TWO BOOLEAN ALGEBRAS WITH EXTREME CELLULAR AND COMPACTNESS PROPERTIES

MURRAY BELL

1. Introduction. In this paper, we construct two kinds of Boolean algebras with extreme cellular properties and nice embedding properties. The extreme cellular properties are $\sigma - j$ -linked but not $\sigma - j + 1$ -linked and ccc but not $\sigma - 2$ -linked. The nice embedding properties are that they are ZF-definable subalgebras of both P/F and R (see Preliminaries for notation). It is the author's opinion that R contains much of the "ZF-strength" of P/F.

In Section 3, we define a subalgebra H of R that will contain all of our examples and which is embedded in P/F.

In Section 4 the Boolean algebras yield spaces which solve a problem of E. van Douwen [3] in compactness theory.

Boolean algebras that are ccc but not $\sigma-2$ -linked of size continuum had previously been constructed by A. Hajnal and F. Galvin and A. Hajnal [4]; however they were not ZFC-demonstrably subalgebras of P/F, our example is. The author owes much to an in-depth analysis of their examples and of R.

In our conclusion, we discuss the Boolean algebras P/F versus R.

2. Preliminaries. Our set-theoretic notation is standard. We only mention that if A is a set, then $\mathcal{P}(A) = \{S: S \subseteq A\}$ and that if f is a function, then Dom f and Rng f denote the domain and range of f respectively.

Our use of Boolean algebraic concepts is elementary. The Stone space of a Boolean algebra B is denoted by st B and is the space of all ultrafilters on B topologized with $\{\overline{b}:b\in B\}$ as a base where $\overline{b}=\{p\in \text{st }B:b\in p\}$. Two elements b and b' of B are disjoint if $b\wedge b'=0$. A subset A of B is ccc if there does not exist an uncountable pairwise disjoint subset of A. A subset A of B is j-linked (where $j<\omega$) if for every j-element subset F of A, A is A subset A of B is is A subset A

Received December 2, 1981 and in revised from April 22, 1983. This research was supported by Grant No. U0070 from the Natural Sciences and Engineering Research Council of Canada.

$$A - \{0\} = \bigcup_{n < \omega} A_n$$

where for each $n < \omega$, A_n is j-linked.

Let X be a topological space and let

$$\tau^*(X) = \{U: U \text{ is a non-empty open subset of } X\}.$$

Consider $\tau^*(X)$ as a subset of the power set algebra $\mathcal{P}(X)$. Then, X is said to be ccc or $\sigma - j$ -linked if $\tau^*(X)$ is ccc or $\sigma - j$ -linked respectively. It is trivial to check that if B is a Boolean algebra, then B is ccc or $\sigma - j$ -linked if and only if st B is ccc or $\sigma - j$ -linked respectively.

If X is a compact space, then the compactness number of X, cmpn X = the least $n < \omega$ (if one exists) such that there exists an open subbase $\mathscr S$ of X for which every cover of X from $\mathscr S$ has a $\leq n$ subcover. If no such $n < \omega$ exists, then we say that cmpn $X = \infty$. If cmpn X = 2, then X is said to be supercompact ([5]). Cmpn X = n is defined in [2].

P/F denotes a Boolean algebra that is the power set algebra of a countably infinite set modulo the ideal of its finite subsets. N denotes the Baire space ω^{ω} with the Tychonov topology. R denotes the subalgebra of the power set algebra $\mathcal{P}(N)$ that is generated by the rectangles $\prod_{i<\omega} A_i$ of N.

3. The Boolean algebra H. For each $M \subseteq N$, set

$$\hat{M} = \{ f \upharpoonright n : n < \omega \text{ and } f \in M \}.$$

Put

$$\mathscr{A} = \left\{ \prod_{i \le \omega} A_i \text{: for every } i < \omega, A_i - A_{i+1} \text{ is finite and } A_i \subseteq \omega \right\}$$

and

$$H = [\mathcal{A}]$$
 = the subalgebra of R generated by \mathcal{A} .

THEOREM 3.1. H is embeddable in P/F.

