A GENERALIZATION OF SUMMABILITY-(Z, p) OF SILVERMAN AND SZÁSZ

by DAVID L. SHERRY

(Received 4th January 1969)

1. Background

A sequence $x = \{s_i\}$ has been defined to be summable-(Z, p) to s if

 $\lim_{n} Z_{n}^{p}(x) = s,$

where p is a positive integer and

$$Z_n^p(x) = (s_{n-n+1} + \dots + s_n)/p$$
 $(n \ge 0, s_i = 0 \text{ if } i < 0).$

Ignoring the values of n for which $0 \le n < p-1$, the transformation (Z, p) coincides with the Nörlund transformation defined by the sequence

containing p initial 1's. This class of methods has been studied by Silverman and Szász (5) and by Hill and Sledd (4). We quote the following results for reference.

(1.1) Summability-(Z, p) is regular for p = 2, 3, ... and (Z, 1) is the identity transformation.

(1.2) ((5), Th. 11) Summability-(Z, p) implies summability-(C, 1) to the same value for p = 1, 2, 3, ...

(1.3) ((5), Th. 14) If p is a divisor of q, then the convergence field of (Z, p) is contained in that of (Z, q).

(1.4) ((5) Th. 15) If d is the greatest common divisor of p and q, then the convergence fields of (Z, p) and (Z, q) intersect in that of (Z, d).

(1.5)
$$Z_{n+p}^{p}(x) = Z_{p-1}^{p}(x) - \frac{1}{p} \sum_{i=0}^{n} (s_{i} - s_{i+p})$$
 for $p, n = 1, 2, 3, ...,$ and there-

fore a sequence $x = \{s_i\}$ is summable-(Z, p) if and only if $\sum_{i=0}^{n} (s_i - s_{i+p})$ is convergent. Furthermore, $x = \{s_i\}$ is summable (Z, p) only if $s_i - s_{i+p} \rightarrow 0$ as $i \rightarrow \infty$.

2. (Z, p, k) Summability

We will be interested in generalizing the definition of (Z, p)-summability as well as the results (1.1)-(1.5). We write

$$Z_n^{p,k}(x) = (Z_{n-p+1}^{p,k-1}(x) + \dots + Z_n^{p,k-1}(x))/p \quad (n \ge 0),$$

$$Z_i^{p,k-1}(x) = 0 \text{ if } j < 0,$$

where p and k are positive integers, k > 1 and $Z_n^{p, 1}(x) = Z_n^p(x)$. A sequence $x = \{s_i\}$ is summable (Z, p, k) to the value s if

$$\lim_{n} Z_n^{p, k}(x) = s.$$

For brevity, let us write $Z_n^{p, k}(x) = Z_n^{p, k}$. It is easy to express $Z_n^{p, k}$ in terms of s_n . We have

$$\sum_{n=0}^{\infty} Z_n^{p, k} x^n = p^{-1} \left(\frac{1-x^p}{1-x} \right) \sum_{n=0}^{\infty} Z_n^{p, k-1} x^n$$
$$= p^{-2} \left(\frac{1-x^p}{1-x} \right)^2 \sum_{n=0}^{\infty} Z_n^{p, k-2} x^n,$$

and so on, giving

(2.1)
$$\sum_{n=0}^{\infty} Z_n^{p, k} x^n = p^{-k} \left(\frac{1-x^p}{1-x} \right)^k \sum_{n=0}^{\infty} s_n x^n.$$

Thus

(2.2)
$$Z_n^{p,k} = p^{-k} \sum_{i=0}^n b_i^{p,k} s_{n-i}, \quad n \ge 0,$$

with k a positive integer, $b_i^{p, k} = 0$ for i > k(p-1) and

$$\left(\frac{1-x^{p}}{1-x}\right)^{k} = \sum_{i=0}^{k(p-1)} b_{i}^{p,k} x^{i}.$$

Ignoring the values of n for which $0 \le n < k(p-1)$, the transformation (Z, p, k) coincides with the Nörlund transformation defined by the sequence

