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1. Introduction. Let F: X —» Y be a multifunction from X to Y. 
Then, given measure-theoretic or topological structures on X and Y, it is 
possible in various ways to define the measurability of F. The selection problem 
is to determine which structures on X and Y and which definitions of 
measurability of F ensure that F will have a measurable selector. This 
problem has been studied recently in papers by Castaing (2) and Kuratowski 
and Ryll-Nardzewski (6). In the latter paper, the problem is studied for its 
own interest. The former uses solutions of the problem to obtain general 
Filippov-type theorems. (See, for example, the corollaries following Theorems 2 
and 3 of Castaing's paper.) For other material on Filippov's results see, 
among others, (3; 4; 5; 7; 9). 

In a slightly different direction, McShane and Warfield (8) investigated 
(and gave applications of) lifting theorems for measurable functions; i.e., 
given X, F, Z, and functions g: X —* Z, <j>\ Y —> Z satisfying g(X) C </>(F), 
they determined structures for X, Y, Z, and properties of g and 0 which imply 
the existence of a measurable function / : X —> Y satisfying <t>of = g. 

The theorem of Kuratowski and Ryll-Nardzewski (6) yields one of Castaing's 
theorems as a special case. In this note, we apply their results to obtain addi
tional selection theorems. These will contain both Castaing's selection theorems 
and McShane-Warfield's lifting theorems (in the latter case by translating 
the lifting problem to a selection problem). 

2. Terminology and the theorems of Kuratowski and Ryll-
Nardzewski. A multifunction F: X —> Y is a function whose value F(x) for 
each x G X is a non-empty subset of Y. Equivalently, F is a subset of X X Y 
whose set of first elements is X. Hence, multifunction compose as relations. 
If B C Y, then F~l{B) is defined as usual for relations, so that 

F~l(B) = {x G X\ (y, x) G F'1 for some y G B) 

= {x e x\ F{X) r\B 7* 0}. 
A function / : X —> Y is a selector for the multifunction F: X —> Y if and 

only if/(x) G F(x) for ail x G X. If y is either a cr-ring or a c-algebra on X, 
if (f is a given family of subsets of a topological space F, and ii F: X —> Y 
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is a multifunction (or function, as the case may be) such that F - 1 (£ ) £ £f 
for all E e #, then 

(i) Fis ( j / , Û)-, («*• ,#>, or (,i/,^)-measurable if and only if y is a 
cr-algebra and S is the family of open, closed, or Borel subsets of F (the last 
family being the smallest cr-algebra containing all the open subsets of F), 
respectively. 

(ii) F is (3?, ^)-measurable if and only if S^ is a cr-ring and $ is the 
family of compact subsets of F 

Obviously, many other definitions of measurability can be added to the 
above, but the above four are very common, and, in any case, are the only 
ones which concern us in this paper. We remark that the three definitions of 
measurability in (i) are equivalent to one another when applied to functions. 
For multifunctions, it is easy to verify that (s/, 33)-measurability implies 
both (&/, ©)- and (&/, J^~)-measurability, and that, when Y is perfectly 
normal, ( j^,^)-measurabil i ty implies (&/, 0)-measurability. 

A multifunction F: X —» Fis point-closed, point-compact, or point-complete 
if and only if each value of F is closed, compact, or complete, respectively. 

In this terminology, the main results of Kuratowski and Ryll-Nardzewski 
particularize (with some loss of generality) to the following theorem. 

THEOREM 1 (6, pp. 398, 400). Let X be a set with a a-algebra ¥, Y a complete 
separable metric space, and F: X —> F a point-closed {s$\^~) -measurable 
(alternately, (&/, 0)-measurable) multifunction. Then F has an ( J ^ , #")-
measurable (equivalently, (s$y 0)-measurable) selector. 

Remark. Castaing (2, Theorem 3) proved this theorem for X a compact 
space and Sf the cr-algebra of Borel subsets of X. 

3. Selection theorems. We begin with two theorems whose proofs are 
inspired by, and are similar to, a proof of McShane and Warfield (8, Theorem 4). 

THEOREM 2. Let X be a set with a-ring $f ; let Y be a Hausdorff space which 
is the union of a family of at most 12 ( = first uncountable ordinal) compact 
metrizable subspaces in such a way that any compact subset of Y lies in the union 
of an at most countable subfamily; and let F: X —> F be a point-closed (3?, c€)-
measurable multifunction. Then F has an (3%, ̂ )-measurable selector. 

Proof. Let the family of compact sets described in the hypotheses above be 
{ Ya\ a < w}, where co is an ordinal less than or equal to 12. For each a < w, 
define 

Xa = F-KYa) - U {F-\Yt)\ 0 < a}. 

