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CONFORMALLY•NATURAL AHLFORS-WEILL SECTIONS

AND BERS' REPRODUCING FORMULAS

SUBHASHIS NAG

We differentiate certain refined Ahlfors-Weill local sections

of the Bers projections. This yields reproducing formulas for

holomorphic functions — which are then shown to be naturally

related to Bers' important and well-known reproducing formulas.

Introduction

At the heart of Teichnuiller theory lies the problem of realizing

the Teichmuller space T(G) of an arbitrary Fuchsian group G as an

open domain in a complex Banach space B via the 'Bers embedding'. The

chief problem is to establish that the Bers projection $ from proper

Beltrami differentials into the complex Banach space B of bounded

holomorphic quadratic forms is a holomorphic (split-) submersion onto its

image. This image, which is the Teichmuller space of G , is therefore

an open domain in B — thus providing T(G) with a natural complex

structure.

Bers [3] achieved the proof of the submersivity of $ using

crucially some reproducing formulas for the functions in B (Theorem B

below). Recently, (in Earle and Nag [5]), we have given a very direct
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proof of this submersivity by exhibiting explicit local holomorphic right

inverses for $ generalizing the Ahlfors-Weill sections (see Theorem A

here) . The purpose of this note is to differentiate the equation implied

by Theorem A in order to obtain a reproducing formula for functions in

the Banach space B . The good thing is that we can transform in a

natural fashion to show that this apparently new reproducing formula is

but a version of Bers' Theorem B. The two separate methods of establish-

ing the submersivity of the Bers projection thereby turn out to be

intimately related.

In the special case of the standard and classical Ahlfors-Weill

sections our method becomes an exploitation of the linearity of the

section map. It was brought to our attention that Gardiner [6] had

already done this special case of our calculations. We remark that such

utilization of linearity for the section map is possibly only in the

standard case (namely when the separating quasicircle is actually a circle

or straight line).

As a spin-off, we would like to draw attention to equation (8) —

which provides a derivative formula for any Bers projection $ at a

general point. There is strong reason to expect that this, and several

other formulas below, will have important applications besides those

shown in this article.

1. Preliminaries

We set the stage by introducing the well-known chief characters of

TeichmUller theory. As usual, let C denote an oriented quasicircle on

the Riemann sphere $ separating the two complementary Jordan domains

Dj and D- . We make the harmless requirement that C pass through °° .

Let \ .(z)\dz\ denote the Poincare metric on D., (j = 1,2). When C is

i? u {»} we will say that we are in the standard case and write D. = U

(upper half-plane) and £>„ = £ . In this case, X̂  (z) = \^(z) = (ZTsszf .

Recall the Banach spaces L (DJ (the essentially bounded measur-

able functions) and

e Hol(D
2
):
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In any Banach space L we agree to write Lp for the open O-centered

ball of radius r . The Bers projection $ = 0 : L (D-)7 —> B^(D.) i s

defined as follows. For y e L (D^)7 we solve the Beltrami equation on

(f with coefficient ji on D and 0 on Dn (call the solution W

1 c
usually normalized to fix 0, 1, <*>) and then §(\i) is the Schwarzian

derivative of W (WV restricted to D ).

When G is a quasi-Fuchsian group, (G = {1} is the case

described above), operating on £>7 and D? we have the usual Banach

subspaces L°(D ,G) c h"(V ) and B^D^G) <= B2
(Do^ consisting of

(respectively) the (̂ -invariant (-1,1) forms and G-invariant (2,0)

forms. The nice thing is that $_ restricted to L (D-,G)7 maps to

Bp(DpjG) and we call this restriction of $_ also a Bers projection.

As general references for this material one may consult Bers [4] or the

books [1] and [7].

Notation. We often denote — by 3 and — by 3 . The

complex dilatation (Beltrami coefficient) of a map u> is denoted by

Recall from Earle and Nag [5] that associated with any Jordan

domain D on £ there is a special conformally natural reflection

X = j(D) across the boundary 30 . In case 3D is a X-quasicircle,

this X is a C. (K)-quasiconformal reflection (with the further property

that it is Cp(K)-Lipschitz in the Euclidean metric). If G is any

group of Mobius transformations operating on D then X commutes with

every member of G .

Now let G be any quasi-Fuchsian group keeping the quasidisks D
1

and Z?Q invariant.

THEOREM A. (Earle and Nag [5]). Around $ = 0 in B (D ,G) there

is an e > 0 ball on which the 'Ahlfors map*
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(1) a:

given by

id- X)2 3Xj
(2) a($) = -Z—n — on D

l+jCQcXlttd-XJ^ZX J

is a holomorphia local right inverse to the Bers projection

•: L°(D1,G)1 — > B2(D2,G) .

