ON SOME ASYMPTOTIC PROPERTIES CONCERNING
HOMOGENEOUS DIFFERENTIAL PRCCESSES

TUNEKITI SIRAO

1. Introduction. About the behaviour of brownian motion at time point
% there are many results by P. Lévy and A. Khintchine etc. The method of
W. Feller” is applicable to a similar discussion about a homogeneous differential
process. In this paper we shall study, applying his method, the properties of a
homogeneous differential process.

Let {X(t, w); 0=t< >, 0we=02}” be a homcgenecus differential preccess
such that E(X(¢)) =mt and V(X{t)) =o"t.” After P. Lévy we shall define the
concept of upper class and lower class with respect to a homogeneous differential
process as follows: if the set of f such that

X(t, 0)> oyt o)

is bounded (unbounded) for almost all w, then we say that ¢(#) belongs to the
upper (lower) class with respect to {X(¢); 0=¢<o}. Then we may prove
the following three theorems. In these theorems, the distribution function of
X(t) is denoted by Vi(x).

TueoreM 1. Let {X(t, w); 0£Lt< oo, 0 € 9} be a right continuous® honio-
geneous differential process satisfving the following conditions:

(1) Slx—-ml-:z [x —m|*dVi(x) =O(z(log log 2)'®)  as z- =x.
For any >0,

@) S!x—m!.\-z (x —m)*dVi(x) = O((log log 2)™*" %)
or

2y S' . (x —m)?dVi(x) =o({loglogz)™®) as z- <.

Received April 30, 1953.

) W. Feller: “The law of the iterated logarithm for identically distributed random variz-
bles.” Ann. of Math. vol. 47 (1946).

2)  is the probability parameter.

% The symhbols E and V denote the expectation and the variance respectively.

Y This is not an essential restriction.
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There exist two bdositive numbers « and N such that, for 0=t =a® and
0<N£b—a,

3) avi(x) =0(t{ dVi(x)) as a- o,

S(z:—;x—mtl<b a=|x-m|-<b

uniformly in t.
Then a monotone non-decreasing right continuous function ¢(t) belongs to
the upper (lower) class if, and only if,

) D S
(@) %—q&(t)e 20 e 6(D).9

Example 1. For a Poisson process, the conditions (1), (2) and (3) are well
satisfied.

Example 2. For a process of Pearson type, that is, a differential process
{X(t, w); 0=£t< oo} such that

x e—y vt-—l

Pr<X(t, 0))_%1\7): O—-f—(—t}_
0 otherwise,

dy if x=0

the conditions (1), (2) and (3) are well satisfied.

TueorEM 2. Let {X(, w); 0£t< oo, 0 € 2} be a right continuous homo-
geneous differential process with symmetric distribution function Vi(x). Then,
in Theorem 1, we may remove the assumption (1) and palliate (2) as follows:

@y Slx—m|\ (x—m)gaVl(x)=O((10g logz)_l)

Example 3. For a Gaussian process, the conditions (2)” and (3) are well
satisfied.

THeEOREM 3. Let {X(f, w); 02t<cc, w € 2} be a right continuous hono-
geneous differential process, If E((X(t) —mt)') is finite, the critevion (4) is
valid.

2. Proofs. Without loss of gererality we may assume that =0and o = 1.

Lemma 1. Let ¢(t) be a monotone mon-decreasing right continuous func-
tion. If ¢(t) does not belong to the upber class, then there exists a mionotone
increasing sequence {tr} such that {¢r = ¢(tr)} does mot belong to the upper class
with respect to { X ; Xp= X(tr) — X (tp-1) ).

Proof. Let ¢(t) be a function which does not belong to the upper class.
Then there exists a set 2° =2 with positive probability such that, for any 7> 0,

5 We may assume « <=1 without loging generality.
6 e (@(D) denotes the convergence (divergence) of the integrals.
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there exists #(w)> T such as
(5) X(t, 0)>Vt¢(t) when oe Q™
Since X (%, w) is right continuous in #, we have
(6) X(r, ©)>V7r¢(r) when o€Q%
with a rational number y(w)(>T). Let us put
PA(2%) =c>0.
Let {7;} be the set of all rational numbers. We shall define 2’ as follows :
D ={we*; Irign, X(ri, o) >Vri¢r)} (n=1,2,...),

where “37; £ n” means that there exists at least one 7; which does not exceed
n. Then we have, by (6) (with exception of the set of zero measure),

(7) Ued =0% elsePs...c2ls....
Hence, for any ¢>0, we may take », such as

(8) P20 =c—¢/2.

