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Instantons, Supersymmetry and Morse Theory

As a final application of instanton methods, we will present an exposition of
instantons in supersymmetric theories. The great simplification that occurs
because of supersymmetry is the exact pairing of fermionic states with bosonic
states, which makes the calculation of the fluctuation determinant very simple.
The fermionic determinant exactly cancels the bosonic one.

Morse theory and the Morse inequalities concern the critical points of a
function defined on a compact, Riemannian manifold, and the global topological
aspects of the manifold. It was the genius of Witten [125, 123, 124] to point
out that there is a deep connection between Morse theory and supersymmetric
quantum mechanics defined on a manifold. This is what we hope to recount in
this chapter.

We will require some familiarity with certain concepts from differential
geometry which we will review here, but the reader should refer to more detailed
texts [42, 60, 26] for a more complete picture.

12.1 A Little Differential Geometry

12.1.1 Riemannian Manifolds

We consider a compact, n-dimensional Riemannian manifold. A manifold is a
point set with a topology (the definition of the open sets in M) that is locally
homeomorphic to IRn. This means that each point in the manifold is contained
in an open subset Ui of the manifold which can be mapped to IRn by a
homeomorphism φi � φi(Ui) ⊆ IRn. Homeomorphism means the mapping takes
open sets in Ui to open sets in IRn. The set of the Uis cover the manifold, i.e.
∪iUi =M. Any such set of Uis is called an atlas and each individual Ui provides
a coordinate chart. If two different coordinate charts Ui and Uj have a non-
empty intersection, Ui ∩Uj �= ∅, then the function φi ◦ φ−1

j which maps points
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260 Instantons, Supersymmetry and Morse Theory

in φj(Ui ∩ Uj)→ φi(Ui ∩ Uj), i.e. defines a function from IRn → IRn must be
k times differentiable. This defines a C

k manifold. We will always simply take
C

∞ manifolds. The (local) coordinates of each point in a given Ui are just the
coordinates of the point to which it is mapped in IRn.

12.1.2 The Tangent Space, Cotangent Space and Tensors

The manifold has a tangent space at each point P , TP (M), which is defined as
the space of linear mappings of real-valued functions defined on the manifold
to the real numbers which satisfy the Liebniz rule, �v(fg) = (�vf)g+ f(�vg). The
dimension of the tangent space is also n. The elements of the tangent space are
called vectors. A basis of the tangent space can be trivially given in terms of a
system of local coordinates. If xi are a set of coordinates at a point P of the
manifold, then any linear mapping that satisfies the Liebniz rule, on the space
of functions defined on the manifold at the point P can be defined by

�v : f(x)→ IR � �v(f) = vi∂if(x)|P . (12.1)

Thus a vector is equivalent to a set of n components �v ≡ (v1,v2, · · · ,vn). If the
components of the vector are smoothly varying functions of the coordinates vi(x),
then we define a vector field. The cotangent space T ∗

P (M) at the point P is simply
defined as the dual vector space of the tangent space at the point P . The dual
vector space of a given vector space is simply the space of linear mappings of the
vector space to the real numbers, thus T ∗

P (M) :TP (M)→ IR. The dimensionality
of T ∗

P (M) is also n. If we have an arbitrary basis Ei of Tp(M), then the dual
basis of T ∗

P (M) is defined by the condition

〈Ei, ej〉= δji . (12.2)

We name the dual basis to the coordinate basis ∂i using the notation dxj so that

〈∂i,dxj〉= δji . (12.3)

A general dual vector or “co-vector” can be written as �u∗ = ujdx
j and then for

a general vector �v = vi∂i we have

〈�v,�u∗〉= viuj〈∂i,dxj〉= viujδ
j
i = viui. (12.4)

If we change our system of coordinates of the coordinate chart at the point p,
xi→ x

′j , then the coordinate basis vectors of the tangent space transform simply
as ∂i = ∂x′j

∂xi
∂′j or equivalently ∂′j =

∂xi

∂x′j ∂i. But then the new dual basis vectors

must be given by dx′j = ∂x′j
∂xi

dxi or equivalently dxi = ∂xi

∂x′j dx
′j so that the inner

product between ∂i and dxj is preserved, i.e.

