
APPLICATION PAPER

Climate model-driven seasonal forecasting approach with
deep learning

Alper Unal1 , Busra Asan2, Ismail Sezen1, Bugra Yesilkaynak2, Yusuf Aydin1 , Mehmet Ilicak1 and
Gozde Unal3

1Eurasia Institute of Earth Sciences, Istanbul Technical University, Istanbul, Türkiye
2Department of Computer Engineering, Istanbul Technical University, Istanbul, Türkiye
3Department of AI and Data Engineering, Istanbul Technical University, Istanbul, Türkiye
Corresponding author: Alper Unal; Email: alper.unal@itu.edu.tr

Received: 22 May 2023; Accepted: 30 May 2023

Keywords: climate change; deep neural networks; machine learning; seasonal forecast

Abstract

Understanding seasonal climatic conditions is critical for better management of resources such as water, energy, and
agriculture. Recently, there has been a great interest in utilizing the power of Artificial Intelligence (AI) methods in
climate studies. This paper presents cutting-edge deep-learning models (UNet++, ResNet, PSPNet, and DeepLabv3)
trained by state-of-the-art global CMIP6 models to forecast global temperatures a month ahead using the ERA5
reanalysis dataset. ERA5 dataset was also used for fine-tuning as well performance analysis in the validation dataset.
Ten different setups (with CMIP6 and CMIP6 + ERA5 fine-tuning) including six meteorological parameters (i.e., 2 m
temperature, 10m eastward component of wind, 10 m northward component of wind, geopotential height at 500 hPa,
mean sea-level pressure, and precipitation flux) and elevation were used with both four different algorithms. For each
model 14 different sequential and nonsequential temporal settings were used. The mean absolute error (MAE)
analysis revealed that UNet++withCMIP6with 2m temperature + elevation and ERA5 fine-tuningmodel with “Year
3 Month 2” temporal case provided the best outcome with an MAE of 0.7. Regression analysis over the validation
dataset between the ERA5 data values and the correspondingAImodel predictions revealed slope andR2 values close
to 1 suggesting a very good agreement. The AI model predicts significantly better than the mean CMIP6 ensemble
between 2016 and 2021. Both models predict the summer months more accurately than the winter months.

Impact Statement

This paper discusses the use of novel developments in the machine-learning field in seasonal forecasting.
Traditionally, climate models are used to simulate physical, chemical and biological processes in the atmosphere
to generate climate projections. Machine-learning methods are gaining popularity in different fields. A team of
computer scientists and earth scientists worked on this paper that investigates the use of machine-learning
algorithms along with climate models for seasonal forecasts, which are critical for better resource management.

1. Introduction

Seasonal forecast is defined as a variety of potential climate changes that are likely to occur in the coming
months and seasons (Pan et al., 2022). This is crucial for governments and decision makers to better
manage natural resources such as water, energy, and agriculture, as well as protect human health (Yuan
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et al., 2019; Talukder et al., 2021). For example, crop producers use seasonal forecasts to make decisions
about the timing of planting and harvesting, field fertilization and water management (Klemm and
McPherson, 2017). Weather plays an important role in energy supply and demand (Felice et al., 2015);
hence, an accurate forecast of future weather conditions could increase the effectiveness and depend-
ability of energy management at the local and national levels given the requirement to maintain the
balance between electricity production and demand. Accurate forecasting of extreme events such as
storms, heatwaves, droughts and floods is required to improve disaster preparedness (Liu et al., 2022).

Weather prediction at shorter timescales such as daily to monthly depends on the understanding of
physical processes in the atmosphere as well as interactions among the atmosphere, oceans and land. An
important distinction must be made between dynamical predictions, which use intricate physical numerical
models and statistical predictions, that use regional historical relationships between physical variables like
temperature and precipitation (Roads et al., 2003; Lorenzoni and Pidgeon, 2006; Troccoli, 2010; Klemm
andMcPherson, 2017; Franzke et al., 2022). Two approaches for constraining climate predictions based on
past climate change include large ensembles of simulations fromcomputationally efficientmodels and small
ensembles of simulations from state-of-the-art coupled ocean–atmosphere General Circulation Models
(GCMs; Stott and Forest, 2007). GCMs are frequently used in studies related to the impacts of large-scale
climate change (Fujihara et al., 2008). High-resolution climate data from current global climate models are
provided using Regional Climate Downscaling (RCD) techniques (Laprise, 2008; Scinocca et al., 2016).
Several programs such as THORPEX,DEMETER and EUPORIAS have been launched in practice towork
toward seasonal forecasting (Toth et al., 2007; Klemm and McPherson, 2017).