Let us put

9 2, ={we 2" ; X(ri, o) >V7i¢(ri)}.

Then we have
U 'in = ‘-Q;'lz)’

ri=n
so that, if 4 is sufficiently large, we obtain

(10) .Pr( U Qri)%Pr(.Q(nll))"‘e/Zéc—E-

1=y

Rearranging {7; ; {<4} according to the order of magnitude, we obtain the set
{t,, ..., ti}. Again we shall adopt the following definition :

{oeE 2% 37, max(d, t,)<7i=n and

(11) 2% = X(7i, o) >\/r—.-¢(r,-)} if n>max (4, 4,),
empty set otherwise.
Then by (6)
Ugw =2 oPse’s...sels...

Accordingly there exists 7. such that
Pr(-q(:g)) =C— 62/2
and
Q= 9%,

max (63, ;) <ri=nz
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Therefore, if 7, is sufficiently large, we have

(12) P U 2,)=2P((00)=25¢c-4

<i=iy

By the same method as in the previous discussion we have a monotone sequence

{tij+1» - .., ti). Repeating this process, we have a monotone sequence such
that
(13) W< . << <t <tippre .. <tyju<...,

(¢i>o as i-> o)

Pr( U .Qt,-) =C— Ej.

{j-1<i=ij

Hence, if ¢<c/2, we obtain

(14) P(N U .Qt.i)%6~(s+52+...+s”+...)=c—i>0.

FRZEES =17] 1-¢

(9) and (14) show that {¢:} does not belong to the upper class with respect to
{X:}.

According to the following lemma which will be proved after the method
of W. Feller, we can exchange in Lemma 1 the condition “{¢.} does not
belong to the upper class” by the condition “{¢r} belongs to the lower class.”

LEMMA 2. Let the conditions in Theorem 1 be satisfied. Let {tx}) be a
monotone increasing sequence such that tp—>  (as k—> o) and tp—tp-1€a <1.
Then the monotone increasing sequence {¢r= ¢(1)} belongs to the upper (lower)
class with respect to {Xp ; Xp = X(tx) — X(tr-1)} if, and only if,

P
(15) S_kji't{iime 2™ = §(D).

Theorem 1 is a simple corollary to Lemma 1 and Lemma 2.

Proof of Theorem 1.

a) The case of convergence. Let us suppose that ¢(¢) does not belong to
the upper class. Then, according to Lemma 1 and Lemma 2, there exisis a
monotone increasing sequence {fr} such that fp — fz1 = a and {gr = ¢(fx)}
belongs to the lower class with respect to {Xp ; Xp= X(#) — X(#4-1)}. Hence
by Lemma 2

EXS)

'

1 B —tp-1 "é
Lo 2FED,
k te

On the other hand, by the monotony of ¢(t) and the assumption of convergence,

_ _‘1< 2 nly _‘I_ 2
Et_k’tfﬂ%e Z”kéEB Loy " ar
k k

tpy t
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0 _1 g
=S %ﬂgb(t)e TP res.

This is a contradicition. So ¢(#) must belong to the upper class.
b) The case of divergence. Let us consider the monotone increasing se-
quences {t; = ka} and {¢r=¢(#)}. Then we have

o _ 1, t 1
%gb(t)e 2““dt=§3( %gb(t)e 2 dt

k Yt -1

1
éz te — th-1 Phse 5 Pr-1
k tr_1

be — Th-1 -5 %
=) e T,
; te Pk

Thus the divergence of the integrals yields that of the series (15). Therefore,
by Lemma 2, {¢r} must belong to the lower class and accordingly ¢(t) belongs
to the lower class with respect to the process {X({, w)}.

