A GENERALIZATION OF SUMMABILITY-(Z, p) OF SILVERMAN AND SZÁSZ

by DAVID L. SHERRY
(Received 4th January 1969)

1. Background

A sequence $x=\left\{s_{i}\right\}$ has been defined to be summable- (Z, p) to s if

$$
\lim _{n} Z_{n}^{p}(x)=s
$$

where p is a positive integer and

$$
Z_{n}^{p}(x)=\left(s_{n-p+1}+\ldots+s_{n}\right) / p \quad\left(n \geqq 0, s_{i}=0 \text { if } i<0\right)
$$

Ignoring the values of n for which $0 \leqq n<p-1$, the transformation (Z, p) coincides with the Nörlund transformation defined by the sequence

$$
(1,1, \ldots, 1,0,0, \ldots)
$$

containing p initial l's. This class of methods has been studied by Silverman and Szász (5) and by Hill and Sledd (4). We quote the following results for reference.
(1.1) Summability- (Z, p) is regular for $p=2,3, \ldots$ and $(Z, 1)$ is the identity transformation.
(1.2) ((5), Th. 11) Summability- (Z, p) implies summability- $(C, 1)$ to the same value for $p=1,2,3, \ldots$.
(1.3) ((5), Th. 14) If p is a divisor of q, then the convergence field of (Z, p) is contained in that of (Z, q).
(1.4) ((5) Th. 15) If d is the greatest common divisor of p and q, then the convergence fields of (Z, p) and (Z, q) intersect in that of (Z, d).
(1.5) $Z_{n+p}^{p}(x)=Z_{p-1}^{p}(x)-\frac{1}{p} \sum_{i=0}^{n}\left(s_{i}-s_{i+p}\right)$ for $p, n=1,2,3, \ldots$, and therefore a sequence $x=\left\{s_{i}\right\}$ is summable- (Z, p) if and only if $\sum_{i=0}^{n}\left(s_{i}-s_{i+p}\right)$ is convergent. Furthermore, $x=\left\{s_{i}\right\}$ is summable (Z, p) only if $s_{i}-s_{i+p} \rightarrow 0$ as $i \rightarrow \infty$.

2. (Z, p, k) Summability

We will be interested in generalizing the definition of (Z, p)-summability as well as the results (1.1)-(1.5). We write

$$
\begin{aligned}
& Z_{n}^{p, k}(x)=\left(Z_{n-p+1}^{p, k-1}(x)+\ldots+Z_{n}^{p, k-1}(x)\right) / p \quad(n \geqq 0), \\
& Z_{j}^{p, k-1}(x)=0 \text { if } j<0
\end{aligned}
$$

where p and k are positive integers, $k>1$ and $Z_{n}^{p, 1}(x)=Z_{n}^{p}(x)$. A sequence $x=\left\{s_{i}\right\}$ is summable (Z, p, k) to the value s if

$$
\lim _{n} Z_{n}^{p, k}(x)=s
$$

For brevity, let us write $Z_{n}^{p, k}(x)=Z_{n}^{p, k}$. It is easy to express $Z_{n}^{p, k}$ in terms of s_{n}. We have

$$
\begin{aligned}
\sum_{n=0}^{\infty} Z_{n}^{p, k} x^{n} & =p^{-1}\left(\frac{1-x^{p}}{1-x}\right) \sum_{n=0}^{\infty} Z_{n}^{p, k-1} x^{n} \\
& =p^{-2}\left(\frac{1-x^{p}}{1-x}\right)^{2} \sum_{n=0}^{\infty} Z_{n}^{p, k-2} x^{n}
\end{aligned}
$$

and so on, giving

$$
\begin{equation*}
\sum_{n=0}^{\infty} Z_{n}^{p, k} x^{n}=p^{-k}\left(\frac{1-x^{p}}{1-x}\right)^{k} \sum_{n=0}^{\infty} s_{n} x^{n} \tag{2.1}
\end{equation*}
$$

Thus

$$
\begin{equation*}
Z_{n}^{p, k}=p^{-k} \sum_{i=0}^{n} b_{i}^{p, k} s_{n-i}, \quad n \geqq 0 \tag{2.2}
\end{equation*}
$$

with k a positive integer, $b_{i}^{p, k}=0$ for $i>k(p-1)$ and

$$
\left(\frac{1-x^{p}}{1-x}\right)^{k}=\sum_{i=0}^{k(p-1)} b_{i}^{p \cdot k} x^{i} .
$$

Ignoring the values of n for which $0 \leqq n<k(p-1)$, the transformation (Z, p, k) coincides with the Nörlund transformation defined by the sequence

$$
\left(b_{0}^{p, k}, b_{1}^{p, k}, \ldots, b_{k(p-1)}^{p, k}, 0,0, \ldots\right)
$$