Proof. Consider P/F as $\mathcal{P}(\hat{N})$ modulo the ideal of finite sets. Referring to [7], page 37, it suffices to define a one to one function $\varphi: \mathcal{A} \to \mathcal{P}(\hat{N})$ satisfying

$$\bigcap_{j < r} A^j - \bigcup_{j < s} B^j \neq \emptyset$$

if and only if $\bigcap_{j < r} \varphi(A^j) - \bigcup_{j < s} \varphi(B^j)$ is infinite whenever

$$A^{j} = \prod_{i < \omega} A_{i}^{j} \in \mathscr{A} \text{ and } B^{j} = \prod_{i < \omega} B_{i}^{j} \in \mathscr{A}.$$

Define $\varphi: \mathscr{A} \to P(\hat{N})$ by $\varphi(A) = \hat{A}$. If $f \in \bigcap_{j < r} A^j - \bigcup_{j < s} B^j$, then

$$\{f \upharpoonright i: i < \omega\} \subseteq \bigcap_{j < r} \varphi(A^j).$$

If an infinite subset R of $\{f \upharpoonright i: i < \omega\}$ was contained in $\bigcup_{j < s} \varphi(B^j)$, then there would exist j < s such that $R \cap \varphi(B^j)$ would be infinite. Since B^j is a closed subset of N, we would conclude that $f \in B^j$. This is a contradiction. Hence, $\bigcap_{j < r} \varphi(A^j) - \bigcup_{j < s} \varphi(B^j)$ contains a cofinite subset of $\{f \upharpoonright i: i < \omega\}$ and thus is infinite.

Conversely, if $\{s_n: n < \omega\}$ is an infinite subset of $\bigcap_{j < r} \varphi(A^j) - \bigcup_{j < s} \varphi(B^j)$, we consider two cases:

Case 1. For every $i < \omega$, $\{s_n(i): n < \omega \text{ and } i \in \text{Dom } s_n\}$ is finite. In this case, for every $i < \omega$ there exists $n_i < \omega$ such that $i \in \text{Dom } s_{n_i}$. Therefore, for every $i \in \omega$,

$$s_{n_i}(i) \in \bigcap_{j < r} A_i^j$$
.

Define $f \in N$ such that $s_0 \subseteq f$ and for all $i \ge \text{Dom } s_0$,

$$f(i) \in \bigcap_{j < r} A_i^j.$$

Then,

$$f \in \bigcap_{j < r} A^j - \bigcup_{j < s} B^j.$$

Case 2. There exists $i < \omega$ such that $\{s_n(i): n < \omega \text{ and } i \in \text{Dom } s_n\}$ is infinite. In this case, we choose one such $i < \omega$. Then, $\{s_n(i): n < \omega \text{ and } i \in \text{Dom } s_n\}$ is an infinite subset of $\bigcap_{j < r} A_i^j$. Since, for each j < r, $A_i^j - A_k^j$ is finite for every $k \ge i$, we see that for every $k \ge i$,

$${s_n(i): n < \omega \text{ and } i \in \text{Dom } s_n} \cap \bigcap_{j < r}^{n} A_k^j$$

is infinite. Choose an $n < \omega$ such that $i \in \text{Dom } s_n$. Define $f \in N$ such that $s_n \subseteq f$ and for all $k \ge \text{Dom } s_n$,

$$f(k) \in \bigcap_{j < r} A_k^j$$
.

Then,

$$f \in \bigcap_{j < r} A^j - \bigcup_{j < s} B^j.$$

Remark. For each $m < \omega$ set

$$\mathcal{A}_m = \left\{ \prod_{i < \omega} A_i : \text{ for each } i \ge m, A_i - A_{i+1} \text{ is finite} \right\}$$

and set $H_m = [\mathscr{A}_m]$. Define $\varphi_m : \mathscr{A}_m \to \mathscr{P}(N)$ by

$$\varphi_m(A) = \{ f \upharpoonright n : n > m \text{ and } f \in A \}.$$

Just as in the theorem, φ_m extends to an embedding of H_m into P/F. $H_0 \subseteq H_1 \subseteq H_2 \dots$ I have been unable to prove that $\bigcup_{m < \omega} H_m$ embeds in P/F.

4. Boolean subalgebras of H that are $\sigma - j$ -linked but not $\sigma - j + 1$ -linked. Fix $j \ge 2$. Set

$$T_j = \{ \pi \in N : \pi(0) \in \{1, \dots, j+1\} \text{ and for every } n < \omega, \pi(n+1) \in \{j\pi(n) + 1, \dots, j\pi(n) + j + 1\} \}.$$

For every $\pi \in T_i$ set

$$C_{\pi} = \prod_{n < \omega} (\{jn + 1, \dots, jn + j + 1\} - \text{Rng } \pi).$$

Each C_{π} is a compact nowhere dense element of H. Set

$$B_j = [\{C_{\pi} : \pi \in T_j\}].$$

This is the subalgebra of H generated by $\{C_{\pi}: \pi \in T_j\}$. B_j is our ZF-definable example.

