(3.1) fiιh = l{Xiχ=Xίί]{xu x2, , xn) e

(3.2) Φiuiμ) = (fan, μ> for i^U,

and

Define φ\μ) and cjj) by

(3.4) φ\μ) =

and

(3.5) φ) = Eψ(μ(t))}.

Operate the generator G to φ\ιit(μ), it < h, then we have

(3.6) Gφ]li2(μ) - !>(

iifiiή* μ> —

Here, we have used the following simple properties.

0 if 7 = ix or i2
(3.7) (a) fili%dx3 =

Jo l/iiu otherwise,

(3.8) (b) ψhjtftιu = fίlί2 if h = i, < Λ ^ 4

o r ij < i 2 = ji < h ,

(3.9) (c) ψ Λ i l / < l l f = Λ l4, if h <h = h<i2

or U Φ Ί < h = ι2,

and
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(3.10) (d) ψhjjίlί2 = ΨhiJiiπ = fixu >

if y'i =£ *i, h Φ h, h Φ h and j2 Φ i2.

Noting the facts that ψktlfilit = fki%, ψkijtli2 = filk, and that filit = fuu = 1,

we get

(3.11) The right-hand side of (3.6) = -2υ < / i l t a, μ>

Note that (3.11) also holds for ix > i2. Summing up the both sides of (3.11)

on ix and ί2 satisfying ix Φ ι2, we obtain

(3.12) GφKμ) = -2^1(/z) + λ{2n(n - 1) - 2^J

= -2{λ + v)φ\μ) + 2λn(n - 1).

Hence, that

Gφ\μ)= -2(λ +

Furthermore, Proposition 2.1 implies that E[G<f>\μ(s))\ is continuous in 5,

and that [Eφ\μ(t))] is differentiable in t.

Thus, we obtain the next statement.

THEOREM 3.1. The average probability of allelic identity c^t), defined

by (3.1)-(3.5), satisfies the ordinary differential equation

(3.13) (dldt)φ) = -2(λ + υ)φ) + 2λ.

Let μ2 = μ X μ be the direct product of μ e ^(E), and let gt/-Xi, Z2)

be a function on E2 given by

(3.14) gij(Xu X2) = A/x}, , 4 , xl . , 4 ) - W * , , Xs),

where Λ,, = {(X1? X£): Λ} = x)}. Obviously, ^ , e ^ ( E 2 ) . Define φ\,{μ\ <?(μ),

φ\μ\ f(t) and φ) by

(3.15)

(3.16) ro = (l/rc)Σi#i>

(3.17) #(//) = (lln(n - 1)} Σ ( l f f c ) : ^ f c <ftfc, μ
2} ,

(3.18) /(ί) = E[φ\μ(t))]

and

(3.19) c«) = E[ψ\μ(t))].
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Now, we will try to derive the equation which the quantities f(i)

and c2(t) satisfy.

By the definition of the generator G, we see

GφUμ) = (Ψngtj, μ> - ΦUμ) + ΣU < B % μ>

Note the following facts. The equalities

<#"&„ μ) = (Bgij( , X2), μ) = - vφ%(μ) + λ Σι «gφ μ*> ~

and

(B^gij, μ) = (Bgij(Xu -),μ}= -vφUμ) + λ £ t

hold. Besides, we see that

Ψngij = 1 for each i,

and that

for (i, j) such that i Φ j .

Thus we can calculate Gφ2

u{μ), and obtain

Gφttμ) = 1 - (1 + 2u + 2(n - 1)^)#^) + λ Ziu*t«gu, μ2} + <gtι,

Hence, we get

(3.20) G Σi ΦUμ) = n - (1 + 2υ + 2(n - l)λ) Σi ΦUμ)

By (3.16), (3.17) and (3.20), we obtain

(3.21) Gφ\μ) = 1 - (1 + 2υ + 2(n - l)W(μ) + 2(n - l)λφ\μ).

Since we have

GφUμ) = φUμ) - (1 + 2υ)φUμ) + λ{Σι(ΦUμ) - ΦUμ) + ΦUμ) - Φ

for (i, j) such that ί ^ j , we get

- l)φ\μ) = G Σiujy^ΦUμ) = Σa^ΦjΦUμ) - (I + 2u) Σci,;):

:i^^?j(i") + Σ i Σ ι Σr.jΦiΦUμ) - ^nΣajy.i

- (i + 2v)Σit.»:iΦjΦUμ)

+ λ{2(n - l) Σ i Σ i ΦUμ) - 2n ΣH^ΦS ΦUμ)}

= n(n - l)φ\μ) - (1 + 2v)n(n - 1 ) ^ )

+ λ{2n(n - l)φKμ) - 2n(n - l)φ\μ)}.
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Thus, we obtain

(3.22) Gφ\μ) = φ\μ) - (1 + 2υ + 2λ)φ\μ) + 2λφ\μ).