In 1995, CoupledModel Intercomparison Projects (CMIP) began as a comparison of a few pioneering
global coupled climate models and their outputs are used by different organizations around the world,
such as the IPCC to better understand past, present, and future climate change (Wang et al., 2021; Xu et al.,
2021; Liu et al., 2022). CMIP6 is themost recent phase of the CMIP. TheCMIP6 platform, which began in
2015, offers the most up-to-date multi-model datasets. Simulation outputs from more than 100 different
climate models produced bymore than 50 different modeling groups contributed to CMIP6. In addition to
historical studies, seasonal forecasts for different emission scenarios are provided (Fan et al., 2020;
Turnock et al., 2020; Zhang and Li, 2021; Liu et al., 2022).

In recent years, big data, effective supercomputers with graphics processing units (GPUs), and
scientific interest in novel algorithms and optimization techniques proved to be significant turning points
in machine-learning history. Machine learning has recently been a hot topic in climate studies. Tyagi et al.
(2022) reviewed a number of studies that applied the different machine-learning/deep-learning algorithms
in flash drought (FD) studies. Luo et al. (2022) used a Bayesian deep-learning approach to near-term
climate prediction in the North Atlantic. Bochenek and Ustrnul (2022) investigated the top 500 scientific
articles about machine learning in the field of climate and numerical weather prediction that have been
published since 2018.Anochi et al. (2021) evaluated different machine-learningmethods for precipitation
prediction in SouthAmerica. Zhang and Li (2021) and Feng et al. (2022) used deep-learning algorithms to
downscale hydroclimatic data of CMIP6 simulations in China.

This study aimed to improve seasonal temperature forecasts using both climate models and machine-
learning algorithms. Specifically, the objective was to utilize the power of CMIP6 physical models along
with the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5th Generation
(ERA5) dataset (created using data assimilation and model forecasts) while utilizing specifically deep
neural network-learning methods for a better global seasonal forecast of 2 m temperature.

2. Materials and Methods

2.1. Training data

This study has utilized the monthly averaged meteorological parameters (i.e., 2 m temperature, 10 m
eastward component of wind, 10 m northward component of wind, geopotential height at 500 hPa, mean
sea-level pressure, and precipitation flux) from nine fully coupled Earth System Models (ESM) that
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participated in the CMIP6 (Eyring et al., 2016). These models are ACCESS-CM2, CNRM-CM6–1-HR,
GISS-E2–1-H, NorESM2-MM, CESM2-WACCM, EC-Earth3-Veg, MPI-ESM1–2-HR, MIROC-ES2L,
and IPSL-CM6A-LR. For each ESM model, only one ensemble member was used and the time slice for
the coupled models is chosen from the historical period (i.e., from year 1850 to 2014). For each ensemble,
1,700 data instances are separated for training and 100 instances for testing.

For validation and fine-tuning, monthly averaged 2 m temperature data from the ERA5 reanalysis
dataset Copernicus Climate Change Service (C3S) (2017) have been used. The ERA5 dataset is
partitioned into two different time slices: years 1973–2016 (400 samples) are used for fine-tuning, while
years 2016–2021 (116 samples) are used for evaluation of the trained models. In order to estimate the
performance of the deep-learning model (which is called as AI model from now on) between 2016 and
2021, we also used the multi-model mean of the CMIP6models using the IPCC SSP5–8.5 scenario which
is selected since there was no significant reduction in carbon emissions after 2014 when the historical
simulations ended.