A. If F and G are disjoint finite subsets of T_j and $\bigcap_{\pi \in F} C_{\pi} \neq \emptyset$, then there exist a finite function s and for every $k \geq \text{Dom } s$ a subset F_k of size $\geq j$ of $\{jk+1,\ldots,jk+j+1\}$ with

$$s \times \prod_{k \ge \text{Dom } s} F_k \subseteq \bigcap_{\pi \in F} C_{\pi} - \bigcup_{\pi \in G} C_{\pi}.$$

Proof. Choose $f \in \cap_{\pi \in F} C_{\pi}$. Choose $q < \omega$ such that

$$\{ \{\pi(n): n \ge q\} : \pi \in F \cup G \}$$

is a disjoint family. Let

$$m_1 = \min \{ \pi(q) : \pi \in F \cup G \} \text{ and } m_2 = \max \{ \pi(q) : \pi \in F \cup G \}.$$

We define s as follows:

$$s(m) = f(m) \qquad \text{if } m < m_1$$

$$= \pi(q+1) \quad \text{if } m_1 \le m = \pi(q) \le m_2 \text{ for some } \pi \in G$$

$$\neq \pi(q+1) \quad \text{if } m_1 \le m = \pi(q) \le m_2 \text{ for some } \pi \in F$$

$$= jm+1 \quad \text{if } m_1 < m < m_2 \text{ and } m \notin \{\pi(q) : \pi \in F \cup G\}.$$

For every $k \ge \operatorname{Dom} s = m_2 + 1$, there is at most one $\pi \in F$ and one $r < \omega$ such that

$$\pi(r) \in \{jk + 1, \dots, jk + j + 1\}.$$

Set

$$F_k = \{jk + 1, \dots, jk + j + 1\} - \bigcup_{\pi \in F} \operatorname{Rng} \pi.$$

Then F_k has size $\geq j$ and

$$s \times \prod_{k \ge \text{Dom } s} F_k \subseteq \bigcap_{\pi \in F} C_{\pi} - \bigcup_{\pi \in G} C_{\pi}.$$

B. B_i is $\sigma = j$ -linked.

Proof. For every $m < \omega$ and for every $s \in \prod_{n < m} \{jn + 1, \ldots, jn + j + 1\}$ set $B_s = \{b \in B_j : \text{ for every } k \ge \text{Dom } s \text{ there exists a subset } F_k \text{ of size } \ge j \text{ of } \{jk + 1, \ldots, jk + j + 1\} \text{ with } s \times \prod_{k \ge \text{Dom } s} F_k \subseteq b\}$. Each B_s is j-linked. Furthermore,

$$B_j - \{\emptyset\} = \bigcup_{\text{all } s} B_s.$$

Since, if $b \in B_j - \{\emptyset\}$, then there exist disjoint finite subsets F and G of T_j and an $f \in N$ with

$$f \in \bigcap_{\pi \in F} C\pi - \bigcup_{\pi \in G} C_{\pi} \subseteq b.$$

If $s \times \prod_{k \ge \text{Dom } s} F_k$ is as in the conclusion of A, then $b \in B_s$.

C.
$$B_j$$
 is not $\sigma = j + 1$ -linked.

Proof. Consider T_j as a subspace of N. T_j is compact. For every finite function s from ω to ω , set

$$[s] = \{\pi \in T_j : s \subseteq \pi\}.$$

Then $\{ [\pi \upharpoonright n] : n < \omega \text{ and } \pi \in T_j \}$ is a clopen basis for T_j . Assume

$$\{C_{\pi}:\pi\in T_j\}=\bigcup_{n<\omega}L_n,$$

i.e., $T_i = \bigcup_{n < \omega} A_n$ where

$$A_n = \{ \pi \in T_j : C_\pi \in L_n \}.$$

By the Baire category theorem, there exists $n < \omega$ such that A_n is not nowhere dense. In other words, for some $\pi \in T_j$ and some $m < \omega$,

$$[\pi \upharpoonright m + 1] \subseteq \operatorname{cl} A_n$$
.

So, we can find $\{\pi_i: 1 \le i \le j+1\} \subseteq A_n$ such that for every $1 \le i \le j+1$,

$$\pi_i \in [\pi \upharpoonright m + 1]$$
 and

$$\pi_i(m+1) = j\pi_i(m) + i = j\pi(m) + i.$$

If

$$f \in \bigcap_{i=1}^{j+1} C_{\pi_i},$$

then there exists $1 \le i \le j + 1$ such that

$$f(\pi(m)) = j\pi(m) + i.$$

So,

$$f(\pi_i(m)) = f(\pi(m)) = \pi_i(m+1) \in \operatorname{Rng} \pi_i$$

and hence $f \notin C_{\pi_i}$. This is a contradiction. Hence

$$\bigcap_{i=1}^{j+1} C_{\pi_i} = \emptyset$$

and L_n is not j + 1-linked.