〈∂i,dxj〉=
〈
∂x′k

∂xi
∂′k,

∂xj

∂x′l
dx′l

〉
=
∂x′k

∂xi
∂xj

∂x′l
〈∂′k,dx′l〉

=
∂x′k

∂xi
∂xj

∂x′l
δlk =

∂x′k

∂xi
∂xj

∂x′k
= δji . (12.5)
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12.2 The de Rham Cohomology 261

This then gives the transformation properties of the covariant and contravariant
components of of vectors and co-vectors, indeed, �v = v′j∂′j = v′j ∂x

i

∂x′j ∂i = vi∂i

and �u∗ = u′jdx
′j = u′j

∂x′j
∂xi

dxi = uidx
i. Hence vi = v′j ∂x

i

∂x′j and ui = u′j
∂x′j
∂xi

or

equivalently v′i = vj ∂x
′i

∂xj
and u′i = uj

∂xj

∂x′i . Then the inner product between
arbitrary vectors and co-vectors is invariant

〈�v,�u∗〉= viui = v′iu′i. (12.6)

We note the possibly confusing nomenclature: the components of vectors are
said to transform contravariantly while the components of co-vectors are said to
transform covariantly.

We can also take tensor products of the tangent space k times and the
cotangent space l times,

TP ⊗·· ·⊗TP︸ ︷︷ ︸
k

⊗ T ∗
P ⊗·· ·⊗T ∗

P︸ ︷︷ ︸
l

(12.7)

to define tensors (and tensor fields)

t= t
i1···ik
j1···jl ∂i1 ⊗·· ·⊗∂ik ⊗ dx

j1 ⊗·· ·⊗ dxjl . (12.8)

We should stress that at this point there is no relationship between the tangent
spaces, the cotangent spaces and their tensor products over distinct points. The
construction is independently done over each point. To use a leading terminology,
there is, at the moment, no connection between tangent spaces at neighbouring
points. The ensemble of the tangent spaces over all the points in the manifold
defines a larger manifold called the tangent bundle, a fibre bundle over the
manifold M. The base manifold is M and the fibre is TP over the point P in
M. There is also the corresponding cotangent bundle constructed with the co-
tangent space. The complete spaces are fibre bundles, spaces that locally permit
a decomposition into a Cartesian product of a patch of the base manifold M
cross the fibre, which would be the tangent space in the case of the tangent
bundle, etc.

12.2 The de Rham Cohomology

12.2.1 The Exterior Algebra

The de Rham cohomology concerns the ensemble of the set of spaces of the
completely anti-symmetric tensor products of the dual tangent space. We start
with the cotangent space, T ∗

P . Any two basis elements dx and dy can form an
anti-symmetric two-co-tensor defined as

dx∧ dy = 1

2
(dx⊗ dy− dy⊗ dx). (12.9)

https://doi.org/10.1017/9781009291248.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291248.013


262 Instantons, Supersymmetry and Morse Theory

The product ∧ is called the Cartan wedge product or the exterior product. Then
an arbitrary anti-symmetric two-co-tensor is given by

t= tijdx
i ∧ dxj . (12.10)

This construction obviously generalizes to the notion of anti-symmetric p co-
tensors constructed over each point x of the manifold. The set of anti-symmetric
p co-tensors forms a sub-space of the p-fold tensor product of the co-tangent space
which we will call Λp(x). The set of Λp(x)s for all the points of the manifold forms
a fibre bundle over M. The elements of Λp(x) are called differential forms, or
more precisely p-forms. The dimensionality of Λp(x) is obviously