2.2. Model architecture

As this study focuses on spatiotemporally varying data, an encoder–decoder-based architecture UNet++
(Zhou et al., 2018),which is based on the originalUNet architecture (Ronneberger et al., 2015) is adapted. In
UNet++, the skip connections of theUNet are re-designed tominimize the semantic gap between the feature
maps coming from the sub-networks of the encoder and the decoder, making the learning easier. Our model
specifically employs convolutional neural network (CNN) layers due to the nature of the input data. We
construct the UNet++ in order to perform a prediction task, which is explained below. The architecture
includes a contracting path, that is, an encoder part, which summarizes the information by reducing the size
of the input image and increasing the number of channels. This downsampling operation results in spatial
information loss due to the compression of the input. The UNet++, as in the original UNet, introduces skip
connections that reduce the information loss after the bottleneck layer and recovers fine-grained details.
Skip connections aggregate information from different resolution levels in order to increase accuracy and
speed up the convergence. In the expansive path, that is, the decoder part, skip connections concatenate the
outputs of each downsampling layer to corresponding upsampling layers, aiming at image reconstruction
that is at the same spatial resolution as that of the input. In addition to UNet++, by training several state-of-
the-art CNN architectures a benchmark has been created. As the baseline model, the classical CNN
architecture ResNet is used. Furthermore, similar to UNet++, results of the other segmentation models
such as DeepLabV3 Chen et al. (2017) and PSPNet Zhao et al. (2017) are included in the benchmark.

Figure 1a depicts the block diagram of the neural network model that we construct for the seasonal
forecast of temperature. In addition to 2 m temperature, an elevation map is stacked to the input as ancillary
data to investigate whether it can improve the prediction performance. Along with elevation and tempera-
ture data, experiments are done by stacking more climate variables per month such as u10 (10 m eastward
component ofwind), v10 (10mnorthward component ofwind), zg500 (Geopotential height at 500 hPa), psl
(mean sea-level pressure) and pr (precipitation flux) and giving into the network. We use two different
experimental settings to evaluate the effectiveness of using fully historical input data versus periodic data.
The first setting is designed to see the performance of the historical data stacked sequentially in a temporal
manner such as from t�1 to t�6, t�12 and up to t�36. However in the second set, the target month and
its neighbors are stacked in a yearly manner from historical data to assess the effect of periodicity. Months
before the target prediction, the previous years’ target month and months before and after them
(e. g. neighboring months) are stacked as the input. The number of previous lag years as well as the
number of preceding and succeeding months are selected as hyper-parameters. We have explored lag years
1 to 4 and preceding/succeeding 1 and 2months. Two examples for these settings are given in 1b. The input
to the Encoder network consists of the maps (temperature and elevation) corresponding to the month t�1,
which is one previous to the targetmonth t, t�12 ±Δt, t�24 ±Δt, and t�36 ±Δt, whereΔt could be either
one of 1,2f g. Specifically, we selected Δt = 2 in order to account for possible seasonal monthly shifts. The
overall concatenated input tensor goes through the UNet++ model, and a single prediction map for
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temperature at the target month t is produced at the output of the network, as visualized in Figure 1a. A total
of 6 different AI models were developed when investigating the UNet and its successor the UNet++ with
ERA5 fine-tuning. Considering all hyper-parameters (i.e., sequential and nonsequential), we have designed
14 experimental settings (named as cases from now on) resulting in 84 simulations in total. It should be
noted that we also explored going back to lag years from 5 to 10, however as the number of lag years are
increased, the amount of validation data is naturally decreased, and as a result, the data sizewas not adequate
for the model optimization process. Therefore, we have stopped at year 4 for model setup.

As the spherical earth in 3D (3-dimensions) is represented over a 2D spatial grid, one has to pay
attention to the spatial information at the edges of images while applying convolutions. Rather than
traditional 3 × 3 spatial convolutions, 3 × 3 circular convolutions that pad the input with information from
the opposite sides of the image are used to preserve the spatial information at the edges of the image.
During downsampling, threemaxpool operations and eight convolutional layers with batch normalization
are used. Similarly, the upsampling path is designed using three upsample and seven convolutional layers
with batch normalization. As UNet++ introduces intermediate feature maps for the skip connections in
each level during downsampling and upsampling, six convolutional layers are used for constructing all the
intermediate feature maps. Moreover, concatenating lower-resolution feature maps requires the usage of
three additional upsample layers. For training the neural network model, as the loss function, the mean
squared error (MSE) loss in (1) is utilized:

L θð Þ= 1
N

XN

i = 1

f θ Xið Þ�Yið Þ2, (1)

where f θ represents the neural network model, Xi is the input multichannel tensor consisting of stacked
monthly data and elevation data, Yi is the target temperature in the grid (“Ground Truth”), andN corresponds
to the number of target time steps in a given batch of the selected stochastic gradient descent optimizer.