D. Cmpn (st
$$B_i$$
) = $j + 1$.

Proof. Set

$$\mathcal{S}_{j} = \{\overline{N - C_{\pi}} : \pi \in T_{j}\} \cup \{\overline{C}_{\pi} : \pi \in T_{j}\}.$$

Then \mathcal{S}_j is an open (and also closed) subbase for st B_j . We will show that any cover of st B_j from \mathcal{S}_j has a $\leq j+1$ subcover. By compactness, any such cover has a finite subcover, so let

st
$$B_j = \bigcup_{\pi \in F} \overline{N - C_{\pi}} \cup \bigcup_{\pi \in G} \overline{C}_{\pi}$$

where F and G are finite subsets of T_j . Then as a fixed ultrafilter will testify,

$$N = \bigcup_{\pi \in F} N - C_{\pi} \cup \bigcup_{\pi \in G} C_{\pi}.$$

If $F \cap G \neq \emptyset$, then we get a two subcover. Therefore, we assume that $F \cap G = \emptyset$. If for every $n < \omega$, there exists $1 \leq \varphi(n) \leq j+1$ such that for all $\pi \in F$, $jn + \varphi(n) \notin \operatorname{Rng} \pi$, then if we define $f(n) = jn + \varphi(n)$, we see that

$$f \in \bigcap_{\pi \in F} C_{\pi}.$$

Invoking A, we have that

$$\bigcap_{\pi \in F} C_{\pi} - \bigcup_{\pi \in G} C_{\pi} \neq \emptyset$$

which is a contradiction. Hence, there exists $n < \omega$ such that for every $1 \le k \le j + 1$ there exists $\pi_k \in F$ with $jn + k \in \text{Rng } \pi_k$. Then

$$N = \bigcup_{k=1}^{j+1} N - C_{\pi_k}$$

and thus $\{\overline{N-C_{\pi_k}}: 1 \le k \le j+1\}$ is our $\le j+1$ subcover.

It remains to prove that cmpn (st B_j) $\leq j$. From B and C we see that st B_j is $\sigma - j$ -linked but not $\sigma - j + 1$ -linked; in particular st B_j is not separable. Now invoke a theorem of E. van Douwen [3] which states that if cmpn $X \leq j$ and X is $\sigma - j$ -linked, then X is separable.

Remark 1. Question 1 of [3] asks if there exists compact T_2 spaces that are $\sigma - j$ -linked, not $\sigma - j + 1$ -linked and of compactness number j + 1. The spaces st B_j are such examples.

Remark 2. If we apply the same technique when j = 1 to yield B_1 , then st B_1 is the one point compactification of a discrete space of size continuum. Hence, st B_1 has no restrictive cellular properties.

Remark 3. In [1], the author has shown that there is a subalgebra B_{∞} of H such that B_{∞} is $\sigma - j$ -linked for all $j < \omega$ but B_{∞} is not σ -centered, i.e., whenever

$$B_{\infty} - \{\emptyset\} = \bigcup_{n < \omega} B_n$$

there exists a finite subset F of B_n for some $n < \omega$ such that $\wedge F = 0$. It follows that

cmpn(st
$$B_{\infty}$$
) = ∞ .

5. A Boolean subalgebra of H that is ccc but not σ – 2-linked. For a set X, X^n denotes the set of all n-sequences composed of members of X. Set

$$T = \bigcup_{n < \omega} [2^n]^n,$$

i.e., T is the set of all n-sequences whose terms are n-sequences of 0's and 1's. T is a countable set and we will identify N with T^{ω} .

Let < be the lexicographic order on 2^{ω} with greatest element 1. Set

$$C^0 = \{ f \in 2^{\omega} : f(0) = 0 \}$$
 and $C^1 = \{ f \in 2^{\omega} : f(0) = 1 \}.$

Set $\mathscr{L} = \{L: L \text{ is a } < \text{increasing convergent sequence in } C^1 \text{ with sup } L < 1\}$. Choose $\varphi: \mathscr{L} \to C^0$ any ZF-injection. Set

$$\mathscr{K} = \{ \{ \varphi(L) \} \cup L : L \in \mathscr{L} \}.$$

 \mathcal{K} satisfies the following two properties: (a) if $K \neq K'$, then min $K \neq \min K'$ and (b) if $S \in \mathcal{L}$, then there exists $K \in \mathcal{K}$ such that $S \subseteq K$.

