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Abstract

We developed a new type of polymer descriptor based on Extended Connectivity Fingerprints.
The number densities, that are substructure numbers divided by the number of atoms in a
polymer model, were employed. We found that this approach is superior in accurately
predicting linear polymer properties, compared to the conventional approach, where just the
substructure numbers are used as descriptors. In addition, dimension reduction and
multiple replication of repeat unit were found to improve prediction accuracy. As a result,
the novel descriptor based on the Extended Connectivity Fingerprints with machine learning
approaches was found to achieve accurate prediction of the refractive indices of linear
polymers, which is comparable to that by ab initio density functional theory. Although
process-dependent properties such as mechanical properties were difficult to predict, the
present approach was found to be applicable to prediction of substructure-dependent
properties, for example, optical properties, thermal stabilities.

INTRODUCTION:

Application of informatics or machine learning to material science has attracted
researchers, since it accelerates the development of novel functional materials [1][2].
This is a data-driven approach, which predicts structures and/or properties of unknown
materials by learning correlations between descriptors and properties of already-known
materials. In recent years, researchers have succeeded in applying materials informatics
to several functional materials such as thermoelectric materials [3], molecular organic
light-emitting diodes [4], and low-thermal-conductivity compounds [5]. In addition,
process-structure-property (PSP) linkages [6], Integrated Computational Materials
Engineering (ICME) [7], as well as catalyst informatics have been reported recently [8].

One of the key for applying informatics to material science is selecting appropriate
descriptors. To make computers understand a material, we need to convert features of
materials into descriptors, that are computer-friendly data such as digital vectors. Since
prediction accuracy depends on the quality of descriptors, the development of descriptor
is very important.

ht
tp

s:
//

do
i.o

rg
/1

0.
15

57
/a

dv
.2

01
8.

45
4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 3
.2

36
.5

5.
22

, o
n 

28
 S

ep
 2

02
1 

at
 0

5:
46

:3
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1557/adv.2018.454
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


2976

 
 

In case of functional polymers, Mannodi-Kanakkithodi et al., have reported a
pioneering work on designing polymer dielectrics [9]. In their approach, a polymer is 
represented by the chain of blocks composed of several atoms. The descriptors are the 
numbers of single blocks or doubly or triply linked blocks, sum of those are standardized 
as the total number of blocks composing the repeat unit. Their approach showed good 
correlation between predicted and measured values in polymer band gap and dielectric 
constant. However, this descriptor is difficult to be applied to arbitrary polymer 
systems, because the block patterns such as -CH2- need to be defined in advance. This 
indicates that one of the challenges in this field is how to automatically extract 
descriptors from the chemical structure of polymer. Although there is automatic 
descriptor generation method using CORAL framework [10], the weight of the generated 
descriptor is difficult to interpret because it is computationally generated by using Monte 
Carlo simulation.

Significant research on the representations of chemical structure has been developed in 
the fields of chemoinformatics or cheminformatics. For example, Extended-Connectivity 
Fingerprints (ECFPs) [11] do not require pre-defined molecular substructures, because 
the descriptors are automatically generated from chemical structure. Although the ECFPs 
are widely used for small molecules for its versatility, their application to linear polymers 
has not been reported yet. 

Therefore, we challenged the application of the ECFPs to linear polymers. We found 
the number-density ECFPs, which are the new type of descriptors interpreted as the 
constituent ratio of substructure, are applicable to the prediction of polymer refractive 
indices, in contrast to the conventional ECFPs. In addition, the prediction accuracy by 
our approach became comparable to that by accurate ab initio density functional theory 
(DFT) by performing dimensional reduction using least absolute shrinkage and selection 
operator (LASSO) regression [12], and by employing multiple repeat units in the 
calculation of descriptors. Furthermore, the limit of application of our approach is 
discussed based on the comprehensive study on optical properties, thermal stabilities, and 
mechanical properties.