Now our purpose is to prove Lemma 2. We put

tr(log log tr)~° for >80,
(16) 7% =3 arbitrary in such a way that {y,) becomes a
monotone increasing sequence for 1, =80.
Furthermore we put
17) Pl Xy <x}=Filx),
“ 2
(18) bk=J x°dFi(x),
[2l<m
(19) B.=>\b,
k=1
(20) uh= —XlxmkxdF(x), ! = _thélxl<t;{,gxdFk(x),

' = — ffk’*;mx‘m("’
and
(21) G=be—pl, sh= Zjlak

We shall introduce three new sequences of random variables as follows;

Xe + 1tk i Xl <mp

(22) Xi = { , .

Lk otherwise,
‘ Xr + pd! if =l Xel <t
(23) Xi' = { " ’ .

L otherwise,
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Xe+ull! if | Xkl

(24) xi =
Iy otherwise.

Then we have

(25) X = Xi+ X + X[,
and the variables of each of the three sequences are mutually independent.
Moreover
(26) E(Xr) =E(X}) =E(X})=EX}")=0
and
(27) V(X}) = oi.
If we define S;; as follows
(28) Shi=X{+Xi+ ...+ X},
(the sums S} and S}’ are defined similarly), then we have
(29) V(Sh) = sh.
LemMma 3. With probability one
(30) SH! = O(#,* (log log t») ™).

Proof. From the assumption (3) we have
SIBAY k) = 5 n dFUE) = OIS th = 1) o Vi)
k = k

= 0 Dt b=y, V()

©

=03 2t = tr0) S A

2=1 k=
0

= O(l)zt; >8‘11/ _(led},fldVl(x) = O(l)s‘_mxdel(x) < S

Thus, by Borel-Cantelli’s lemma, it follows that with probability one there will
be only finitely many % such that X%'xu}'. So, by the assumptions (1) and
(2), we have

IS8/ = 01+ 123, a2 Fu(x) [} = 0L+ 2ts — - o 121 VA C0))

=0(1){1+ 2 E(tk - tk-l)St‘/ ‘lx|<t;’fllx! dvi(x)}

k=1 3=k

=01+ 3 3t~ - Doy, 171 AV()

I=1k=1

+E ’E(tk - tk"l)St;lzélx}d}/fl lx]dVi(x)}
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n—1 »
= 0(1)(1 +gtjstljﬂgl”(t;/fl}x!dV)(x) +g,",t"gt;/zélxldﬂz‘xldVl(x”
= 0(1){1 + Slx!<f”2 lx!stl(x) + t"St”z;[x]Ix]dVl(x)}

= 0(1)(To_g“1§§"t:)m

This proves the lemma.
LEMmMmaA 4. With probability one
(31) Sl = O((tx log log log tx)').

Proof. According to a theorem of L. Kronecker,” it will be sufficient to
prove that the series

1

3 =
(32) < (tslog log log ts)

’
12 X5

converges with probability one. By a theorem of Khintchine and Kolmogoroff,”
it is sufficient to show that

__w,,*lA,,,,mﬁ "?
(33) ; tnlog loglogi, E(X)E.

To prove (33) we shall consider the following function

. t]k/? 12
3¢ = o= DA S —— .
(34) S(2) :nlrr,x;k, T,=A{F; (Tog Tog £)"" > 112},

Obviously S(#) is monotone non-decreasing. Hence we can define the inverse
function of S(n) as follows

(35) S™(») = min .

S(LEn

By the definition (23), we obtain

> 1 " 9 V____l____,_S 2
2714 tn log(:() n E(X” ) :4:2”“' t” log‘a) tn nn§|1]<f:2x dFﬂ(x)
= -!ﬂ:inl_s 2
= 0(1@ o Toge. £y dmzil<r2® avi(x)
A ‘_'t _ S(n)
= 1 _.l'_’.'_.,..f’_._l__ N 2 V x
o )zn} t,loga, tnk>~—','. ﬂké]fl.:?[hlx dvi(x)
= omzﬁ LaVix) S Tt
B kv MNE X< ! n=S2k) tn Iog\g, t”

") K. Knopp: Theorie und Anwendung der Unendlichen Reihen, 2 ed., Beriin, 1924, p. 127.
% A, Kolmogoroff: Grundbegriffe der Wahrscheinlichkeitsrechung, Berlin, 1933, p. 59.
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=0‘1)§,,3S LdVix) <,

MeElx]<Tpt

where log) denotes the k-times iterated logarithm. This proves the lemma.