Here X is the conformally natural quasiaonformal reflection C'quasi-

reflection') j(DJ associated to the quasidisk D .

Remark. Theorem A holds as stated without having to assume that <=

is on the bounding quasicircle C = 3D = 3£L . This follows from strong

Mobius-equivariance properties of formula (2) . The value of e depends

only on K where C was a X-quasicircle.

In the standard case X = j(U) is conjugation (j) . Then e can

be chosen equal to 2 . The Beltrami coefficient simplifies to a(<t>) =

2
-2dm z) §(z) on U . The section a is thus linearly dependent on <f>

in the standard case (since 3j = 0) . In this connection note also the

penultimate remark of this paper.

In Earle and Nag [5] we actually identified explicitly the quasi-

conformal homeomorphism W on D. u D- . On £>„ of course this is

an univalent holomorphic map with Schwarzian derivative precisely § . On

D~, v(w ) = <*($) • The actual representation of W is as follows.

Let u. and V. be two linearly independent solutions of

2v" + ij)U = 0 on D (with normalization y 7'uo"vo'ui = >̂ •

(2) v ° X + (id-X) (v1' ° X)

v2°X+ (id-X) (v2 ' o X)

(By following W with a MBbius transformation we may assume that

wa fixes any three preassigned points — as may be required for

normalization.)
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THEOREM B. Let C, Dn, D be as above and let h be any uniformly

Lipsahitz quasi con formal reflection across C . Then every 1J1 e BAD.)

satisfies the reproducing formula

• -,, , / , 3 (z-h(z)) dh(z)ty(h(z)) , ,(3) iK?; = - - dxdy ,

any C e D . For a proof, see Bers [3 or 4]., or [7].

To connect the two theorems above we need the derivative map d.*
o

at any 9 e L (D-,) •, • Firstly it is standard (see Bers [4]) that for any

C the derivative at 0 of $ is:

(4)

To calculate d $,, at any 9 e L'"(D ) n we relate $ to 4> , , where

o 0 11 Co

C" = w (C) . This is easy to do using right-translation by 9 , that is

R : L°(w (Dy))7 — > L°°(D ). defined by

R (v) = Beltrami coefficient of (w ° W ) .

To find the precise relation we set up the usual isometric isomorphism:

(5) (w )*: BAw (Do)) —> BAD.) ,

as the map (w )*(<$>) = (<$> ° W ) (^j—) , at z e. Do . Then the rule for

az a
the Schwarzian derivative of a composite map leads to the formula

n a

(6) <!>°i? - (w ) * ° ̂  a = t he c o n s t a n t map (v I—> $
C we(C) C

Differentiating (6) at 0 leads to

(7) d J> = (wQ)*°d $
6 6 ° we(C)

Now one verifies
Q

d^Cv) = Cyou6; i ^ L i (1-\Q\2) .
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Hence we calculate from (7), (using (4) to express dn$ )
0 wQ(C)

J ' (w fc^-u (z))

The integral in (8) is absolutely convergent since the integral in (4) is

so.

2. The main connection

Our basic program is to differentiate the equation implied by

Theorem A:

(A) $ _ o ot = 1 (on || i)>|| < e in B (D-))

to find a reproducing formula (equation (11) below), which we will then

transform in a natural way so that it becomes a (somewhat generalized)

version of Theorem B. We note at the very outset that in the standard

case, (C = if u (<*>}) , a is linear so that differentiation of (A)

becomes trivial — and the subsequent formulas take a much simpler form —

which we will point out in passing.

A direct calculation from formula (2) for a gives:

(9) da(p) = 2

(l+h>(\(z))d\(z)(z-\(z))2)2 '

at any z e D- . Let us introduce the notation

„.. P(z) = \ n(z)(z-\(z))2

Q(z) = | Z\(z)(z-\(z))2

and write v = d a(p) , for arbitrary p e B (D.) .
p 9 6 6

Let 6 = tx(§) . Then differentiating (A) at (f> using formulas (8)

and (9) gives the reproducing formula

dxdy
J (we(z) - w (V)

for any C e D and any p e B (D-).
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Note that in the standard case this formula becomes

any ? e L } any p e BAD . As remarked in the Introduction, this

special case (11)* had earlier arisen in Gardiner [6, p.478],

Our concern here is to show that (11) and (11)* are actually cases

of Theorem B applied with a new £L , say D^ = W (D^) , a new quasicircle

~ 9 ~
C = W (C), and a quasiconformal reflection h across C defined by

(12) h = WQ o A o (w®)'1 .

