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A set of integers {a0, ai, . . . , an} is said to be a difference set modulo N 
if the set of differences {a* — a^\ (i,j = 0, 1, . . . , n) contains each non-zero 
residue mod N exactly once. It follows that N and n are connected by the 
relation N = n2 + n + 1. If {&o, ah • • • > #n} is a difference set mod N, so is the 
set {do + s, ai -\- s, . . . , an + s} (s = 0, 1, . . . , N). These difference sets form 
a finite projective plane of N points, with each difference set constituting a 
line in the plane. Conversely, given a finite projective plane of N points and a 
cyclic collineation of order N, the collineation leads to a numbering of the 
points so that each line becomes a difference set. Singer [5] has shown that a 
difference set can be constructed whenever n is a prime power and has conjec­
tured that there are difference sets in no other cases. Hall [3] has shown that 
there are no difference sets for any composite n less than or equal to 100 and 
Mann and Evans [2] have extended this result to n less than or equal to 1600. 

Hall [3] has defined a "multiplier" as any number q such that the set l̂ &i} 
(i = 0, 1, . . . , n) is the same as the set {dj + s} (j = 0, 1, . . . , n) for some s. 
He has shown that every factor of n is a multiplier. He has also shown that 
for each N which permits a difference set, there is at least one difference set 
which is fixed by all multipliers. Mann [4] has shown that if there is a difference 
set mod N and a multiplier of even order, n must be a square. 

In this paper we show that, under certain conditions, the multipliers form a 
cyclic group. We use this result to obtain extensions of some theorems of Mann 
and Evans [2] concerning the possible orders of multipliers of a difference set. 
These theorems have a definite bearing on the question as to which values of n 
permit difference sets. Mann and Evans used their theorems, along with some 
other results, to show that no difference sets can exist when n is a composite 
number less than 1600. On the basis of computations in individual cases, the 
author conjectures that theorems of this type may eliminate all composite 
values of n, thus leading to a complete solution of the problem. 

DEFINITION. Let Ni be a prime factor of N. (1) We shall say that Ni is of 
type I if there is some multiplier a (mod N) such that the exponent to which a 
belongs mod N is greater than the exponent to which it belongs mod iVi. (2) We 
shall say that N\ is of type II if every multiplier mod N belongs to the same 
exponent mod N as it does mod iVi. 

Remark. No divisor of zero mod N can be a multiplier since, if a difference 
set {aQ, a\, . . . an] be multiplied by a divisor of zero, at least one of the differ-
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ences [at — aj\ (i ^ j) will be carried into zero. Hence every prime factor of N 
is either of type I or type II. 

THEOREM 1. Suppose that there is a difference set mod N and that N has a 
prime factor Nf of type I. Let t be the exponent to which the multiplier q (of the 
definition above) belongs mod N'. Let N\ = (q* — 1,N). Then (a) N' divides 
Ni ^ N, (b) Ni is of the form n{1 + n\ + 1, (c) there is a difference set mod N\ 
and every multiplier for the difference sets mod N is a multiplier for the difference 
sets mod Nx, 

Proof, The proof follows immediately from Hall [3, Theorem 4.5] and the 
definition of a factor of type I, since ql is a multiplier. 

Remark. If N\ in Theorem 1 is less than 16002 + 1600 + 1, n\ must be a 
prime power. If, in addition, n is divisible by 2 or 3, then ?ii must be a power of 
2 or 3 respectively, since Hall has proved that 2 can be a multiplier only if n\ 
is even, while Mann [4] has proved that 3 can be a multiplier only if n\ is 
congruent to zero mod 3. 

COROLLARY 1. Suppose that n — mT
y where (r, 3) = 1 and there is a difference 

set mod N = n2 + n + 1. Then there is a difference set mod iVi = m- + m + 1 
and every multiplier mod N is a multiplier mod N\. 

Proof,. Let (m - 1, N) = N'. Then m s 1 (mod N'), 

N = m2T + mT + 1 = m2 + m + 1 s 3 (mod N'). 

Hence N' = 1 or 3 and, if Nf — 3, m2 + m + 1 = 0 (mod 3). in no case is 
n2 + n + 1 = 0 (mod 9). Hence (w3 — 1, m2r + mT + 1) = w2 + m + 1, 
provided (r, 3) = 1. 

COROLLARY 2. T/zg only difference sets for n less than 16002 in which there is a 
multiplier of even order are those in which n is an even power of a prime. 

Proof. Mann has proved that if there is a multiplier of even order, n must be 
a square. If n = m2, there is a difference set mod (m2 + m + 1). If m < 1600, 
m must be a prime power. 

THEOREM 2. If N contains a prime factor N\ of type II, the multipliers form a 
cyclic multiplicative group. 

