The discovery of glycolaldehyde in a star forming region

Maria T. Beltràn¹, Claudio Codella¹, Serena Viti² Roberto Neri³ and Riccardo Cesaroni¹

¹Arcetri Observatory (Italy), ²UCL (UK), ³IRAM (France)

Abstract. Glycolaldehyde is the simplest of the monosaccharide sugars and is directly linked to the origins of life. We report on the detection of glycolaldehyde (CH₂OHCHO) towards the hot molecular core G31.41+0.31 through observations with the IRAM PdBI (Plateau de Bure Interferomter) at 1.4, 2.1, and 2.9 mm.

The CH₂OHCHO emission comes from the hottest ($\geqslant 300~\mathrm{K}$) and densest ($\geqslant 2\times10^8~\mathrm{cm}^{-3}$) region closest ($\leqslant 10^4~\mathrm{AU}$) to the (proto)stars. The comparison of data with gasgrain chemical models of hot cores suggests for G31.41+0.31 an age of a few $10^5~\mathrm{yr}$. We have also shown that only small amounts of CO need to be processed on grains in order for existing hot core gas-grain chemical models to reproduce the observed column densities of glycolaldehyde, making surface reactions the most feasible route to its formation (Beltràn et al. 2009).

Figure 1 shows the brightness temperature scale of the CH_2OHCHO ($20_{2,18}$ - $19_{3,17}$), ($14_{0,14}$ - $13_{1,13}$), and ($10_{1,9}$ - $9_{2,8}$) at 220463.87, 143640.94, and 103667.91 MHz, respectively, as observed towards the central position of the G31.41+0.31 hot core - see Beltran *et al.* 2009 for details. Rest frequencies are pointed out by vertical bars.

- Upper panel: the glycolaldehyde line is blended with the CH3CN (12-11; K = 8) line. Two additional lines are present: (i) 13 CH₃CN (12₆ 11₆; labeled by K'), and (ii) HCOOCH₃-A (25_{11,15} 26_{9,18}) (2204445.79 MHz; Eu = 272 K) which could contain an emission contribution due to the CH₂OHCHO (18_{4,14} 17_{4,13}) (220433.51 MHz; Eu = 108 K) line. The continuous line shows the fit to the group of three lines formed by the CH₂OHCHO (20_{2,18} 19_{3,17}), CH₃CN (12-11; K = 8), and 13 CH₃CN(12-11; K' = 6); the dotted lines draw the three individual Gaussian curves used for the fit.
- Middle panel: the CH₂OHCHO line is part of a spectral pattern containing also the HCCC¹³CCN (143636.63 MHz; Eu = 183 K), C_2H_3CN (33_{2,31} 32_{4,28} (143646.50 MHz; Eu = 620 K), and C_2H_5OH (29_{2,28} 28_{3,26} (143651.78 MHz; Eu = 415 K) lines. The results of the fit as drawn as in the upper panel.
- \bullet Lower panel: besides the glycolal dehyde emission, an unidentified spectral pattern is present around 103674 MHz. The solid curve shows the fit of the isolated CH₂OHCHO line.

References

Beltràn, M., Codella, C., Viti, S., Neri, R., & Cesaroni, R. 2009, ApJ (Letters) 690, L93

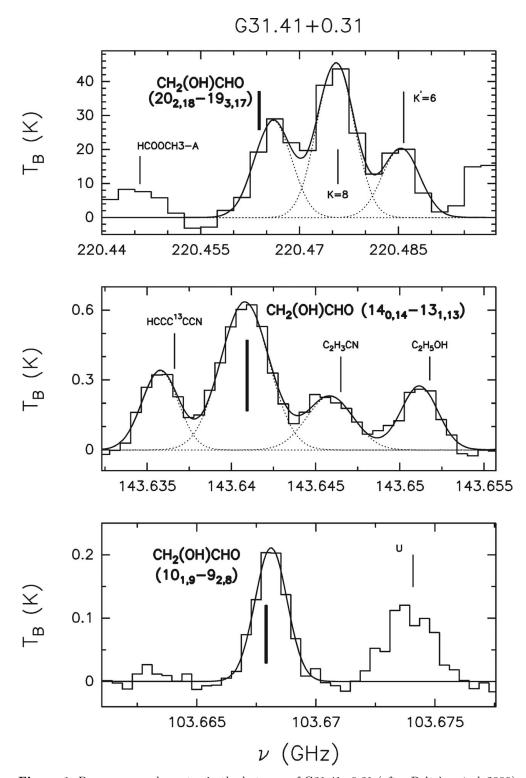


Figure 1. Beam-averaged spectra in the hot core of G31.41+0.31 (after Beltràn et al. 2009)