2.3. Training and evaluation

After the neural network model is constructed, it is trained with the MSE loss function in all experiments.
A learning rate of 1e�5 and a weight decay of 1e�3 are used with a step learning rate scheduler with

(a) Network architecture of the proposed model.

(b) A sample arrangement of the months for the second experimental setting.

Figure 1. (a) Depiction of the UNet++model which we adapted to our seasonal temperature forecast task.
Month descriptions in the input of the encoder refer to relative timing of the input channels (e.g., eachmonth
used) according to the target month. In addition to input months, an elevation map is added as a separate
channel. (b) Arrangement of the months for the multi-dimensional input for the experimental settings:
(a) 2 years 1 months (given in the first row), and (b) 2 years 2 months (given in the second row) are shown.
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Adam optimizer Kingma and Ba (2015). The model is optimized for 40 epochs and early stopping is used
to avoid over-fitting. After each convolutional layer, a batch normalization layer is used. The batch size is
chosen as 16. The training process is performed on an NVIDIA RTX A5000 GPU and the results are
delivered on average after 3–4 hr of training.

During validation, the loss versus iterations ismonitored and themodel with the lowest validation error
is selected. During inference/test time, the input is formed by the monthly temperature data coming from
CMIP6 temperature maps that are stacked and given to the model in a feedforward evaluation. In each
evaluation experiment, the target is defined as the month after the latest month in the input. After training
with CMIP6 data, the selected model is further fine-tuned with ERA5 t2m data in order to increase the
capability of the model in real-world forecasting scenarios. The fine-tuning process is carried out by
following the same process as in the training. Monthly temperature data taken from ERA5 and the one-
channel elevation map are stacked as a multichannel input and given to the network. During the fine-
tuning stage, layers of the network are trained with the same learning rate and a weight decay of 1e�5 for
10 epochs with early stopping.

As an evaluationmetric, themean absolute error (MAE) (2) is chosen, where each xij and yij correspond
to the predicted temperature and the ground truth temperature value of the corresponding grid, respect-
ively. D refers to the number of longitudes, and M refers to the number of latitudes in the 2D spatial grid.
All MAEs are summed and averaged across the temperature map to measure the overall error:

MAE =
1
D

XD

j = 1

1
M

XM

i = 1

∣xij� yij∣: (2)

3. Results and Discussion

Average MAE results over the validation dataset for temporal cases are provided in Table 1. As seen in
this table, MAE ranges between 0.955 and 1.162. For comparison purposes, theMAE of the persistence
forecast test (over the ERA5 validation dataset by copying the previous month’s temperature value as
the target month’s prediction) is estimated as 2.62. This indicates that all models have improved the

Table 1. Mean Absolute Error (MAE) values as estimated for the entire domain (lat:192 × lon:288) for
each simulation conducted: 6 models × 14 cases = 84 simulations

CMIP6 train CMIP6 train + ERA5 fine-tune

Temporal setting M1 M2 M3 M4 M5 M6

6 months 1.136 1.123 1.162 1.030 1.077 1.046
months 1.031 1.024 1.014 1.004 1.028 1.002
months 1.020 1.027 1.013 0.993 0.997 0.999
months 0.998 0.992 0.984 0.981 0.987 0.983
months 1.007 1.006 0.989 1.008 1.002 0.976
months 0.991 0.979 0.984 0.990 0.981 1.003
year 1 month 1.024 1.024 0.989 0.999 0.989 0.983
year 2 months 1.011 1.008 1.008 0.997 0.986 0.984
years 1 month 0.999 0.995 0.996 0.977 0.967 0.967
years 2 months 0.996 0.986 0.980 0.973 0.969 0.979
years 1 month 0.981 0.977 0.986 0.988 0.973 0.967
years 2 months 0.995 0.989 0.978 0.993 0.969 0.975
years 1 month 0.982 0.989 0.966 0.982 0.965 0.962
years 2 months 0.998 0.984 0.967 0.992 0.965 0.955