(
n
p

)
the number

of ways of choosing p basis vectors from the total set of n basis vectors. We add
in Λ0(x) = IR, simply the real line, and then we have n+1 spaces of differential
forms, Λ0(x) to Λn(x), since for Λn+1(x) or higher, it is no longer possible to
anti-symmetrize n+1 or more co-vectors and these spaces are just empty. The
space of smooth p-forms corresponds to the choice of the anti-symmetric tensor
component fields fi1···ip(x), the corresponding tensor field being fi1···ip(x)dx

i1 ∧
·· · ∧ dxip , which we write as C∞(Λp) which is a space of dimension

(
n
p

)
. It is

obvious that C∞(Λp) and C∞(Λn−p) have the same dimensionality. The wedge
product serves as a product on the full space of the direct sum of all possible
anti-symmetric tensor fields

Λ∗ =Λ0⊕Λ1⊕·· ·⊕Λn, (12.11)

which then defines an algebra called Cartan’s exterior algebra.

12.2.2 Exterior Derivative

We can define the exterior derivative of a p-form, an operation d, which takes p
forms to p+1 forms

d : C∞(Λp)→C∞(Λp+1) �

d(fi1···ip(x)dx
i1 ∧ ·· · ∧ dxip) =

(
∂

∂xj
fi1···ip(x)

)
dxj ∧ dxi1 ∧ ·· · ∧dxip .

(12.12)

Note the placement of the additional dxj by convention to the left of all the
other differential forms. Obviously

ddωp = 0 (12.13)

for any p-form ωp. The chain rule also simply follows, for ωp a p-form and χq a
q-form

d(ωp ∧χq) = (dωp)∧χq+(−1)pωp ∧ (dχq). (12.14)
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As C∞(Λp) and C∞(Λn−p) have the same dimensionality, we can define a
duality mapping between these spaces, called the Hodge ∗ duality transformation.
We define

∗ : C∞(Λp)→C∞(Λn−p) �

∗(dxi1 ∧ ·· · ∧ dxip) = 1

(n− p)! ε
i1···ip
ip+1···indx

ip+1 ∧ ·· · ∧dxin

(12.15)

where εi1···ipip+1···in is the completely anti-symmetric tensor in n dimensions. We have
been careful about keeping indices up or down; however, it is important to point
out that nothing we are doing requires the definition of a metric on the manifold.
The exterior algebra and exterior differentiation does not depend on a metric.
We note that

∗ ∗ωp = (−1)p(n−p)ωp. (12.16)

12.2.3 Integration

The space C∞(Λn) is one-dimensional, there is only one n-form, dx1∧ ·· ·∧dxn,
thus it is easy to see that dxi1 ∧ ·· · ∧ dxin = εi1···indx1 ∧ ·· · ∧ dxn. This form
can be identified with the volume form on the manifold and we can define the
integration over the manifold with this volume form; one simply integrates in IRn

in the charts of any given atlas, making sure not to double count the contributions
from regions where the charts intersect. The integration is independent of the
coordinate system, since the volume form transforms exactly by the Jacobian of
the coordinate transformation, dx1 ∧ ·· · ∧dxn = det

(
∂xi

∂x′j

)
dx′1 ∧ ·· · ∧dx′n. This

integration generalizes trivially to integration over sub-manifolds of M of a given
dimensionality p of a p-form defined over the sub-manifold. With the notion of
integration, we can define an inner product on the space of p-forms

(ωp,χp) =

∫
M
ωp ∧∗χp. (12.17)

In terms of the coefficients, ωp = ωi1···ipdx
i1 ∧ ·· · ∧ dxip and χp = χj1···jpdx

j1 ∧
·· · ∧dxjp then

(ωp,χp) =

∫
M
ωi1···ipdx

i1 ∧ ·· · ∧ dxip ∧∗(χj1···jpdxj1 ∧ ·· · ∧dxjp)

=

∫
M
ωi1···ipχj1···jpdx

i1 ∧ ·· · ∧ dxip ∧ 1

(n− p)! ε
j1···jp
jp+1···jndx

jp+1 ∧ ·· · ∧dxjn

=

∫
M
ωi1···ipχj1···jp

1

(n− p)! ε
j1···jp
jp+1···jnε

i1···ipjp+1···jndx1 ∧ ·· · ∧dxn

= p!

