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Abstract. In this note, we give a homology-free proof that the non-abelian tensor
product of two finite groups is finite. In addition, we provide an explicit proof that the
non-abelian tensor product of two finite p-groups is a finite p-group.
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1. Introduction. R. Brown and J.-L. Loday introduced the non-abelian tensor
product G ® H for a pair of groups G and H in [1, 2] in the context of an application
in homotopy theory. It is defined for a pair of groups that act on each other provided
the actions satisfy the compatibility conditions of Definition 1.1. Note that we write
conjugation on the left, so g’ = gg'g™! for g, ¢’ € G and ¢g’ - g'~! = [g, g'] for the
commutator of g and g’.

DeFINITION 1.1. Let G and H be groups that act on themselves by conjugation
and each of which acts on the other. The mutual actions are said to be compatible if

h

S = M and g = ' forall g, g € G, h, i € H. (1.1.1)

It is worth noting that the condition,
h= 8 and g = " g forall g, ¢ € G, h, Il € H,

always holds. For groups that act compatibly on each other, the non-abelian tensor
product is then defined as follows.

DEeFINITION 1.2. If G and H are groups that act compatibly on each other, then
the non-abelian tensor product G ® H is the group generated by the symbols g ® 4 for
g € G and h € H with relations

2¢d ®h=(5g ®°h)(g R h), (1.2.1)
g =@ h("g"l), (1.2.2)

forallg,g’ e Gand h, W € H.

The special case, where G = H and all actions are given by conjugation, is called
the tensor square G ® G. The tensor square of a group is always defined. The following
question arises: let G and H be finite groups acting compatibly on each other. Then, is

https://doi.org/10.1017/50017089510000352 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089510000352

474 VIJI Z. THOMAS

it true that G ® H is finite? Already Brown and Loday in [3] established that the tensor
square G ® G is finite for finite G. In [5], Ellis settled the general question affirmatively
as follows.

THEOREM 1.3. If G and H are finite groups acting on each other, and if their actions
are compatible, then G ® H is finite.

Ellis in his proof uses part of an exact sequence from homology as given in [2] and
the fact that the homology of a finite group is finite. In [7], L.-C. Kappe mentions that
no purely algebraic proof of Theorem 1.3 is known. Already the authors of [1], Brown,
Johnson and Robertson, ask the question if such a proof can be given. In this paper, we
give a purely group theoretic proof of Theorem 1.3. We will show that the non-abelian
tensor product of two finite groups satisfies the assumptions of Dietzmann’s Lemma
[4] (for a more accessible reference we refer to [9]). Noting that a subset of a group is
normal if it contains all conjugates of its elements, Dietzmann’s Lemma can be stated
as follows.

THEOREM 1.4. In any group a normal finite subset consisting of elements of finite
order generates a finite subgroup.

In addition, we use the embedding of the non-abelian tensor product G ® H in an
overgroup as given in [6] (see Proposition 2.7 for details). In [5], Ellis indicates that the
result of Theorem 1.3 remains true if finite is replaced by finite p-group. We give an
explicit proof of that result.

THEOREM 1.5. Let G and H be p-groups. If G and H are finite, then G ® H is a finite
p-group.

2. Preparatory results. In this section, we present several general results on
tensor products needed in the sequel. The following result can be found as
Proposition 3 of [1].

PROPOSITION 2.1. The following relations hold for all g, ¢’ € G and h, ' € H:

el =(@geh ™ ="(gah™"), (2.1.1)
E@hEM)g@h™ = ¢ I, (2.1.2)
g hel=@gen" gen™ (2.1.3)
gRCH )= gahEah, (2.1.4)
[g®@h g @K =g HeENH™). (2.1.5)

In [10], the derivative of one group by another was introduced and its properties
were investigated.

DEFINITION 2.2. Let G and H be groups with H acting on G. Then the subgroup
Dy(G)= (g- "g7'|g € G, h € H) of G is the derivative of G by H.
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Denoting with U” the closure of U under the operator group ¥, we find the
following result.

PROPOSITION 2.3. Let G and H be groups acting compatibly. Then Dy(G) is a
normal subgroup of G and Dy (G) is operator invariant under the action of H, that is
Du(G)" = Du(G).

Using Proposition 2.3, we obtain the following expansion formula which we need
for the proof of Theorem 1.5.

LEMMA 2.4. Let G and H be groups which act compatibly and let k be a positive
integer. Then there exists wy € Dy(G) ® H such that

g® H = wi(g ® h,

forallge G, he H.