LemMA 5. For any 6> 0 the probability is zero that there exist infinite many
n for which the inequalities

(36) Syl > 615/ (log log )"
and
(37) Sh> 6(ts log log £.)'"*

hold simuitaneously.

Froof. Let us denote by A, the event that there exists at least one #, such
that

(38) 10t, logy) tn<tr<t, and X xu¥,

and by A, its complementary event. Choosing m for which [¢,] = [10 ¢, log?,ta]®
holds, we have

S =012 (8 — tk—l)S,:k;lx'\.tL/Z lx1dVi(x)

l
k=m k=m

" 1
= 1 — ) e -
0t )g:',.(tk k-1) yr(loge %)% "¢

= te — th-1
=001 S Bl S
( )E‘ 17 (logee) £ )2
4’

= 0(1)——*———(10g log—t;l—)'gz‘;?.

Accordingly, if A» occurs, then we have by Lemma 4

' ( 2 tn’
W =Sh+ (S) — Si) = O((tm logs tm)" )+O( (log log t,)V2re )
=o(t)*/(log log t»)*?).

This excludes (36).~ Therefore, for sufficiently large », the event (36) will occur
only in conjunction with the event A, with probability one. Let B. denote the
event of a simultaneous realization of (37) and A,. It suffices to prove that
the probability that B, occurs for infinitely many # is zero. To this purpose,
we consider the event

eV l<ty=eY

which implies the realization of at least one B, with

9 [x] denotes the largest integer which does not exceed x.
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(40) e <ty ze.

Our lemma will be proved if we show that

(41) SIPAC,) < .
Put
(42) P, = > PAXE = pd).

ev log =3y <tr=ev

Then we obtain

_v&,;_ﬂ_ o 10
(43) g (log »)™® <o
and
(44) Pr(Cy) = 0(1)P\./(10g D)IOO e

Accordingly the series (41) converges.

LEMMA 6. For any mionotone increasing sequence {¢n} the divergence (con-
vergence) of the series (15) is a necessary and sufficient condition that with
Dbrobability one the inequality

(45) §Xk>3¥2¢n
be satisfied for infinitely (only finitely) many n.

Proof. Without loss of generality, we may assume that

12y

(46) log log tn < ¢7 <4 log log ta.

If a and b are sufficiently large and b — @> N, then we have by the assumption
(3)

5 5
| ar(x) =00t = ta0) | Favita).
a v
So we have
L ? 2 _ 2
On—bn—u"n = Slx]<"1;.x dF,. (%) <Slx|<'!,.xdF”(x))

=ty —tn-1— Slx%nnx’dF,,(x) - (S xaVF,.(ac))2

=ty —tn-1— O( 1)(tn - tn—l)(log lOg tn)-(2+e>.

1¥]<%a

Thus #5 — tn_1/an—1 and therefore ¢n/sx—~1 as #n—> . So the divergence (con-
vergence) of (15) is equivalent to

10) 1) 12 o¢, cit. 1).
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o _lg2
(47) 2—5-21¢ne 277 e D).

»

According to a theorem of W. Feller,” (47) implies that with probability one
there are infinitely (only finitely) many # such that

(48) S;1>Sn(¢n+¢7./¢n),

where ¢ is an arbitrary constant. From the definition (19) and (21), we have

and
| f 1 n
= dFe(x) = - 2 qF(x) = 7 Ber
[ f iglx xdFy x)i - ‘Smgnkx (%) o
Hence By - s»=0((log t»)?) and we may take By* for s, in (48), so we have
54> Bl (gu+c/pn).

Hence, using Lemma 3 and Lemma 5, the divergence of (15) yields that with
probability one there exist infinitely many »n for which the inegalities

(49) 5h> B¢+ ¢/ 9n)
and
(50) |SH + S| < M(ta/log log t) ",

where ¢ is an arbitrary constant and M is a sufficiently Jarge number, hold simul-
taneously. Let us put ¢ =2 M in (49). Then we see that with probability one
there exist infinitely many % such that

M=

51) X =S4+ S +SY > B¢

k

1)

1
Conversely if (51) holds for infinitely many 7z with probability one, it follows,
by (30) and (31), that with probability one
y < 1 pie
Sn>§Bn bn

for infinitely many # appearing in (51). From Lemma 5, it follows that
with probability one there exist infinitely many » for which (50) and {51) hold
simultaneously, so that we have

S‘;>Blrr/2(¢n -2 M/¢n) >Sn(¢n -2 M/¢'n)-

This means that {¢, —2 M/¢.} belongs to the lower class with respect to {X}}.