∫
M
ωi1···ipχj1···jpδ

i1j1 · · ·δipjpdx1 ∧ ·· · ∧dxn, (12.18)
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264 Instantons, Supersymmetry and Morse Theory

The inner product is symmetric, (ωp,χp) = (χp,ωp).
The next structure we will define is the adjoint of the exterior derivative, which

we call δ. The inner product

(ωp,dχp−1) =

∫
M
ωp ∧∗dχp−1 =

∫
M
(dχp−1)∧∗ωp

=

∫
M
d(χp−1 ∧∗ωp)− (−1)p−1χp−1 ∧ d ∗ωp

=

∫
M
−(−1)p−1χp−1 ∧ (−1)(n−p+1)(n−n+p−1) ∗ ∗d ∗ωp

=

∫
M
((−1)np+n+1 ∗d ∗ωp)∧∗χp−1

≡ (δωp,χp−1), (12.19)

where we have used trivial identities such as (−1)2n = 1. Thus δ = (−1)np+n+1 ∗
d∗, and note for n even the sign is always −1 and δ =−∗d∗, while for n odd we
get δ = (−1)p ∗d∗. It is also easy to see δδωp = 0.

The exterior algebra naturally gives rise to a Stokes theorem for manifolds
with boundaries. If ∂M is the boundary of a p-dimensional manifold M and
ωp−1 is an arbitrary (p− 1)-form, then Stokes theorem states∫

M
dωp−1 =

∫
∂M

ωp−1. (12.20)

This theorem contains and generalizes all three of the usual Green, Gauss and
Stokes theorems that are taught in an elementary course on vector calculus.

12.2.4 The Laplacian and the Hodge Decomposition

The Laplacian is now defined as

∇2 = (d+ δ)2 = dδ+ δd. (12.21)

The Laplacian does not change the degree of the form. The Laplacian is a positive
operator as

(ωp,∇2ωp) = (ωp,dδωp+ δdωp) = (δωp, δωp)+ (dωp,dωp)≥ 0, (12.22)

assuming there are no boundaries. Therefore, ∇2ωp = 0, and then ω is called a
harmonic p-form, if and only if both dωp = 0 (we say ωp is closed) and δωp = 0

(we say ωp is co-closed).
A p-form that can be globally written as the exterior derivative of a p−1-form,

i.e.
ωp = dζp−1 (12.23)

is called an exact p-form while if ω can be globally written as

ωp = δξp+1 (12.24)

https://doi.org/10.1017/9781009291248.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291248.013


12.2 The de Rham Cohomology 265

then it is called a co-exact p-form. The Hodge theorem states that on a compact
manifold without boundary any p-form ωp can be uniquely decomposed as the
sum of an exact form, a co-exact form and a harmonic form

ωp = dζp−1+ δξp+1+ ρp, (12.25)

where ρp is a harmonic form, meaning that ∇2ρp = 0.

12.2.5 Homology

The homology of a manifold is the set of equivalence classes of sub-manifolds
called cycles, boundaryless collections of sub-manifolds of dimension p, which
differ only by boundaries. We start with our initial n-dimensional manifold M.
Then we define a p-chain as a formal sum of p-dimensional, smooth, oriented, sub-
manifolds,N p

i , the formal, finite sum being written as αp=
∑
i ciN

p
i , where ci are

real, complex or integer, or even in the group Z2, giving rise to the corresponding
p-chain. We continue to use the symbol ∂ as the operator that corresponds to
taking the boundary, ∂αp =

∑
i ci∂N

p
i , which is evidently a (p− 1)-chain. Let

Zp be the set of boundaryless p-chains, which are called p-cycles. This means
αp ∈ Zp ⇒ ∂αp = ∅. Let Xp be the set of p-chains that are boundaries, i.e.
αp ∈ Xp ⇒ αp = ∂αp+1. Since the boundary of a boundary is always empty,
Xp ⊆Zp. Then the simplicial homology of M is defined as the set of equivalence
classes Hp