Therefore, by (3.21) and (3.22), we get the next theorem.

THEOREM 3.2. The quantities f(t) and φ), defined by (3.14)-(3.19),

satisfy the system of ordinary differential equations

(3.23) (d/dt)f(t) = l-(l + 2v + 2(n- l)λ)f{t) + 2{n - l)λφ),

(d/dt)c2(t) = φ) + 2λf(t) - (1 + 2υ + 2λ)φ).

At the end of this section, we will explain the relation between our

results (3.13), (3.23) and Ohta's results [5]. In our formulation, roughly

speaking, the quantities /, c: and c2 change in one generation (1/2JV)

times of their derivatives, where N stands for the population size in the

discrete model. Using Ohta's notation, we see

(d/dt)f(t) = 2NΔf,

(d/dt)φ) = 2NΔc,,

(d/dt)φ) = 2NΔc2,

where Δ denotes the change per one generation. Since the mutation rate

in one generation is roughly equal to v (1/2N) in our case, the rate υ

should be replaced by 2N v in Ohta's discussion, where the parameter υ

in [5] means the mutation rate in one generation. As for the rate of

gene conversion, (n — ϊ)λ in our equation should be replaced by 2iV λ.

Then, we have

Δf = ~{2v + (1/2Λ0 + 2λ}f + 2λc2 + (1/2N),

Δcx = ~{2v + 2(λ/(n - l))}d + 2(λ/(n - 1)),

Δc2 = 2(λ/(n - ΐ))f + (l/2i\0d - {2v + (1/2N) + 2(λ/n -

These equations are just the same as (3), (5) and (7) in [5], when we do

not consider interchromosomal crossing-over.

§ 4. Sampling formula similar to the Ewens one

Let βί9 - , βn be non-negative integers such that 2z lβι = n- ^ point

(xu a*, , xn) in E is defined to be belonging to E^, β = {βu , βn}, if

and only if there exist distinct Σ i A r e a l numbers yl9yi9 ,yΣj8i 6 [0,1]

such that
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} = I f o r A = 1 , . - . , & ,

where t(ΐ) equals Σl-l'1 βι for / ^ 2 and ί(l) = 0. The formula stated in

the introduction can be formulated as follows.

(4.1) J μ(Efi)μ(dμ) = {nllθ(θ + l)(θ + 2) . . (θ + n - 1)} Π?-i

where 0 = u/λ The proof of (4.1) in this section is essentially due to a

private discussion with Professor S.N. Ethier.

First, recall the single locus case which was discussed in [1]. Let

Eo = [0,1], μ e ^(Eo), and fe #(EJ). Define φ(μ) = </, / > , where μ* is the

^-fold direct product of μ. The diffusion process taking values in ^(Eo)

describing the so-called infinitely many neutral allele model has the

generator G given by

Gφ(μ) = Σi<j«Vijf, μ*-1) - <f, μk»

- <Λ / > ) (Chapter 10 in [1]).

Let Au A2, - - , AL be a measurable partition of Eo such that each At has

the mass (1/L) with respect to the Lebesgue measure. Let ht be the

indicator function of the set Au I = 1, 2, , L, and put

φa(μ) = <Λi, μYKK μY2 <hLi μ)a\

where au I = 1, 2, • , L, are non-negative integers, α = (at, ίγ2? •» <*ύ

and 2 i α̂ί = k. Then, we have

(4.2) Gφa(μ) = (1/2) Σti aia, - l)φa.n(μ) - {k(k - I)l2}φa(μ)

-M - Φa(μ)}]
(vlL)}φa.tι(μ) -

where e* = (̂ H)ί=i,...,D and ^Σί stands for Kronecker's δ. Let μ be the

stationary distribution of the ^(E0)-valued diffusion process. Since

ί Gφa(μ)β(dμ) = 0, we obtain by (4.2)

(4.3) Σϊ-i ««{(«* - D/2 + ivlL)}όa_tι(μ) - k{(k - l)/2 + υ}φa(μ) = 0,

where φjfi) = j φa(μ)μ(dμ).