Note: M1 and M4 are UNet; M2 and M5 are UNet with elevation; M3 and M6 are UNet++ with elevation.
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MAE significantly with respect to the persistence forecast baseline. It should be noted that out of six
models, for each temporal case, 50% (or seven cases) of the lowest MAEs occur for Model 6 (M6).
Three of the minimum MAEs occur for M5, and another three cases occur for M4, whereas only one
minimum MAE occurs for M2. It is clear that ERA5 fine-tune has improved the performance
significantly and using UNet++ with elevation is the best available model. Therefore, Model 6 was
selected for the rest of the analysis. In order to choose the best temporal case for Model 6, we estimate
the MAEs and rank them for four main continents (i.e., Africa, North America, Europe, and Asia) as
well as their distribution among different seasons (i.e., Winter, Spring, Summer, and Fall). These values
along with overall (as estimated over continents and seasons) are given in Figure 2. As seen in this
figure, sequential cases (such asmonth 6, month 12, and evenmonth 36) have higher ranks (hence lower
performances) as compared to nonsequential cases. This is possibly due to the fact that the latter is able
to recognize the strong seasonality in the data while sequential cases lack this ability. Among the
nonsequential cases “Year 3 Month 2” case has the best performance as it has the best MAE rank for
Fall, Spring, and Summer (and fourth for Winter). This case is the best for Africa and Asia continents,
second for Europe, and third for North America. The overall rank for this case is estimated to be number
one as well. Therefore, “Year 3 Month 2” is selected as the temporal case for Model 6 (CMIP6 with
ERA5 fine-tune with UNet++ with elevation) for the rest of the analysis.

For the selected temporal case we have conducted additional experiments where additional
meteorological parameters were used. The results of the new experiments are given below in
Table 2. This table indicates the MAE values as estimated for the entire domain (lat:192 × lon:288).
According to the results presented in the table, “elevation + temperature” simulation has the minimum
MAE among the examined variables. It should be noted that we have conducted simulations where we
add meteorological parameters paired with temperature one by one and another simulation where all
parameters were included. Although all parameter simulation with ERA5 fine-tune has the lowestMAE
(0.991), it is still higher than the original model where elevation + temperature is used (0.975 with
ERA5 fine-tune).

The selected model settings were used in other deep-learning architectures (ResNet, PSPNet, and
DeepLabV3) to investigate their performance. The results are provided in Table 3. As seen in this table,
UNet++ with anMAE of 0.975 has the best performance while other models’MAE values range between
1.025 and 1.738. According to these results, the UNet++ was selected to be used in this study.

Figure 2. MAE ranks of Model 6 for 14 temporal cases over four continents and four seasons.
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We compared the performance of the selected artificial intelligence (AI) model to the ensemble mean
of the CMIP6models. Figure 3 shows theMAE for the AI model and the mean of the CMIP6 ensemble as
a function of time for the selected continents during the study period from2016 to 2022. InAfrica, both the
AI and the CMIP6 model means have a similar error level (i.e., 0.27 versus 0.34) (Figure 3a). This is
probably due to the fact that the climate inAfrica is fairly uniform as a function of latitude and bothmodels
capture the overall climatology well. The AI model performs better compared to the mean CMIP6 in Asia
and Europe. Although the inter-annual variability in the error between two different models overlaps, AI
has significantly lower bias values. We believe that since the AI model has been trained by the CMIP6
ensemble, the model might inherit similar inter-annual variability. AI model’s MAE value for February
2020 for Europe, Asia, and North America is significantly lower as compared to the CMIP6 model
(a difference of 3.2° for Europe, almost 1° for Asia, and 0.5° for North America), while they estimate
closer values for Africa. The error in North America is the only place where the CMIP6 ensemble (0:7) is
slightly better than theAImodel (0:71) that needs further investigation. In bothmodels, the error increases
in the winter months, indicating that the models do not accurately represent the cold climate in the
northern hemisphere.

The spatial distributions of theMAE fields for summer and winter for the AI and mean CMIP6models
are shown in Figure 4. Summer-timeMAE in theAImodel is fairly uniform and approximately 1.5°C over
the continents (Figure 4a1). In contrast, the mean CMIP6 shows a relatively larger error (up to 5°C) in
high-topography regions such as the Himalayas in Asia, the Andes in South America, the Rockies in
NorthAmerica, and theAlps in Europe (Figure 4a2). TheMAEpattern in winter of theAImodel is similar
to the mean CMIP6 in high latitudes in the northern hemisphere (Figure 4b1,b2). This indicates that large-
scale Jetstream bias from the CMIP6models is responsible for the AI’s poor performance over Siberia and
northern America. Once again, the error in winter is larger than in summer in both models, as we have
shown in Figure 3. The performance of the AI model in terms of MAE is significantly better than that of
the mean CMIP6 in both summer and winter.