Although X was a uniformly Lipschitz quasiconformal reflection across C

this h need not be uniformly Lipschitz of course, nevertheless the Bers

reproducing formula (3) still will be_ shown to hold and in fact (3) becomes

equivalent to (11). (The relevant integrals continue to be absolutely

convergent because the integrals in (8) and (11) are so.)

We transform variables in Bers1 formula (3) using W : £L — > D .

fl fi
Applying Theorem B for 0 e B'(w (D^)) j and using (w ) * of equation (5)

to set p = (w )*($) e B (DJ , we obtain:

(3)* p(0 =-p^-(0) \\ \lw"(z)-w"(\(z))Tlh(w"(z))-
Dl

for any C e £>„ and any p e B-(DJ (here J(w ) is the Jacobian of W

on D. ). Our claim is that (3)* is true when h is given by (12) and in

fact it is exactly the same reproducing formula as (11). So we must verify

that the two expressions in curly brackets appearing in the numerators of

the integrands on the right hand sides of equations (3)* and (11) are

identically equal. We indicate this calculation (in which some crucial

cancellations occur) below:
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a JfoVat z)

Again from the explicit formula (2)* for w we derive, for

z e D :

....
(14) 5

Lz-\(z)T

(15) 3W
Q(z) - W

Lv2(\(z)) + (z-\(z))v'2(\(z))T

dwe 1
(16) -j-^J = -5 , for any e e D .

Now recall that 3u = 8-3u j and 9 = a(§) is given by formula

(2) as 6 = , _/t ° X ^ n . Substituting (13) , (14) , (15) , (16) and this

expression for 8 (applied to (13)) in the curly brackets of the

numerators of (3)* and (11) we find that the curly brackets are identical-

ly equal, as claimed, and so we are through.

In the standard case, with X = j (conjugation) the calculation

reduces to verifying the following:

iw(z)wCzn __ ̂  ())C
r — -yCi CLZ aZ

[2 - s]
2 _

for any z e U and any 8 =-2(lm z) <i>(z) } 9 e B JL) „ . (This special

case is, of course, much easier to verify.) Let us call X = \v e L (U) :

0 _ ) l

\i(z) = 2dm z) <\>(z) , for some 9 e B (L) ) . X is a Banach subspace of
^ J

L rW and its unit ball X^ then corresponds to 9 e B JL) „ .

Remark. We wish to highlight (17) as the crucial relation satisfied

by the quasiconformal maps W when 6 e X. . Indeed, in retrospect, we

note that assuming (17) and reversing our calculation using the Bers

formula (3) (with the quasireflections h as in equation (12)) we could

have deduced that d f$ | ) is independent of 6 e Xn . By an obvious
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'linearity lemma' this would imply that 0 v was indeed (the restriction
Xl

of) a linear map. But Bers' Theorem B actually does hold for these

'conjugated' reflections h in the classical case. This was pointed out

to me by C.J. Earle. Indeed the conjugating quasiconformal homeomorphism
a

W given by (2)* may be verified to be uniformly Lipschitz in the stand-

ard case. Consequently $ I„ must be linear — and this map could then
Xl

be identified with its derivative at 0 (which we know very explicitly

using formula (4)). This line of argument thus gives an independent

proof o£ the standard case (at least) of Theorem A above.

We remark that such an exploitation of linearity for general Ahlfors-

Weill sections is possible only in the case of the standard domains. In

point of fact, the quasicircle C admits an anti-holomorphic quasi-

reflection X if and only if C is a circle (or straight line). The

proof of this is easy.

Remark. If we do not insist on G-equivariance for our formulas (2)

and (2)* relating to Theorem A then it is clear that X need not be

chosen to be the very special quasireflection j(D~) . In fact, in

Ahlfors' approximation arguments in [ 7, pp.128-133] one needs to keep all

the quasireflections X for the approximating domains D uniformly
C--quasiconformal and uniformly C -Lipschitz. By standard normality

properties of quasiconformal maps one may choose a subsequence on which

the X converge to a quasiconformal and uniformly Lipschitz reflection

X across 30p . Then formula (2)* would indeed provide a map which

extends to a quasiconformal homeomorphism of (f and whose Beltrami

coefficient on D. is given by (2).

Therefore formula (A) of Section 2 would still be valid with

these new quasireflections X . Now, for our purposes in the present

article it was not important to have G-equivariance, so all our calculat-

ions are valid with those less canonical X . In particular, Bers'

formula (3) holds with h given by (12) and these X's.

Added in Proof.
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