THEORY: 

A chemical structure was represented by the simplified molecular-input line-entry 
system (SMILES) [13]. To consider the substructures with respect to the linkage between 
repeat units, multiple repeat units were employed in the calculation of descriptors. For 
example, -[CH2O]3- is represented as “COCOCO” by SMILES. We obtained ECFPs [11]
by counting the number of substructures from SMILES by using RDKit [14], where the 
maximum diameter of the circular neighborhood for each atom and the length of 
descriptor vector are set to be 4 and 1024, respectively. This type of ECFPs is defined as 
ECFP4 according to the diameter. For convenience, we call these conventional ECFP4 as
the number-ECFP4. On the other hand, the number-density-ECFP4 were obtained from 
number-ECFP4 divided by the total number of atoms in a polymer model. The number 
density is defined as,

ri = Ni / N, (1) 

where Ni is the value of i-th dimension in number-ECFP4 and N is the total number of 
atoms in a polymer model. 

Most of variables composing ECFP4 are often unnecessary for predicting polymer 
properties. We therefore performed the LASSO regression for dimension reduction as 

ht
tp

s:
//

do
i.o

rg
/1

0.
15

57
/a

dv
.2

01
8.

45
4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 3
.2

36
.5

5.
22

, o
n 

28
 S

ep
 2

02
1 

at
 0

5:
46

:3
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1557/adv.2018.454
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


2977

 
 

follows. By using training dataset of cross-validation process, (i) hyperparameters of 
LASSO regression was tuned, (ii) coefficients of the regression model were obtained, 
and (iii) we removed variables whose coefficients are zero. The final number of 
descriptors was automatically decided by this procedure. In the present case, we obtained
descriptors with tens of dimensions, though the dimension varies for target physical 
properties. After the dimension reduction, the Gaussian process regression (GPR) [15]
was used to predict polymer properties. The LASSO regression and GPR were
performed by using the scikit-learn [16]. We used the leave-one-out cross validation,
where hyperparameter tuning and dimension reduction were performed for training 
dataset, and prediction accuracies were evaluated by the determination coefficient (R2)
and root mean squared error (RMSE) in test dataset. Although there are several 
definitions of R2, the following definition was employed in this study,

R2 1 yi fi
2

yi y
2 ,       (2)

where, y is the average of measured values, and yi and fi are the i-th measured and 
predicted values, respectively.

RESULTS AND DISCUSSIONS: 

As the first case, we show the result of refractive indices of linear polymers. The 51
data were collected from the study by Maekawa, et al. [17] and Polyinfo [18]. Table I 
summarizes the computational conditions and results. To clarify the effectiveness of 
number-density-ECFP4, multiple repeat units, and dimension reduction, five
examinations (a) – (e) were performed. In addition, the prediction accuracies of our 
machine learning approach were compared with those of the ab-initio density functional 
theory (DFT) conducted by Maekawa et al.

The small R2 value (-0.063) in the column (a) of Table I indicates that the conventional 
number-ECFP4 failed to predict the refractive indices of linear polymers. Due to the 
definition (Eq 2), R2 could takes negative value, when the numerator is larger than the 
denominator; herein, the negative value of R2 means that the prediction accuracy is bad.
In contrast, our number-density ECFP4 highly improved the prediction accuracy, as 
evidenced by the high R2 (0.890) value and small RMSE (0.027). These results clearly 
show that the number-density-ECFP4 is superior to the conventional number-ECFP4 for 
predicting the refractive indices of linear polymers.

Here, we discuss the difference between the number- and number-density descriptors.
For simplicity, we consider the descriptors for C atoms in two kinds of repeat-unit 
models represented as -[CH2CH2O] - and -[CH2CH2OCH2CH2O] -. It is noted that these 
two polymers are identical to one another because those chain lengths are infinite. On 
one hand, the conventional number-descriptor incorrectly identifies them as the different 
polymers from each other, since the numbers of C atoms of -[CH2CH2O]- and -
[CH2CH2OCH2CH2O]- are 2 and 4, respectively. On the other hand, the number-
density-descriptor can correctly identify them as the same polymer, since the number 
density of C atoms are 2/7 for both cases. This example shows that the number-density 
descriptor is appropriate for learning structural features on arbitrary linear polymers 
composed of different sized repeat units each other. 