We now wish to show that (2.1) and (2.2) remain significant for non-integral k and allow us to give a more general definition of (Z, p, k). In order to do this, we need information concerning the coefficients of the series expansion of $\left(1-x^{p}\right)^{k}(1-x)^{-k}$ when k is non-integral. We can find this by comparing the general case with the case $p=2$. For $p=2,\left(1-x^{p}\right)^{k}(1-x)^{-k}$ is the familiar $(1+x)^{k}$. If k is positive and non-integral then

$$
\left(\frac{1-x^{2}}{1-x}\right)^{k}=(1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}=\sum_{n=0}^{\infty} p_{n} x^{n}
$$

where

$$
p_{n} \sim n^{-k-1}
$$

On the other hand,

$$
\begin{aligned}
\left(1-x^{2}\right)^{k}(1-x)^{-k} & =\sum_{n=0}^{\infty}(-1)^{n}\binom{k}{n} x^{2 n} \cdot \sum_{n=0}^{\infty}(-1)^{n}\binom{-k}{n} x^{n} \\
& =\sum_{n=0}^{\infty} a_{2 n} x^{2 n} \cdot \sum_{n=0}^{\infty} b_{n} x^{n}=\sum_{n=0}^{\infty} p_{n} x^{n}
\end{aligned}
$$

Therefore

$$
\begin{align*}
& p_{2 n}=b_{0} a_{2 n}+b_{2} a_{2(n-1)}+\ldots+b_{2 n} a_{0} \sim(2 n)^{-k-1} \sim n^{-k-1} \tag{2.3}\\
& p_{2 n+1}=b_{1} a_{2 n}+b_{3} a_{2(n-1)}+\ldots+b_{2 n+1} a_{0} \sim(2 n+1)^{-k-1} \sim n^{-k-1}
\end{align*}
$$

Considering the case $p=3$, we have

$$
\begin{aligned}
\left(1-x^{3}\right)^{k}(1-x)^{-k} & =\sum_{n=0}^{\infty}(-1)^{n}\binom{k}{n} x^{3 n} \cdot \sum_{n=0}^{\infty}(-1)^{n}\binom{-k}{n} x^{n} \\
& =\sum_{n=0}^{\infty} c_{3 n} x^{3 n} \sum_{n=0}^{\infty} b_{n} x^{n}=\sum_{n=0}^{\infty} q_{n} x^{n} .
\end{aligned}
$$

Therefore

$$
q_{3 n+i}=b_{i} c_{3 n}+b_{i+3} c_{3(n-1)}+\ldots+b_{3 n+i} c_{0}, \quad i=0,1,2
$$

Since $c_{3 n}=a_{2 n}, n=0,1,2, \ldots$, and $b_{3 n+i} \sim(3 n+i)^{k-1} \sim(2 n+j)^{k-1} \sim b_{2 n+j}$ for $i=0,1,2 ; j=0,1,(2.3)$ gives us

$$
q_{3 n+i} \sim n^{-k-1}, \quad i=0,1,2
$$

In general, if

$$
\begin{equation*}
\left(\frac{1-x^{p}}{1-x}\right)^{k}=\sum_{i=0}^{\infty} b_{i}^{p, k} x^{i} \tag{2.4}
\end{equation*}
$$

then

$$
\begin{equation*}
b_{i}^{p, k}=b_{j+n p}^{p, k} \sim n^{-k-1}, \quad j=0,1, \ldots, p-1 \tag{2.5}
\end{equation*}
$$

If $k>0$ then $\sum_{i=0}^{\infty}\left|b_{i}^{p, k}\right|<\infty$. The series in (2.4) has radius of convergence 1 and Abel's theorem gives the result that $B_{n}^{p, k}=\sum_{i=0}^{n} b_{i}^{p, k} \rightarrow p^{k}$ as $n \rightarrow \infty$. In view of these results (2.1) and (2.2) can be extended to include all real positive values of k. (Z, p, k), with p a positive integer and k positive and real, is a Nörlund method associated with the sequence $\left\{b_{i}^{p, k}\right\}$ and the sequence is defined by (2.3).

We now quote two theorems given by Borwein and Boyd ((2), Ths. 16, 17) concerning Nörlund methods.
(2.6) The Nörlund method (N, p_{n}) is regular if and only if there is a constant H independent of n such that

$$
\sum_{r=0}^{n}\left|p_{r}\right|<H\left|P_{n}\right| \text { for } n \geqq M
$$

and $p_{n} / P_{n} \rightarrow 0$ as $n \rightarrow \infty$.
(2.7) If $\left(N, p_{n}\right)$ and $\left(N, q_{n}\right)$ are regular and $p(x)=\sum_{n=0}^{\infty} p_{n} x^{n}, q(x)=\sum_{n=0}^{\infty} q_{n} x^{n}$, $q(x) / p(x)=\sum_{n=0}^{\infty} k_{n} x^{n}$, then summability- $\left(N, p_{n}\right)$ implies summability- $\left(N, q_{n}\right)$ if
and only if there is a constant H independent of n such that

$$
\sum_{r=0}^{n}\left|k_{n-r} P_{r}\right|<H\left|Q_{n}\right| \quad \text { for } n \geqq M
$$

and $k_{n} / Q_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Applying these theorems to (Z, p, k), we have
Theorem 1. Summability- (Z, p, k) is regular for $k>0$ and $p=2,3, \ldots$ and $(Z, 1, k)$ is the identity transformation.