Table 2. Mean Absolute Error (MAE) values as estimated for the entire domain (lat:192 × lon: 288)

CMIP6 train CMIP6 train + ERA5 fine-tune

Variables M1 M2
elevation + temperature 0.976 0.975
pr + temperature 1.017 1.008
psl + temperature 1.011 1.007
uas + temperature 1.006 1.011
vas + temperature 1.005 1.006
zg500 + temperature 1.153 1.136
elevation+pr + vas + uas + zg500 + psl + temperature 1.039 0.991

Note:BothM1 andM2 are UNet++.M1 is baseline, M2 is fine-tuned with ERA5. For this comparison, 7 ensembles instead of 9 used for training since
vas and uas variables are not included in 2 ensembles of CMIP6.

Table 3. Mean absolute error (MAE) values as estimated for the entire domain (lat:192 × lon:288)

CMIP6 train CMIP6 train + ERA5 fine-tune

Models M1 M2
UNet++ 0.978 0.975
ResNet 1.198 1.738
PSPNet 1.042 1.139
DeepLabV3 1.081 1.025

Note: Both M1 and M2 are UNet++. M1 is baseline, M2 is fine-tuned with ERA5. All experiments are done with elevation and temperature.
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Next, at every grid point of the global domain (lat: 192, lon: 288), we calculated the temperature
anomalies for each month to remove the mean of the month of that grid point. Then, we computed the
scatter plot of absolute errors (AEs) of the mean CMIP6 and AI models for all grids as a function of these
temperature anomalies (Figure 5a). The AI model performs better when the temperature anomalies are
between�5∘Cand 5∘C indicating that if a particular month is around themonthlymean, then theAImodel
predicts significantly better than the CMIP6mean. However, if the month is part of an extreme event such
as very cold (ΔT ≈ �10∘C) or very hot (ΔT ≈ 10∘C), AI’s performance is getting closer to the CMIP6
mean. To better understand the performance of the selected model, the box plots of the calculated AE
based on temperature anomalies are given in Figure 5b. In all AI versus CMIP6 error bars for each
temperature bin, AI model has significantly lower error values (for the median values and 25th and 75th
percentiles). This outcome is evenmore pronounced, especially for the bins between�2 and+ 2 (as shown
on the x-axis).

In addition to scatter plot and box plots of AE values, other statistical values such as R2 are used for
understanding the relationship between observed and predicted temperature for all continents based on the
results of the selected scenario. The results indicate that predicted values are well-fitting with the observed
values in all continents. The R2 values of all continents are close to 1, which imply the power of the AI
model in seasonally predicting temperature around the world (see Supplementary Material S1).

Figure 3.MAE results of AI and CMIP6models for four different continents (a) Africa (b) Asia (c) Europe
and (d) North America as estimated over the validation dataset.
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4. Conclusion

We employed an advanced encoder–decoder model (UNet++) trained by state-of-the-art global
CMIP6 ESM to forecast global temperatures a month ahead using the ERA5 reanalysis dataset. This
study is a proof of concept for the use of this model in a complex climate system. We found that the
deep-learning model predicts significantly better than the mean CMIP6 ensemble between 2016 and
2021. The AI model predicts the summer months more accurately than the winter months, similar to
the mean CMIP6. Comparison of the results to other algorithms such as ResNet, PSPNet, and
DeepLabv3 revealed that UNet++ provided the lowest MAE. Developed model is also used with
additional meteorological parameters (u10, v10, zg500, psl, and pr) alongside 2 m temperature and
elevation. The findings are striking since the simplest model (2 m temperature + elevation) provided
the best result. In the future, we plan to improve our forecast time to seasonal predictions, that is,
3 months ahead.

Figure 4. (a) MAE fields of AI model in Summer (a1); CMIP6 model in Summer (a2); AI model in Winter
(b1); and CMIP6 model in Winter (b2) for the validation dataset.

Figure 5. Absolute error plots of CMIP6 and AI model results for the validation dataset: (a) Scatter
(b) Box plots.
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