In addition to the introduction of the number-density descriptor, the prediction 
accuracies were improved by applying dimension reduction (c), by employing 10 repeat 
units to generate descriptor (d), and by combining both of them (e). The difference 
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between results (b) and (d) indicates that the linkage of polymer repeat unit give non-
negligible effect on polymer properties, because, as mentioned in the THEORY section, 
multiple repeat units include the substructure of linkage. Interestingly, our machine 
learning approach (e) achieved similar accuracy with the DFT calculation, as shown in 
Table I and in the scatter plot of refractive indices in Figure 1. 

Table I. Prediction conditions and accuracies of refractive indices of linear polymers 

(a) (b) (c) (d) (e) DFT[17]

Computational conditions

ECFP4 Number Number Number Number Number N/A(Original) density Density Density Density
Numbers of 
repeat units 1 1 1 10 10 N/A

Dimension reduction No No Yes No Yes N/A
Computational results

R2 -0.063 0.890 0.900 0.932 0.950 0.918
RMSE 0.084 0.027 0.026 0.021 0.017 0.018

Figure 1. Scatter plot of refractive indices computed by DFT [Reprinted with permission from S. Maekawa, K. Moorthi, 
J. Phys. Chem. B, 120, 2507 (2016). Copyright 2016 American Chemical Society.], and by machine learning at condition 
(e) in Table I.  

Table II shows the summary of the prediction accuracies of the optical properties 
(band gap, dielectric constant, and refractive index), the thermal stabilities (glass 
transition temperatures and linear expansion coefficients), and the mechanical properties 
(tensile strength at break, elongation at break, and tensile modulus). All of these 
calculations were carried out by the condition (e) noted in Table I. As shown in Table 
II, the optical properties and thermal stabilities were predictable by our approach. 
Because our approach effectively includes the information on polymer substructures 
known to depend on these properties.

However our approach was unable to predict the mechanical properties (Table II).
This is because mechanical properties depend not only on substructures but also on 
manufacturing process of polymers [20]. In order to improve prediction accuracies of 
mechanical properties, an expansive informatics framework which includes not only the 
information concerning chemical structure but also the other information such as 
manufacturing process, phase, and higher-order structure will be required.
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Table II. Prediction accuracies of linear polymers computed at the condition (e) noted in Table I. 

Number of data R2 RMSE
Optical properties

Band gap [eV] 284
$[9] 0.84 0.48

Dielectric constant [-] 284
$ [9] 0.76 0.47

Refractive index [-] 51
Ɨ[17][18] 0.95 0.02

Thermal stabilities
Glass transition temperature [K] 417

Ɨ[18] 0.84 31.1

Linear expansion coefficient [10-5 /K] 54
Ɨ[19] 0.64 1.1

Mechanical properties

Tensile strength at break [GPa] 175
Ɨ[18] -0.04 0.21

Elongation at break [%] 168
Ɨ [18] 0.02 196.3

Tensile modulus [GPa] 147
Ɨ [18] 0.03 12.7

$ supervised data were obtained by calculation. Ɨ supervised data were obtained by experiment.

CONCLUSIONS: 

The conventional ECFPs were found not to be applicable to the prediction of linear 
polymer properties. This problem was overcome by creating the novel number-density 
ECFPs. We believe that structure normalization such as number density is a key concept 
for employing promising descriptors developed in chemoinformatics to linear polymers. 
For example, not only the ECFPs, but also topological torsion [21], atom-pair [22], or 
convolutional networks on graphs [23] should become applicable to polymers.

Furthermore, the combinations of number-density-ECFPs with (1) multiple repeat 
units and (2) dimension reduction with the LASSO regression was found to improve 
prediction accuracy of the refractive indices. As a result, our machine learning 
approach achieved similar prediction accuracy to the ab-initio DFT calculation.

Our machine learning approach was predictable well the optical and the thermal 
stabilities which are supposed to depend on substructures composing polymers. On the 
other hand, the mechanical properties were difficult to predict, because they depend not 
only on substructures but also the other factors, for example, the manufacturing process.
This problem should be overcome in the future research to realize an effective design of 
functional polymers.

The approach shown in this study could be applicable to various polymers if the 
structural formula is known.  In addition, this approach can be combined with other 
descriptors, e.g., curing time, curing temperature, or grain size. This is the advantageous 
feature for improving multi-scaling properties. Our results would stimulate the research 
on data-driven material design with artificial intelligence and machine learning on 
functional polymer materials. 
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