Definition. If $K \in \mathcal{K}$ and $s \in T$ with Dom s = n, then s splits K if there exists i < n such that for every j < n, $j \neq i$ and for every $g \in K$,

$$s(i) = (\sup K) \upharpoonright n$$
 and $s(j) \neq g \upharpoonright n$.

For every $K \in \mathcal{K}$ set

$$A_K = \prod_{n < \omega} \{ s \in T : \text{Dom } s \ge n \text{ and } s \text{ splits } K \}.$$

Since each $K \in \mathcal{K}$ is a nowhere dense subset of 2^{ω} , each $A_K \neq \emptyset$. Set

$$B_0 = [\{A_K: K \in \mathcal{K}\}].$$

 B_0 is the subalgebra of H generated by $\{A_K: K \in \mathcal{X}\}$. B_0 is our ZF-definable example.

A. Let F and G be disjoint finite subsets of K.

$$\bigcap_{K \in \mathscr{F}} A_K - \bigcup_{K \in \mathscr{G}} A_K \neq \emptyset$$

if and only if

$$\{\sup K: K \in \mathscr{F}\} \cap \bigcup_{L \in \mathscr{F}} L = \emptyset.$$

Proof. (only if) Indirect proof. If sup $K \in L$, where $K, L \in \mathcal{F}$, then choose $k < \omega$ such that

$$\sup K \upharpoonright k \, \mp \, \sup L \upharpoonright k.$$

If Dom $s \ge k$, then s cannot split both K and L, hence $A_K \cap A_L = \emptyset$. (if) Direct proof. Assume $\mathscr{F} \cap \mathscr{G} = \emptyset$ and

$$\{\sup K: K \in \mathscr{F}\} \cap \bigcup_{L \in \mathscr{F}} L = \emptyset.$$

It suffices to find, for each $n < \omega$, an $s \in T$ with Dom $s \ge n$ and such that for every $K \in \mathscr{F}$ and for every $K' \in \mathscr{G}$, s splits K but s does not split K'. To this end, fix $n < \omega$ and choose $k \ge n$ such that

- $1. |\mathscr{F} \cup \mathscr{G}| \leq k$
- 2. there exists $t \in 2^k$ such that

$$t \notin \{g \mid k:g \in \bigcup_{L \in \mathscr{F}} L\}$$

3. if $K, L \in \mathcal{F}$ and sup $K \neq \sup L$, then

$$\sup K \upharpoonright k \notin \{g \upharpoonright k : g \in L\}$$

4. if $K' \in \mathcal{G}$, then

$$\min \, K' \upharpoonright k \, \notin \, \{g \upharpoonright k : g \, \in \, \underset{L \in \mathscr{F}}{\cup} L \}.$$

Let $\mathscr{F}' \subseteq \mathscr{F}$ be maximal with respect to the property that if $K, L \in \mathscr{F}', K \neq L$, then sup $K \neq \sup L$. It is now easy to define an $s \in T$ with Dom s = k so that

$$\{\sup K \upharpoonright k: K \in \mathscr{F}'\} \cup \{\min K' \upharpoonright k: K' \in \mathscr{G}\} \subseteq \operatorname{Rng} s$$
$$\subseteq \{\sup K \upharpoonright k: K \in \mathscr{F}'\} \cup \{\min K' \upharpoonright k: K' \in \mathscr{G}\} \cup \{t\}.$$

This s splits all $K \in \mathcal{F}$ and no $K' \in \mathcal{G}$.

In order to prove that B_0 is ccc, we first prove a lemma about 2^{ω} .

LEMMA. If $1 \le s < \omega$ and if $\{(x_0^{\alpha}, \ldots, x_{s-1}^{\alpha}): \alpha < \omega_1\} \subseteq (2^{\omega})^s$ satisfies: for each i < s and for each $\alpha < \beta < \omega_1, x_i^{\alpha} \ne x_i^{\beta}$, then there exists a countable $E \subseteq \omega_1$ such that for every

$$f:E \to s \quad \{x_{f(\alpha)}^{\alpha}: \alpha \in E\}$$

has uncountable closure in 2^{ω} .