Clearly, the Xds are pairwise disjoint, and their union is X. Assign to each 
Xa the (7-ring Sfa obtained by restricting £/* to Xa. Each S^a is, in fact, a 
(j-algebra on Xa (i.e., Xa £ S^a), since Xa is the intersection of the countable 
family {F~l{Ya) - F~l(Y^)\ $ < a}, and each of the sets F-^Yp), 0 ^ «, 
is a member of Sf. Furthermore, since Xa £ 5f, we have that 5^* C Sf for all a. 
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Note that, by the definition of Xaj we have that F(x) Pi Ya ^ 0 for all 
a < co, x Ç Xa. Thus, for all a < co, define a point-closed multifunction 
i v Xa -> Ya by 

F«(x) = F(x) r\ Ya if x 6 Xa . 

Then each Fa is Ç$/,<^)-measurable, since F<rl(C) = X a Pi F - 1(C) for each 
closed (and therefore compact) subset C of Fa, and since each F~l(C), with C 
compact, is in $f by hypothesis. Ya is of course complete with any compatible 
metric. Thus, by Theorem 1, Fahas an (stf, #")-measurable selector fa: Xa—> Ya. 

Now, define f:X—>Y by 

f(x) = fa(x) if x G X*, a < co. 

Clearly, / is a selector for T7. Furthermore, / is (^?, cé>)-measurable. For, let C 
be a compact subset of F, and let a be an at most countable ordinal such that 
C C U | F ^ â « | . Then p > a implies that 

h-Kcr\ Y0) c FrKQ c u {F/rTOI 7 s a} = 0, 
since y ^ a < /3 implies that 

^ - ' ( ^ T ) = {* € ^ ! ^ ( * ) H F7 ^ 0} 

c {* € ^ i ^(x) n Yy y£ 0} = *„ n F-i(Yy) = 0. 
I t follows that 

tKC) = \j\SrKcr\ Y„)\(i£a). 
Moreover, each fp is Çs/, J^~)-measurable; therefore, 

A - H C H F ^ ^ C y for all £ < co. 

Hence, / _ 1 ( 0 is the union of a countable subfamily of 5^. 

Assuming the continuum hypothesis, the next theorem follows as a corollary 
to Theorem 2. 

THEOREM 3. Let X be a set with a-ring S^, Y a separable metric space; and 
F: X —» Y a point-closed (&, cé>)-measurable multifunction. Then F has an 
(0%, cé?) -measurable selector. 

Proof. By the argument in (8, proof of Theorem 4), there is an ordinal co 
less than or equal to the first uncountable ordinal such that the family of all 
compact subsets of Y can be indexed by {a| a < co}. 

In the next theorem, recall that a Lusin space is a separable metrizable 
space which is the image of a complete separable metric space under a con
tinuous one-to-one function. 

THEOREM 4. Let X be a set with a-algebra S^, Y a Lusin space, and F: X —> Y 
a point-closed (&/, £$)-measurable multifunction. Then F has an (s$, 38)-
measurable selector. 
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Proof. Let <j>: P —> F be a one-to-one continuous function from a complete 
separable metric space P onto F. Define a multifunction F*: X —> P by 
7̂ * = (jr1 o T7. 7̂ * is point-closed since <f> is continuous. Moreover, F* is 
(tQ ,̂ 0)-measurable. For, let 0 be an open subspace of P. Then 0 has a 
compatible metric which makes it a complete metric space; see (1, Chapter 
IX, § 6.1, Proposition 2). Hence, the subspace $(0) of F is a Lusin space. 
From (1, Chapter IX, § 6.7, Theorem 3) we conclude that <j>(0) is a Borel 
subset of F. I t follows that 

A-I (O) = 7^(0(0)) ey. 

Applying Theorem 1, we obtain an (p/, Û)-measurable selector/*: X —> P 
for F*. Define / = $ o/*: X —> Y. Then / is a selector for F since 

f(x) = 4>(f*(x)) e <l>(F*(x)) = tot/r^Fix)) = F(x) if x 6 X. 

To prove that / is (p/, 38)-measurable, it is sufficient to prove that it is 
(p/, Û)-measurable. Thus, suppose that 0 is open in F. Then <I>~1(0) is open 
by the continuity of </>, and f~l(0) =/*~1(0~1(O)) G y by the ( j / , ̂ ) -
measurability of /*. 

THEOREM 5. Le£ X be a set with a-algebra y , Y a separable metric space, and 
F: X —> F a point-complete (p/,&")-measurable multifunction. Then F has an 
(se\^)-measurable selector. 

Remark. This theorem generalizes Theorem 2 of Castaing (2). In his result, 
X is a compact space with y the corresponding family of Borel sets, and F is 
assumed to be point-compact rather than point-complete. 

Proof. Let Z be the completion of F, and let i: Y C Z be the inclusion map. 
Then F* = io F: X —» Z is a point-closed multifunction (which is equal, 
pointwise, to F). F* is (p/,& ) -measurable, since B closed in Z => B C\ Y 
closed in 7=» F * - 1 ^ ) = F-l(i~l(B)) = F " 1 ^ H F) G y . Thus, by 
Theorem 1, F* has an (p/,^~) -measurable selector/*: X —> Z. Since it is a 
selector for i7*, /* takes all of its values in F. Thus, / = i~l of*: X —> F is a 
function defined on all of X, Clearly, / is a selector for F. Furthermore, / is 
(p/, J r)-measurable; for, letting B be a relatively closed subset of F, and 
taking closures relative to Z, we have that f~l{B) =f*~loi(Ër\ Y) = 
/ . - K B H F) = /« - 1 (5 ) G 5^. 