Hp = Zp/Xp, (12.26)

i.e. the set of p-cycles that only differ from each other by boundaries are
considered equivalent, αp∼α′

p⇒αp=α′
p+∂αp+1. Hp is obviously a group under

the formal addition. The formal sum of two p-cycles commutes with the process
of making equivalence classes with respect to p-cycles which are boundaries. The
integral homology groups are the most fundamental, we can get the real, complex
or Z2 homologies from them. We will write the homology groups as Hp(M,G),
where G=C, IR,Z,Z2. Hp(M,G) =∅ for p > n.
H0(M,G) =G if M is connected, since 0-cycles are just collections of points,

the boundary of a point is empty. We can reduce any finite collection of points
with arbitrary coefficients to a 0-cycle consisting of single point, P ∈M. Any 0-
cycle, α0 =

∑
i ciPi, can be reduced to single point P with a coefficient

∑
i ci ∈G,

using

α0 =
∑
i

ciPi =
∑
i

(ciPi− ciP + ciP )∼
(∑

i

ci

)
P (12.27)

as every pair of points with alternating coefficient, as appears above ciPi− ciP ,
is the boundary of a 1-cycle corresponding to any curve joining the two points.
However, cP is not equivalent to c̃P for c �= c̃∈G, thus the elements of H0(M,G)

are in a one-to-one correspondence with G. Obviously Hn(M,G) =G also, since
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266 Instantons, Supersymmetry and Morse Theory

there is only one sub-manifold of dimension n, M itself, in M, and we see that
H0(M,G)=Hn(M,G). This generalizes to what is called Poincaré duality, when
G= IR,C or Z2 (all fields) we have Hp(M,G) =Hn−p(M,G).

Finally, for G= IR,C or Z2 the homology group Hp(M,G) is clearly a vector
space over G. We define the cohomology group Hp(M,G) simply as the dual
vector space to Hp(M,G).

12.2.6 De Rham Cohomology

We define the de Rham cohomology group with respect to differential forms for
G= IR,C. With the definitions Zp as the set of closed p-forms and Xp as the set
of exact p-forms, the de Rham cohomolgy group is defined as

Hp
dR(M,G) = Zp/Xp, (12.28)

i.e. the equivalence classes of closed modulo exact p-forms, ωp ∼ ω′
p ⇒ ωp =

ω′
p + dαp−1. For the special case of H0

dR(M,G) we define this as the space of
constant functions, as their exterior derivative vanishes. A zero-form cannot be
the exterior derivative of any “−1” form, as these do not exist. The spectacular
conclusion of the de Rham theorem asserts that these cohomology groups are in
fact identical to the simplicial cohomology groups and hence dual to the simplicial
homology groups.

We define the inner product of a p-cycle αp ∈Zp with a closed p-form ωp ∈Zp
through the integral

π(αp,ωp) =

∫
αp

ωp. (12.29)

It is easy to see that this inner product only depends on the equivalence class of
αp and of ωp. Indeed,∫

αp

(ωp+ dχp−1) =

∫
αp

ωp+

∫
αp

dχp−1 =

∫
αp

ωp+

∫
∂αp

χp−1 =

∫
αp

ωp (12.30)

and ∫
αp+∂βp+1

ωp =

∫
αp

ωp+

∫
∂βp+1

ωp =

∫
αp

ωp+

∫
βp+1

dωp =

∫
αp

ωp (12.31)

as ∂αp =∅ and dωp = 0. Thus π gives a mapping

π :Hp(M,G)⊗Hp
dR(M,G)→G. (12.32)

De Rham proved the following theorems. Let {ci}, i = 1, · · · ,dim(Hp(M,R),
be a set of independent p-cycles that form a basis of Hp(M,R). Then

1. For any given set of periods νi, i= 1, · · · ,dim(Hp(M,R) there exists a closed
p-form ωp such that

νi = π(ci,ωp) =

∫
ci

ωp. (12.33)
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12.3 Supersymmetric Quantum Mechanics 267

2. If all the periods vanish for a give p-form ωp, then ωp is exact, i.e. ωp= dχp−1.

This means that if {ωj} is a basis of p-forms of Hp
dR(M, IR) then the period

matrix πij = π(ci,ωj) is invertible. This is equivalent to saying that Hp
dR(M, IR)

is dual to Hp(M, IR). Consequently, the de Rham cohomology and the simplicial
cohomology are naturally isomorphic and can be identified.