Theorem 2. If p is a divisor of q, then the convergence field of (Z, p, k) is properly contained in that of (Z, q, k) for $k>0$.

Theorem 3. If $0<k<k^{\prime}$, then the convergence field of (Z, p, k) is properly contained in that of $\left(Z, p, k^{\prime}\right)$ for $p=2,3, \ldots$.

Theorem 4. Summability- (Z, p, k) implies summability- (C, k) to the same value for $k>0$ and $p=2,3,4, \ldots$.

In order to generalize (1.4) and (1.5) we restrict k to be a positive integer. With this restriction the following theorem follows directly from a theorem of Borwein ((1), Th. 3).

Theorem 5. If d is the greatest common divisor of p and q, then the convergence fields of (Z, p, k) and (Z, q, k) intersect in that of (Z, d, k) for $k=1,2,3, \ldots$.

Using induction, it can be proved that

$$
b_{i}^{p, k}=b_{k(p-1)-i}^{p, k}, \quad i=0,1, \ldots, k(p-1) ; k=1,2,3, \ldots .
$$

Therefore we can write

$$
Z_{n+k(p-1)+1}^{p, k}(x)=p^{-k} \sum_{i=0}^{k(p-1)} b_{i}^{p, k} s_{n+1+i} \quad\left(n \geqq-k(p-1)-1 ; s_{k}=0 \text { if } k>0\right)
$$

Furthermore we have the following identity:

$$
\sum_{i=0}^{k(p-1)} b_{i}^{p, k} x^{n+1+i}=\sum_{i=0}^{k(p-1)} b_{i}^{p, k} x^{i}-\sum_{j=0}^{n}\left[\sum_{i=0}^{(k-1)(p-1)} b_{i}^{p, k-1}\left(x^{i+j}-x^{i+j+p}\right)\right] .
$$

In view of these results we are justified in writing

$$
Z_{n+k(p-1)+1}^{p, k}(x)=Z_{k(p-1)}^{p, k}(x)-p^{-1} \sum_{j=0}^{n}\left[p^{1-k} \sum_{i=0}^{(k-1)(p-1)} b_{i}^{p, k-1}\left(s_{i+j}-s_{i+j+p}\right)\right]
$$

Inspection of the expression in the brackets will reveal that if $y=\left\{s_{i}-s_{i+p}\right\}$ then the expression is the ($Z, p, k-1$) transform of y and we have

Theorem 6. If $x=\left\{s_{i}\right\}$ and $y=\left\{s_{i}-s_{i+p}\right\}$, then

$$
Z_{n+k(p-1)+1}^{p, k}(x)=Z_{k(p-1)}^{p, k}(x)-p^{-1} \sum_{j=0}^{n} Z_{j+(k-1)(p-1)}^{p, k-1}(y), \quad p, k, n=1,2,3, \ldots
$$

and therefore $x=\left\{s_{i}\right\}$ is summable- (Z, p, k) if and only if

$$
\sum_{j=0}^{\infty} Z_{j+(k-1)(p-1)}^{p, k-1}(y)
$$

is convergent. Further, a necessary condition for $x=\left\{s_{i}\right\}$ to be summable(Z, p, k) is that $y=\left\{s_{i}-s_{i+p}\right\}$ be summable- $(Z, p, k-1)$ to zero.

If we define $(Z, p, 0)$ to be ordinary convergence, then Theorem 6 reduces to (1.5) when $k=1$.

Finally, we note that when p and k are positive integers, the $b_{i}^{p, k}$ may be considered generalizations of the binomial coefficients since $b_{i}^{2, k}=\binom{k}{i}$. With p fixed, a generalized Pascal's triangle may be constructed using

$$
\begin{aligned}
& b_{i}^{p, 1}=1, \quad i=0,1, \ldots, p-1, \\
& b_{i}^{p, k}=b_{i}^{p, k-1}+\ldots+b_{i-p+1}^{p, k-1}, \quad k>1, \quad i=0,1, \ldots, k(p-1),
\end{aligned}
$$

where

$$
b_{i}^{p, k-1}=0 \text { if } i<0 \text { or } i>(k-1)(p-1)
$$

We might also mention that $(Z, 2, k), k$ a positive integer, was considered by Hutton in 1812. For a reference to this, see Hardy ((3), 21-22).

REFERENCES

(1) D. Borwern, Nörlund methods of summability associated with polynomials, Proc. Edinburgh Math. Soc. (2) 12 (1959), 7-15.
(2) D. Borwein and A. V. Boyd, Binary and ternary transformations of sequences, Proc. Edinburgh Math. Soc. (2) 11 (1959), 175-181.
(3) G. H. Hardy, Divergent Series (Oxford, 1949).
(4) J. D. Hill and W. T. Sledd, Summability-(Z, p) and sequences of periodic type, Canad. J. Math. 16 (1964), 741-754.
(5) L. L. Sllverman and O. Szász, On a class of Nörlund matrices, Ann. of Math. (2) 45 (1944), 347-357.

University of West Florida