 $(b_0^{p,k}, b_1^{p,k}, ..., b_{k(p-1)}^{p,k}, 0, 0, ...).$

We now wish to show that (2.1) and (2.2) remain significant for non-integral k and allow us to give a more general definition of (Z, p, k). In order to do this, we need information concerning the coefficients of the series expansion of $(1-x^p)^k(1-x)^{-k}$ when k is non-integral. We can find this by comparing the general case with the case p = 2. For p = 2, $(1-x^p)^k(1-x)^{-k}$ is the familiar $(1+x)^k$. If k is positive and non-integral then

$$\left(\frac{1-x^2}{1-x}\right)^k = (1+x)^k = \sum_{n=0}^{\infty} \binom{k}{n} x^n = \sum_{n=0}^{\infty} p_n x^n,$$

where

 $p_n \sim n^{-k-1}$

$$(1-x^{2})^{k}(1-x)^{-k} = \sum_{n=0}^{\infty} (-1)^{n} {k \choose n} x^{2n} \cdot \sum_{n=0}^{\infty} (-1)^{n} {\binom{-k}{n}} x^{n}$$
$$= \sum_{n=0}^{\infty} a_{2n} x^{2n} \cdot \sum_{n=0}^{\infty} b_{n} x^{n} = \sum_{n=0}^{\infty} p_{n} x^{n}$$

54

Therefore

(2.3)
$$p_{2n} = b_0 a_{2n} + b_2 a_{2(n-1)} + \dots + b_{2n} a_0 \sim (2n)^{-k-1} \sim n^{-k-1},$$

 $p_{2n+1} = b_1 a_{2n} + b_3 a_{2(n-1)} + \dots + b_{2n+1} a_0 \sim (2n+1)^{-k-1} \sim n^{-k-1}.$

Considering the case p = 3, we have

$$(1-x^3)^k (1-x)^{-k} = \sum_{n=0}^{\infty} (-1)^n \binom{k}{n} x^{3n} \cdot \sum_{n=0}^{\infty} (-1)^n \binom{-k}{n} x^n$$
$$= \sum_{n=0}^{\infty} c_{3n} x^{3n} \sum_{n=0}^{\infty} b_n x^n = \sum_{n=0}^{\infty} q_n x^n.$$

Therefore

$$q_{3n+i} = b_i c_{3n} + b_{i+3} c_{3(n-1)} + \dots + b_{3n+i} c_0, \quad i = 0, 1, 2.$$

Since $c_{3n} = a_{2n}$, n = 0, 1, 2, ..., and $b_{3n+i} \sim (3n+i)^{k-1} \sim (2n+j)^{k-1} \sim b_{2n+j}$ for i = 0, 1, 2; j = 0, 1, (2.3) gives us

$$q_{3n+i} \sim n^{-k-1}, \quad i = 0, 1, 2.$$

In general, if

(2.4)
$$\left(\frac{1-x^p}{1-x}\right)^k = \sum_{i=0}^{\infty} b_i^{p,k} x^i$$

then

(2.5)
$$b_i^{p,k} = b_{j+np}^{p,k} \sim n^{-k-1}, \quad j = 0, 1, ..., p-1.$$

If k > 0 then $\sum_{i=0}^{\infty} |b_i^{p,k}| < \infty$. The series in (2.4) has radius of convergence 1 and Abel's theorem gives the result that $B_n^{p,k} = \sum_{i=0}^n b_i^{p,k} \rightarrow p^k$ as $n \rightarrow \infty$. In view of these results (2.1) and (2.2) can be extended to include all real positive

values of k. (Z, p, k), with p a positive integer and k positive and real, is a Nörlund method associated with the sequence $\{b_i^{p,k}\}$ and the sequence is defined by (2.3).

We now quote two theorems given by Borwein and Boyd ((2), Ths. 16, 17) concerning Nörlund methods.

(2.6) The Nörlund method (N, p_n) is regular if and only if there is a constant H independent of n such that

$$\sum_{r=0}^{n} \left| p_{r} \right| < H \left| P_{n} \right| \quad \text{for } n \ge M$$

and $p_n/P_n \rightarrow 0$ as $n \rightarrow \infty$.

(2.7) If (N, p_n) and (N, q_n) are regular and $p(x) = \sum_{n=0}^{\infty} p_n x^n$, $q(x) = \sum_{n=0}^{\infty} q_n x^n$, $q(x)/p(x) = \sum_{n=0}^{\infty} k_n x^n$, then summability- (N, p_n) implies summability- (N, q_n) if

DAVID L. SHERRY

and only if there is a constant H independent of n such that

$$\sum_{n=0}^{n} |k_{n-r}P_r| < H |Q_n| \quad \text{for } n \ge M$$

and $k_n/Q_n \rightarrow 0$ as $n \rightarrow \infty$.

Applying these theorems to (Z, p, k), we have

Theorem 1. Summability-(Z, p, k) is regular for k > 0 and p = 2, 3, ... and (Z, 1, k) is the identity transformation.

Theorem 2. If p is a divisor of q, then the convergence field of (Z, p, k) is properly contained in that of (Z, q, k) for k > 0.