Proof. Since $(2^{\omega})^s$ is hereditarily separable, choose $E \subseteq \omega_1$ such that

$$\{(x_0^{\alpha},\ldots,x_{s-1}^{\alpha}):\alpha\in E\}$$

is dense in

$$\{(x_0^{\alpha},\ldots,x_{s-1}^{\alpha}):\alpha<\omega_1\}.$$

Let $f:E \to s$. Since

$$\{(x_0^{\alpha},\ldots,x_{s-1}^{\alpha}): \alpha \in E\} = \bigcup_{1 \le s} \{(x_0^{\alpha},\ldots,x_{s-1}^{\alpha}): f(\alpha) = i\},$$

there exists an i < s such that $\{(x_0^{\alpha}, \ldots, x_{s-1}^{\alpha}): f(\alpha) = i\}$ has uncountable closure in $\{(x_0^{\alpha}, \ldots, x_{s-1}^{\alpha}): \alpha < \omega_1\}$. Since $\alpha < \beta < \omega_1$ implies $x_i^{\alpha} \neq x_i^{\beta}$, it must be that $\{x_i^{\alpha}: f(\alpha) = i\}$ has uncountable closure in 2^{ω} .

B. B_0 is ccc.

Proof. Indirect proof. Assume that

$$\left\{\bigcap_{K\in\mathscr{F}_{\alpha}}A_{K}-\bigcup_{K\in\mathscr{G}_{\alpha}}A_{K}:\alpha<\omega_{l}\right\}$$

is an uncountable collection of pairwise disjoint non- \emptyset elements of B_0 . Therefore, for each $\alpha < \omega_1$,

$$\mathscr{F}_{\alpha} \cap \mathscr{G}_{\alpha} = \emptyset.$$

By a delta-system argument, we may assume that if $\alpha \neq \beta$, then $\mathscr{F}_{\alpha} \cap \mathscr{G}_{\beta} = \emptyset$. Hence, if $\alpha \neq \beta$, then

$$(\mathscr{F}_{\alpha} \cup \mathscr{F}_{\beta}) \cap (\mathscr{G}_{\alpha} \cup \mathscr{G}_{\beta}) = \emptyset.$$

We further assume that $\{ \{ \sup K: K \in \mathcal{F}_{\alpha} \} : \alpha < \omega_1 \}$ is a delta-system with root Q and that there exists $s < \omega$ such that for every $\alpha < \omega_1$,

$$\mathscr{F}'_{\alpha} = \{ K \in \mathscr{F}_{\alpha} : \sup K \notin Q \}$$

has exactly s elements. For every $\alpha < \omega_1$, put

$$\mathscr{F}'_{\alpha} = \{K_i^{\alpha} : i < s\}.$$

Thus, invoking A, we see that for every $\alpha < \beta$ there exist $K \in \mathscr{F}_{\alpha}$ and $L \in \mathscr{F}_{\beta}$ such that either sup $K \in L$ or sup $L \in K$. Since $\{\{\sup K: K \in \mathscr{F}_{\alpha}\}: \alpha < \omega_1\}$ is an uncountable disjoint collection and each $K \in \mathscr{K}$ has only

countably many elements, by restricting to an uncountable subset of ω_1 , we may as well assume that if $\alpha < \beta < \omega_1$, then there exist $K \in \mathscr{F}_{\alpha}$ and $L \in \mathscr{F}_{\beta}$ such that sup $K \in L$.

By applying the lemma to

$$\{ (\sup K_0^{\alpha}, \ldots, \sup K_{s-1}^{\alpha}) : \alpha < \omega_1 \} \subseteq (2^{\omega})^s,$$

we get a countable $E \subseteq \omega_1$ such that for every

$$f: E \to s \quad \{ \sup K_{f(\alpha)}^{\alpha} : \alpha \in E \}$$

has uncountable closure in 2^{ω} . Choose $\gamma < \omega_1$ such that sup $E < \gamma$. For every $\alpha \in E$ there exists i < s such that

$$\sup K_i^{\alpha} \in \bigcup_{j \leq s} K_j^{\gamma}.$$

Define $f:E \to s$ by f(a) = one such i. Then

$$\{\sup K_{f(\alpha)}^{\alpha}: \alpha \in E\} \subseteq \bigcup_{j \le s} K_j^{\gamma}.$$

But $\bigcup_{i \le s} K_i^{\gamma}$ has countable closure in 2^{ω} . This is a contradiction.

C.
$$B_0$$
 is not $\sigma = 2$ -linked.

Proof. We will show that whenever $\mathscr{K} = \bigcup_{n < \omega} \mathscr{K}_n$, then there exists $n < \omega$ and K, L in \mathscr{K}_n such that sup $K \in L$. Together with A, this implies that $\{A_K: K \in \mathscr{K}\}$ is not $\sigma - 2$ -linked.

Assume

$$\mathscr{K} = \bigcup_{n \leq \omega} \mathscr{K}_n$$
.