The remaining two theorems of this section give some criteria for deducing 
new selection theorems from known ones. 

THEOREM 6. Let X be a set with a-algebra y , Y a topological space, and 
F: X —> F a point-closed (p/,^)-measurable multifunction. If there exists a 
topological space Z and a closed continuous function <j> from Z onto Y such that 
every point-closed (péV^"") -measurable multifunction from X to Z has an 
(pi, JF~)-measurable selector, then F has an (pi\^~)-measurable selector. 
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Remark. There are at least two valid variations of this theorem. On the 
one hand, we may retain the assumption of {$/, J r)-measurability of F, but 
assume that Z is perfectly normal and that every point-closed {s/, Û)-
measurable multifunction from X to Z has an {s$, Û)-measurable 
( = {s/,^)-measurable) selector. On the other hand, we may replace {$/, J^") 
by {&/, 0) everywhere if <j> is open rather than closed. 

Proof. Apply an argument similar to (but simpler than) that in the proof 
of Theorem 4 to the multifunction F* = <jrx o F: X —> Z. 

The first modification mentioned in the remark is valid since, if Z is perfectly 
normal, <j> is closed, and F is {s/,^)-measurable, then 4rloF\§ {s/, Û)-
measurable. The second modification is obvious. 

THEOREM 7. Let X be a set with a-ring y , Y a topological space, and F: X —> F 
a point-closed (3%, *%) -measurable multifunction. If there exists a topological 
space Z and a continuous function <j> from Z onto Y such that 

(i) every point-closed {S%, *&)-measurable multifunction G: X —> Z has an 
{3%, (io)-measurable selector, and 

(ii) <£-1(C) is the at most countable union of compact subsets of Z for each 
compact subset C of Y, 

then F has an {&, *&)-measurable selector. 

Proof. Given Z and <j> as above, define a multifunction F*: X —» Z by 
F* = <jrl o F. F* is point-closed since <j> is continuous. Moreover, F* is 
{3%, cé>)-measurable. For, let C be a compact subset of Z. Then <t>{C) is 
compact, and therefore F*~l{C) = F~l{<t>{C)) G y . By (i), F* has an {3?, <£)-
measurable selector /*: X —> Z. Now define / = <£ of*: X —» Y. Clearly, / is 
a selector for F. Also, / is {3%, *$)-measurable; for, if C is a compact subset 
of F, it easily follows from (ii) and the {3$, ^)-measurability of /* that 
f-KC) =/*-H0-1(O) € ^ . 

4. Liftings are selectors. In this section we show that the lifting problem 
solved by McShane and Warfield in (8) is a special case of the selection 
problem solved in the preceding section. 

THEOREM 8. Let X be a set with a-ring y , and let Y be any space such that 
every point-closed {3%, cé>)-measurable multifunction F: X —> Y has an {3?, cif)-
measurable selector. Then for any Ti-space Z and any continuous function 
k: Y —> Z, every {3?, cé>)-measurablefunction h: X —> Z such that h{X) C k{Y) 
can be lifted to an {3?, ^ )-measurable function f: X —•> F {i.e., there exists an 
{3%, cé?)-measurable function f:X—>Y satisfying k of = h). 

Proof. Let h and k be as above. Then F = k~x oh: X —» F is a point-closed 
multifunction since each {h{x)\ is closed, k is continuous, and h{X) C k{Y). 
Moreover, F is {3?, cé')-measurable. For, let C be a compact subset of F. 
Then k{C) is compact, and consequently F~l{C) = h~1{k{C)) £ y . Thus, 
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F has an (&, ^)-measurable selector. I t easily follows that any such selector 
is the desired lifting. 

COROLLARY (McShane and Warfield (8, Theorem 4)). Let X be a set with 
a-ring 5^, Z a Ti-space, and Y a Hausdorff space which is the union of a family 
of at most 12 compact metrizable spaces in such a way that any compact subset of Y 
lies in the union of an at most countable subfamily {e.g., Y separable metric if the 
continuum hypothesis is assumed). Let k: Y —> Z be a continuous function, and 
h: X —> Z an (£%, *$)-measurable function such that h{X) C k(Y). Then h 
can be lifted to an {S%, %7)-measurable function f: X —> Y. 

Proof. Apply Theorems 2 and 8. 

Added in proof. The following corollary to Theorems 2 and 3 follows easily 
from the continuum hypothesis and properties (A) and (L) in (E. Michael, 
^-spaces, J. Math. Mech. 15 (1966), 983-1002). 

COROLLARY. Let X be a set with a-ring Sf', let Y be an Ho-space (or, in 
particular, let Y be the regular quotient of a separable metrizable space), and let 
F: X —» Y be a point-closed (&, CS)-measurable multifunction. Then F has an 
{SÏÏ, ^)-measurable selector. 
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