Theorem 3. If 0 < k < k', then the convergence field of (Z, p, k) is properly contained in that of (Z, p, k') for p = 2, 3, ...

Theorem 4. Summability-(Z, p, k) implies summability-(C, k) to the same value for k > 0 and p = 2, 3, 4, ...

In order to generalize (1.4) and (1.5) we restrict k to be a positive integer. With this restriction the following theorem follows directly from a theorem of Borwein ((1), Th. 3).

Theorem 5. If d is the greatest common divisor of p and q, then the convergence fields of (Z, p, k) and (Z, q, k) intersect in that of (Z, d, k) for k = 1, 2, 3, ...

Using induction, it can be proved that

$$b_i^{p,k} = b_{k(p-1)-i}^{p,k}, i = 0, 1, ..., k(p-1); k = 1, 2, 3, ...$$

Therefore we can write

$$Z_{n+k(p-1)+1}^{p,k}(x) = p^{-k} \sum_{i=0}^{k(p-1)} b_i^{p,k} s_{n+1+i} \quad (n \ge -k(p-1)-1; \ s_k = 0 \text{ if } k > 0).$$

Furthermore we have the following identity:

$$\sum_{i=0}^{k(p-1)} b_i^{p,k} x^{n+1+i} = \sum_{i=0}^{k(p-1)} b_i^{p,k} x^i - \sum_{j=0}^n \left[\sum_{i=0}^{(k-1)(p-1)} b_i^{p,k-1} \left(x^{i+j} - x^{i+j+p} \right) \right].$$

In view of these results we are justified in writing

$$Z_{n+k(p-1)+1}^{p,k}(x) = Z_{k(p-1)}^{p,k}(x) - p^{-1} \sum_{j=0}^{n} \left[p^{1-k} \sum_{i=0}^{(k-1)(p-1)} b_i^{p,k-1} \left(s_{i+j} - s_{i+j+p} \right) \right].$$

Inspection of the expression in the brackets will reveal that if $y = \{s_i - s_{i+p}\}$ then the expression is the (Z, p, k-1) transform of y and we have

Theorem 6. If $x = \{s_i\}$ and $y = \{s_i - s_{i+p}\}$, then

$$Z_{n+k(p-1)+1}^{p,k}(x) = Z_{k(p-1)}^{p,k}(x) - p^{-1} \sum_{j=0}^{n} Z_{j+(k-1)(p-1)}^{p,k-1}(y), \quad p, k, n = 1, 2, 3, \dots$$

A GENERALIZATION OF SUMMABILITY-(Z, p)

and therefore $x = \{s_i\}$ is summable-(Z, p, k) if and only if

$$\sum_{j=0}^{\infty} Z_{j+(k-1)(p-1)}^{p,k-1}(y)$$

is convergent. Further, a necessary condition for $x = \{s_i\}$ to be summable-(Z, p, k) is that $y = \{s_i - s_{i+p}\}$ be summable-(Z, p, k-1) to zero.

If we define (Z, p, 0) to be ordinary convergence, then Theorem 6 reduces to (1.5) when k = 1.

Finally, we note that when p and k are positive integers, the $b_i^{p,k}$ may be considered generalizations of the binomial coefficients since $b_i^{2,k} = \binom{k}{i}$. With p fixed, a generalized Pascal's triangle may be constructed using

$$b_i^{p, 1} = 1, \quad i = 0, 1, ..., p-1,$$

$$b_i^{p, k} = b_i^{p, k-1} + ... + b_{i-p+1}^{p, k-1}, \quad k > 1, \quad i = 0, 1, ..., k(p-1),$$

where

$$b_i^{p,k-1} = 0$$
 if $i < 0$ or $i > (k-1)(p-1)$.

We might also mention that (Z, 2, k), k a positive integer, was considered by Hutton in 1812. For a reference to this, see Hardy ((3), 21-22).

REFERENCES

(1) D. BORWEIN, Nörlund methods of summability associated with polynomials, Proc. Edinburgh Math. Soc. (2) 12 (1959), 7-15.

(2) D. BORWEIN and A. V. BOYD, Binary and ternary transformations of sequences, *Proc. Edinburgh Math. Soc.* (2) 11 (1959), 175-181.

(3) G. H. HARDY, Divergent Series (Oxford, 1949).

(4) J. D. HILL and W. T. SLEDD, Summability-(Z, p) and sequences of periodic type, Canad. J. Math. 16 (1964), 741-754.

(5) L. L. SILVERMAN and O. SZÁSZ, On a class of Nörlund matrices, *Ann. of Math.* (2) 45 (1944), 347-357.

UNIVERSITY OF WEST FLORIDA