By induction on $n < \omega$, define two sequences $(a_n)_{n < \omega}$ and $(b_n)_{n < \omega}$ such that

- 1. $a_0 \in C^1 \{1\}$ and $b_0 = 1$
- 2. for every $n < \omega$, if there exists $K \in \mathcal{X}_n$ such that $a_n < \sup K < b_n$, then $a_{n+1} = \text{one}$ such $\sup K$ and b_{n+1} is such that $a_{n+1} < b_{n+1} < b_n$; if there does not exist $K \in \mathcal{X}_n$ such that $a_n < \sup K < b_n$, then a_{n+1} and b_{n+1} are such that $a_n < a_{n+1} < b_{n+1} < b_n$.

Now, set $S = \{a_n : n < \omega\}$. Note that $S \in \mathcal{L}$ and for all $n < \omega$,

$$a_n < \sup S < b_n$$
.

Since \mathscr{K} satisfies the property (b), there exists $L \in \mathscr{K}$ such that $S \subseteq L$. Note that $\sup L = \sup S$. Since $L \in \mathscr{K}$, there exists $n < \omega$ such that $L \in \mathscr{K}_{g}$. Since L satisfies

$$a_n < \sup L < b_n$$

by 2, we have that $a_{n+1} = \sup K$ for some $K \in \mathcal{K}_n$. But then $\sup K \in I_n$.

D. Cmpn (st B_0) = 2, i.e., st B_0 is supercompact.

Proof. Set

$$\mathcal{S} = \{ \overline{A}_K : K \in \mathcal{K} \} \cup \{ \overline{N - A}_K : K \in \mathcal{K} \}.$$

Then $\mathscr S$ is a closed (and also open) subbase for st B_0 . We will show that any 2-linked subcollection of $\mathscr S$ has a non-empty intersection. By compactness, it suffices to show that any finite 2-linked subcollection of $\mathscr S$ has a non-empty intersection; so let $\{\overline{A}_K:K\in\mathscr F\}\cup\{\overline{N-A}_K:K\in\mathscr G\}$ have the property that every pair of sets has a non-empty intersection. This means that if $K,L\in\mathscr F$, then $A_K\cap A_L\neq\emptyset$ and that if $K\in\mathscr F$ and $L\in\mathscr G$, then $A_K-A_L\neq\emptyset$. Hence, invoking A, we conclude that

$$\bigcap_{K \in \mathscr{F}} A_K - \bigcup_{K \in \mathscr{G}} A_K \neq \emptyset.$$

If $p \in \operatorname{st} B_0$ and

$$\bigcap_{K\in\mathscr{X}}A_K-\bigcup_{K\in\mathscr{Q}}A_K\in p,$$

then

$$p \in \bigcap_{K \in \mathscr{F}} \overline{A}_K \cap \bigcap_{K \in \mathscr{G}} \overline{N - A}_K.$$

Remark 1. A. Hajnal had constructed a ccc poset of size continuum which was not $\sigma-2$ -linked. F. Galvin and A. Hajnal [4] have other examples with further properties. By standard techniques, these yield Boolean algebras, which under extra set-theoretic assumptions, are embedded in P/F. It was the desire to find examples that embed in P/F in ZFC alone that occasioned the effort. The author would like to thank Fred Galvin for his generous correspondence.

Remark 2. The role that the function $\varphi: \mathcal{L} \to C^0$ played was solely to guarantee that st B_0 would be supercompact. This had an unexpected benefit of simplifying some proofs. In fact, if one sets

$$\mathcal{K} = \{K: K \text{ is } a < \text{increasing convergent sequence in } 2^{\omega} \text{ with } \sup K < 1\}$$

and sets

$$B'_0 = [\{A_K: K \in \mathscr{K}\}],$$

then B_0' is ccc and not $\sigma - 2$ -linked; however A is no longer true and st B_0' is not supercompact by the standard subbase \mathcal{S} .

6. Conclusion. This conclusion is only a discussion. Proofs are not supplied.

We now discuss the mutual strengths of the rectangle algebra R and the quotient algebra P/F. How much of R is embeddable in P/F and how much of P/F is embeddable in R? It is convenient to make some definitions. A boolean algebra B is combinatorially embedded in a boolean algebra C if there exists a one to one mapping $\varphi: B \to C$ such that

$$\bigwedge_{i \le n} b_n \neq 0$$
 if and only if $\bigwedge_{i \le n} \varphi(b_i) \neq 0$.