Proof. The product of two multipliers is a multiplier. Obviously the multi­
pliers form a group. Let the multipliers be reduced mod N\. Since iVi is prime, 
the images of the multipliers in the residue system mod iVi form a cyclic group. 
We shall show that any two different multipliers </i and q2 have different images 
in the residue system mod Ni. Suppose that qi s= q2 (mod iVi), where qi and q2 

are multipliers. Since the multipliers form a group, we may write qi = qiqz 

(mod N)f where q% is a multiplier. Thus qi = q2 = q\ qz (mod Ni) and çi(#3 — 1) 
= 0 (mod ZVi). Now q\ N 0 (mod iVi) since divisors of zero cannot be multipliers. 
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But Ni is prime, so q$ — I == 0 (mod Ari). Since Ari is of type 11, this implies 
that q% — 1 = 0 (mod Ar) and hence qi == q2 (mod N). Thus the mapping of 
multipliers is 1 to 1, and the multipliers must form a cyclic group mod N. 

THEOREM 3. Suppose that: 
(1) there is a difference set mod N = n2 + n + 1, 
(2) A" = Ni N2 . . . Nk, where Nt is prime (i = 1, 2, . . . , &), 
(3) n is not a square, 
(4) for some i, Nt is of type I I ; 

then the order S of the group of multipliers is odd and divides <j>(Ni) = Nt — 1. 

Proof. If S is even, the order of the primitive multiplier is even and n must 
be a square. The order of any non-zero residue mod Ni divides <j)(Ni). If Nf is 
of type II, the order of every multiplier mod Nt is the same as its order mod N. 

THEOREM 3.1. If the hypotheses of Theorem 3 are valid and 
(5) N4 is of type II for i = 1 , 2 , . . . , * , 
(6) n + 1 = 0 (mod 3), 

then S divides n + 1. 

Proof. Mann and Evans have shown that 0 is not contained in the difference 
set fixed under all multipliers if n + 1 = 0 (mod 3). Let q be the primitive 
multiplier. Then (for any number a ^ 0) if a is in the fixed difference set, 
a, aq, . . . , aqs~x are all incongruent mod N and all included in the fixed differ­
ence set» The n + 1 numbers in this fixed set therefore occur in subsets of 
S each, 

THEOREM 3.2 If (1), (2), (3), (5) are all satisfied and n = 0 (mod 3) then S 
divides n. 

Proof. Mann and Evans have shown that 0 is contained in the fixed difference 
if n £s 0 (mod 3). As in Theorem 3.1, the n non-zero numbers in the fixed 
difference set occur in subsets of 5" each. 

Remark, If n — 1. s= 0 (mod 3), A7 = 0 (mod 3) and 3 is a factor of type (. 

THEOREM 3.3 Suppose that: 
(1) there is a difference set mod Nf 

(2) N = A7"iAf2 (Ni and N2 not necessarily prime), 
(3) every factor of N2 is of type 11 with respect to N, 
(4) (g* — 1, N) — Nu where a <S and q is the primitive multiplier; 

then N\ is of the form nx
2 + n\ + 1 and S divides n — nx. 

Proof. By Theorem 1, there is a difference set mod N\ and N\ = Wi2 + n\ + 1. 
By Mann and Evans [2, Theorem 6], there are n\ + 1 multiples of N2 in the 
fixed difference set. If a is any residue mod Af which is not a multiple of Af2, 
let t be the least power of the primitive multiplier q such that aqf = a (mod N). 
Then a(qf- — 1) = 0 (mod N = N\N2). Hence ql — 1 = 0 mod some factor of 
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N2. Since all factors of iV2 are of type II with respect to TV, t = S. Thus the 
n — tii residues in the fixed difference set which are non-multiples of N% occur 
in sets a, aq, . . . , aqs~l of S each, and S divides n — n\. 

Theorems 3.1, 3.2, and 3.3 are extensions of Corollaries 5.1, 5.2, and Theorem 
9, respectively, of Mann and Evans [2]. The proofs are similar in form to those 
given in [2]. 

As an example of the way in which Theorem 1 can be applied, suppose that n 
is even and n = 5 or 25 (mod 31). Then 2 is a multiplier and (25 — 1, N) = 31. 
But 2 is not a multiplier for the difference set mod 31; hence, by Theorem 1, 
there can be no difference set mod N. 

As an example of the application of the other theorems, consider the case 
n = 411, N = 313-541. Neither 313 nor 541 is of the form n1

2 + n1+ 1; 
hence, by Theorem 1, neither can be of type I. By Theorem 3, 5 divides 313 — 1 
= 3-8-13 and 541 - 1 = 4-5-27. By Theorem 3.2, S divides n = 3-137. 
Hence 5 must be 3. Since 3 (which should be a multiplier) is not of order 3, 
there can be no difference set. 
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