Proof. We prove our claim by induction on k. For k = 1, the statement is obviously
true. Assume the result is true for £ — 1. Expansion using (1.2.2) yields

e®@iF =g )" 'g®h). (2.4.1)

Observe that g- (*"'g7!) € Dy(G). Hence, g = "' g (mod Dy(G)). Therefore there
exists s € Dy(G) with ”nggs. Thus by expansion using (1.2.2), we obtain
hk_lg Qh=gs®h=0s®%h)(g®h). Substituting this into the right-hand side of
(2.4.1) leads to

g = (g Es@h) (g ® h).
Commuting the first and second factor on the right-hand side yields
g =[g@ M, s @%hEs @ h)(g ® ) (g ® h). (2.4.2)

By Proposition 2.3, it follows that Dy (G) ® H is normal in G ® H. This fact together
with (2.1.5) implies that [g® /7!, 8s@2h] =[(s®@%h, g @K' € Dy(G) ® H.
Thus (2.4.2) can be simplified as

g® M =wge ) g®h),

where w = [g ® /!, 85 ® 2h](8s ® ¢h) with w € Dy(G) ® H. Using the induction
hypothesis for £ — 1 leads to

g® " = ww_1(g®h.

Setting wwy_; = wy, proves our claim. O

Information and presentation of the overgroup n(G, H) can be found in [8], where
the author notes that n(G, H) = (G ® H) x H) x G by Theorem 2.5. Let G * H be the
free product of G and H. The definition of the subgroup J of G x H and the following
three results which we need for the proof of our theorems can be found in [6].

THEOREM 2.5. There is an isomorphism (GQ® H) x H) x G = G x H/J, where %
denotes a semi-direct product.
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PROPOSITION 2.6. The canonical homomorphisms G — Gx H/J and H — G« H/J
are injective.

For brevity we set K = n(G, H). Denoting the normal closures of G and H in K
by GX and HX, respectively, we obtain a description of the non-abelian tensor product
as the intersection of two normal subgroups of K.

PROPOSITION 2.7. There is an isomorphism G @ H = GX N HX.
We need the following two lemmas for the proof of Theorem 1.3 and Theorem 1.5.

LEMMA 2.8. Let G be a group viewed as a subgroup of K, then the subgroup Dy(G)
of G is a K invariant subgroup of K and hence Dy (G)X = Dy (G).

Proof. If the mutual actions of G and H are compatible then by Proposition 2.3
we have that Dy (G) is invariant under the action of H and G. So Dy(G) is invariant
under the action of G x H and hence under the action of K. Thus the normal closure
of Dy(G)in K is Dy(G). Il

LEMMA 2.9. Let G and H be groups acting compatibly on each other. If G and H are
finite, then GX and HX are finite.

Proof. By Proposition 2.6, the groups H and G embed isomorphically into K. By
the compatibility condition, we have

"(@hy="5("h) 2.9.1)

for all #/,he H and g € G. The set S={h, 8hlg € G,h € H}, where H and G are
considered as subgroups of K, is a finite normal set in K. The finiteness of S follows
from the finiteness of G and H. Let z € G * H. The proof is by induction on the length
of the word z. Suppose for any z in G * H of length n we have 4 and *(8/4) are elements
of S. Let z/' be an element of G x H of length n+ 1 with /' € H. Then #h = (" h)
and 7' (8h) = (" (¢h)) = *(¢ (" h)) for some g’ € G by (2.9.1). By induction, *(* #) and
2#("h)) are in S. Let zg” € G+ H of length n+ 1 with g’ € G. Then ®'h = *('h)
and *'(¢h) = *(¢'(8h)) = *(¢"h) for some g” € G. By induction, (¢ /) and *(¢"h) are
elements of S. Hence S is a normal set. The elements of S have finite order because H
is a finite subgroup of K and the order is preserved by conjugation. By Theorem 1.4,
the set S generates a finite normal subgroup of K containing H. Hence the normal
closure of H in K is finite. By a similar argument we can show that the normal closure
of G in K is finite. O

3. Proof of the main theorems. Now we are ready to prove the main theorems.

Proof of Theorem 1.3. By Proposition 2.7, we have G ® H = GX N HX, where G
and H are considered as subgroups of K. However by Lemma 2.9, it follows that GX
and HX are finite and hence their intersection is finite. Thus G ® H is finite. O

To prove Theorem 1.5, we let n(Dy(G), H) = K|, where K| is the group found in
Theorem 2.5 for the pair of groups Dy(G) and H.

Proof of Theorem 1.5. As a consequence of Lemma 2.8, the normal closure of
Dy(G)in Ky is Dy(G). Furthermore, Dg(G) is a finite p-group as it is a subgroup of G.
By Proposition 2.7, it follows that Dy (G) ® H = Dy(G)X' N HX' . Thus Dy(G) ® H is
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a finite p-group. Now we will show that g ® & has p-power order forallg € G, h € H.
Since H is a finite p-group, we have /" =1, h € H and for some positive integer «.
By Lemma 2.4, where k = p* we obtain that g = g® 1 = g ® I"" = wye(g ® h)"" for
some wye € Dy(G)® H, g € G, h € H. Therefore wy« has p-power order. Since wje
has p-power order, g ® & has p power order for allg € G, h € H. By Theorem 3.4(i) of
[10], G ® H is a nilpotent group and hence a direct product of its Sylow subgroups.
Therefore, Y = {g® h | g € G, h € H}is contained in the Sylow p-subgroup of G ® H.
Since G ® H =< Y >, we conclude that G ® H is a finite p-group. O
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