A combinatorial embedding preserves the disjointness properties. Note that if φ is onto a subalgebra of C, then φ is a boolean algebraic embedding as well. A subalgebra B of P/F is representable if B, considered as a set of equivalence classes, has a choice function, i.e., an $h:B \to \mathcal{P}(\omega)$ such that for all $b \in B$, $h(b) \in b$. Representable subalgebras are of interest when we work in ZF.

We have seen that H is embeddable in P/F and that H contains several interesting subalgebras. H also contains the power set algebra $\mathscr{P}(\omega)$ as the subalgebra $\{A \times \omega^{\omega}: A \subseteq \omega\}$. Another interesting subalgebra of H is

$$E = \left[\left\{ \prod_{i < \omega} A - i : A \subseteq \omega \right\} \right].$$

St E is homeomorphic to Exp $\beta\omega - [\omega]^{<\omega}$, the filter analogue of $\beta\omega - \omega$. We remind the reader that $\beta\omega$ is the Stone space of $\mathcal{P}(\omega)$, $\beta\omega - \omega$ is the Stone space of P/F and Exp $\beta\omega$ is the hyperspace of closed subsets of $\beta\omega$ with the Vietoris topology. It is well known that any boolean algebra of size ω_1 is embeddable in P/F in ZFC, so under CH, R itself is embeddable in P/F. In ZFC alone, it is unclear whether R can even be combinatorially embedded in P/F.

Problem 1. In ZFC, can R be embedded in P/F? A particularly simple subalgebra of R that the author is unable to even combinatorially embed in P/F is

$$\left[\left\{\prod_{i<\omega}A_i: \text{ for each } i<\omega,\, A_i \text{ is a singleton or is } \omega\right\}\right].$$

On the other hand, ZFC easily implies that P/F cannot be embedded in R. R contains no increasing ω_1 -sequences (in fact, the simultaneously F_{σ} and G_{δ} subsets of ω^{ω} have this property, (cf. [6] p. 196) whereas, ZFC implies that P/F contains an increasing ω_1 -sequence. We mention that it is consistent with ZF that P/F does not contain an increasing ω_1 -sequence. K. Kunen has proven that ZF alone implies that P/F cannot be embedded in R. However, ZFC does imply that P/F can be combinatorially embedded in R. Using choice, let $h:P/F \to \mathcal{P}(\omega)$ be such that $h(b) \in b$. The mapping $\psi:P/F \to H$ defined by

$$\psi(b) = \prod_{i < \omega} [h(b) - i]$$

is combinatorial embedding.

P/F has a certain vague nature due to the fact that one cannot prove in ZF that it is representable. As an example of this, consider the following two statements:

- 1. If $\{A_n : n < \omega\}$ is a set of infinite subsets of ω such that for every $n < \omega$, $A_{n+1} A_n$ is finite, then there exists an infinite $A \subseteq \omega$ such that for every $n < \omega$, $A A_n$ is finite.
- 2. If $\{b_n: n < \omega\}$ is a set of non-0 elements of P/F such that for every $n < \omega$, $b_{n+1} \leq b_n$, then there exists a non-0 $b \in P/F$ such that for every $n < \omega$, $b \leq b_n$.

Statement 1 is a ZF-theorem while Statement 2 seems (the author has no proof) of necessity to require a choice principle to prove. Statement 1 is clearly the more fundamental statement about $\mathcal{P}(\omega)$. Upon closer inspection, one sees that the subalgebra H, as embedded in P/F in Theorem 3.1 is representable. This has led me to

Problem 2. In ZF, is there a representable subalgebra of P/F that cannot be embedded in R?

The point of view taken in this paper is that a successful investigation of the set algebra R will shed light on the ZF-strength of the quotient algebra P/F.

REFERENCES

- M. G. Bell, Compact ccc non-separable spaces of small weight, Topology Proceedings 5 (1980), 11-25.
- 2. M. G. Bell and J. van Mill, *The compactness number of a compact topological space 1*, Fundamenta Mathematicae CVI (1980), 163-173.
- 3. E. van Douwen, *Nonsupercompactness and the reduced measure algebra*, Comm. Math. Univ. Carolinae 21 (1980), 507-512.

- 4. F. Galvin and A. Hajnal, On the relative strength of chain conditions, to appear.
- 5. J. de Groot, Supercompactness and superextensions, in Contributions to extension theory of topological structure, Symp. Berlin (1967), (Deutscher Verlag Wiss., Berlin, 1969), 89-90.
- 6. F. Hausdorff, Set theory (Chelsea Publishing Company, Second Edition).
- 7. R. Sikorski, Boolean algebras (Springer-Verlag, New York, 1964).

The University of Manitoba, Winnipeg, Manitoba