13) W. Feller: “The general form of the so-called law of the iterated logarithm.” Trans.
Amer. Math. Soc. vol. 54 (1943), pp. 373-402.
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Then, by a theorem of W. Feller,") we have

2 -1 (Bn—2M!/Fn)?
% (gn—2M/gn)e "e9o,
”
and accordingly

2

- 142
S 6.0 TP ED.

n Sn

-

This is equivalent to the divergence of (15).
Now Lemma 2 will be proved easily.

Proof of Lemma 2. If the series (15) diverges, then it is clear, from
Lemma 6, that for any constant ¢

,‘%XR By (¢n+c/pn)

will be satisfied for infinitely many » with probability one. Therefore it is
sufficient to show that

(52) th? = B =0t/ o)
or, by (46),
(53) tn— Bn=0(t./log log ta).

But we have

ti=By=3Y 2R =0 (-t #aViw)
k=1 k=1 |x|Z="

|2I=

= 0(1)(n/log log tn + t,,S FdVi(x))

le—_?tlllmllog%z)tn

(the first term on the right is the contribution of the terms in the sum with
tr <t./loglog t, and the integral is an upper bound for the contribution of the
remaining terms). Hence, by the assumption (2), we have

tn — By = O(t,/log log tx).
The converse is trivial.

Proof of Theorem 2. In the proof of Theorem 1, the condition (1) was
used to evaluate

2 Slxlztl"z xdFy(x) = O(¢./log log ta)',
=

k=1

But this is equal to zero in our case. Also the condition (2) was used to evalu-
ate

10 loc. cit. 13).
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LI
k:l,ué'i = O(tn/(log log ta)'***)'
and

tn — By = O(ta/log log ts).

In our case the former is equal to zero and for the latter the condition (2)" is
sufficient. These prove Theorem 2.

Proof of Theorem 3. Let t=q/p be a rational number. Then we have

B(x)) = | z'aviio) = [(x(a/p) Pldw)

= {txasp) - x00) + (x(2/p) - x1/p))
+ ... +(X(g/p) - X(q-1/$))} P(dw)
= qS:x4qup(x) +3q(g-1)/p%.
Put p=¢ and E((X(1))') =a. Then we obtain
a=E(XW))=p{ x'avi(=)+36-1)/p,

and accordingly

S_mx‘dvl,p(x) =(a—-3(p—1)/p)/p.
Hence

(54) E(X))) =E(X(q/p)") =aq/p—-3(1—-a/p)q/p
=at-31(1-1¢).

Since E((X(#))!) is a monotone increasing function of ¢, (54) holds for any real

number .

Let us consider the sequence {X;} in Lemma 2. Using the notations in
the previous proofs we have

PAlXulam)=§ _ aF)
k

S_ 2 dFi(x) <a(ty — te-1)/78,

=
A

=

and so
gP,( | Xe| =) éa? (tp — tr-1)(log log tr)%/t7 € €.

According to Borel-Cantelli’s lemma, it follows that with probability one there
will be only finitely many % such that | Xz|=»s.
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Put

e

l X+ xaRun) it 1 Xl<n
X} = l =

S xdFr(x) otherwise.

lx1="

Then we have

E(X{)=0, V(X}) =t —tp-1+ O (¢ — te-1) /i

and so
t,,—k}‘_]thX,-i) = 0((log ts)*).
On the other hand, we heve

S xR saS(t- ot 6.
k |x|=" k
Hence
D1 Xk =21 X4+ 0(1).
k=1 k=1
By a theorem of W. Feller' the criterion (4) is valid for { X%} and so for {X}.

Thus we may apply Lemma 2, and Theorem 3 will be proved similarly as in
the previous proof of Theorem 1.

Mathematical Institute,
Nagoya Universily

15 loc. cit. 13).
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