Hence we see

1 + 2υ)} Hf-i«,{(«! - 1) + (2υlL)]φm..t(β).
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Noting that

(4.4)

by (4.3) we obtain the well-known result

(4.5) J φΛ(μ)β(dμ) = {Γ{2υ)IΓ{2υlL)L} \\ f=1 Γ{ax + 2(u/L))/Γ(2u + k).

Let βu -, βn be non-negative integers such that £]ι lβt = n, as the bigin-

ning of this section. Now consider the next problem. What is the average

probability at stationarity that we find βΓkinds of alleles appearing / times,

I = 1, 2, , n, in randomly chosen n genes? The answer to this ques-

tion is the well-known Ewens sampling formula. That is, the probability

is given by (4.1) with Θ = 2υ. The proof of this formula can be found

in Chapter 10 in [1], which is a little complicated. The Ewens' sampling

formula can be shown directly from (4.5) by modifying the proof in [1].

We will omit the details here, because it seems known.

Now, consider the n locus model. First take a partition of the set of

loci. Let {SJi=M)2)...,L be a family of disjoint subsets of {1, 2, , n} such

that St has at elements for each ί. Here, at are non-negative integers

and ΣΪ^Mi = n. Note that St may be empty. Define fa by

(4.6) /.(So, £ , . . . , SL) = Π t, ΓLe* Λ«fo) >

where ht is the indicator function of the set At for each ί, ί — 1, 2, , n.

Obviously, fa e ^(E), E = [0, l]n, and fa does not depend on the variables

xl9 I e So. Define the degree of fa by

Put

(4.7) φa(S0, Sί9 , SL)(μ) = </.(So, St, , SJ, μ) €

Define the degree of φa(μ) by the degree of fa. When μ is fixed, φa(μ)

means the probability that we find genes belonging to Ai at loci belonging

to Si for ί ^ 1. Let et be the vector with components 0 or 1 such that

only the i-th coordinate equals 1. Put

Φ.-.t,ι = </.-.,(So U {/}, Su , S, - {Z}, ., SJ, μ),

for / e S ί? and

https://doi.org/10.1017/S0027763000003123 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003123


MEASURE VALUED DIFFUSION PROCESS 91

φa,ι,m,i = </α(S0 U {m} - {/}, Su ., Si U {/} - {m}, , , SJ, μ),

for / e S0) and me Sίf i ^> 1. Then, we get

(4.8) G0.(//) = u Σί-i Σ I 6

if deg ^α(/i) = k. Note the fact that any h e &(Έ) satisfies

(4.9) J exp {(h(xu x2, . , xn), μ}}μ(dμ)

= j exp {</ι(xff(1), xσ(2), , α:ff(n)), μ)}μ{dμ),

for any permutation <? of {1, 2, , τι}, which is deduced from the symmetry

of the generator G and the property of the stationary distribution μ.

Define

φm = J φa(μ)μ(dμ) ,

and ώa._H>ι, φa,ιlΊn>i in the same manner, then we see by the above fact

(4.9) that φa-H,ι is independent of I for each ί, and that φa,ι,m,ι is inde-

pendent of /, m, and i. Hence, they can be written by φa_H and φa

respectively. Combining this with (4.8) and Gφa(μ)μ(dμ) = 0, we obtain

(4.10) υ Σf-i ctt{(llL)φm_ai - riβ} + λ{ΣLi«t(«i ~ Dλ-., - *(* - l¥ β }

= 4Σf=i^{fe - i) + WDmΦ-u - {Wh - i + y/^J

= 0,

for φα with degree ^. Making use of (4.9), we see that

(4.11) όei = 1/L, for each i ^ 1.

Note that (4.10) and (4.11) have the same form as (4.3) and (4.4). If we

replace 2υ in (4.3) by υ/λ, then we get (4.10). This is the essential part

of our argument.

Thus we obtain the next theorem.

THEOREM 4.1. The average of φu(SQ, Sί9 , SL)(μ), defined by (4.6) and

(4.7), with respect to μ is equal to

{Γ(Θ)IΓ(ΘIL)L} Πί-i A " i + θlL)IΓ(θ + k),

where θ is v/λ.

https://doi.org/10.1017/S0027763000003123 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003123


92 AKINOBU SHIMIZU

By the argument similar to the single locus case, we can see that

Theorem 4.1 implies the formula (4.1) given at the beginning of this

section.
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