The Hodge theorem asserts that for each de Rham cohomology class there is
an essentially unique harmonic form that can be taken as the representative of
the class. Indeed, we have from the Hodge decomposition

ωp = dζp−1+ δξp+1+ ρp. (12.34)

Then evidently, the exact form dζp−1 is irrelevant in determining the equivalence
class. ωp being closed and ρp being harmonic, thus dωp = dρp = 0 which implies
that dδξp+1 = 0, but then 0 = (ξp+1,dδξp+1) = (δξp+1, δξp+1) requires δξp+1 = 0.
Thus ωp = dζp−1 + ρp and the de Rham cohomology class of ωp is determined
by the unique harmonic form ρp in its Hodge decomposition. This fact will be
very important in the supersymmetric quantum mechanics that we will analyse
in the later sections.

We define the Betti numbers as the dimension of the homology groups and
consequently also the cohomology groups

Bp = dim(Hp(M, IR)) = dim(Hp
dR(M, IR)) = dim(Hp(M, IR)), (12.35)

where Bp is the pth Betti number. The alternating sum of the Betti number is
the Euler characteristic

χ(M) =
n∑
p=0

(−1)pBp (12.36)

and we will see it is a topological invariant of the manifold. Morse theory relates
the critical points of functions defined on a manifold to its Betti numbers.

12.3 Supersymmetric Quantum Mechanics

After this brief, condensed exposition of manifolds, structures defined on
them and of the de Rham cohomology we can now move on to show how
supersymmetry and instantons can be used to prove the global topological results
framed in the Morse inequalities [62].

12.3.1 The Supersymmetry Algebra

In any quantum theory we can separate the Hilbert space H into H=H
+⊕H

−,
where H+ and H

− are the subspaces of bosonic and fermionic states, respectively.
A supersymmetry corresponds to a transformation generated by conserved
hermitean operators Qi, i=1, · · · ,N that maps H+ to H

− and vice versa. We also
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268 Instantons, Supersymmetry and Morse Theory

define the operator (−1)F , where F is the fermion number. Then (−1)F |ψ〉= |ψ〉
for |ψ〉 ∈H

+ while (−1)F |ψ〉=−|ψ〉 for |ψ〉 ∈H
−. The supersymmetry generators

must anti-commute with (−1)F , {Qi,(−1)F } = 0, which means that they are
fermionic operators. On the other hand, they commute with the Hamiltonian
H, [Qi,H] = 0, which means that they are conserved. Finally, to define a
supersymmetric theory we also impose Q2

i = H for any i and {Qi.Qj} = 0 for
i �= j, together giving

{Qi.Qj}= 2δijH. (12.37)

This definition of supersymmetry does not allow for Lorentz-invariant theories.
This is because Lorentz transformations combine the Hamiltonian to the
momentum generators. In 1 + 1 dimensions we have only one momentum
generator, P . The simplest algebra preserving Lorentz symmetry requires two
supersymmetry operators, Q1 and Q2 and the algebra

Q2
1 =H+P, Q2

2 =H−P, {Q1,Q2}= 0. (12.38)

This is compatible with the idea that (H,P ) transform as a vector and (Q1,Q2)

transform as a spinor. There is just one generator of Lorentz transformation M ,
taken hermitean, and

[M,H] = iP, [M,P ] = iH, [M,Q1] = i
1

2
Q1, [M,Q2] =−i1

2
Q2. (12.39)

Then, for example, [M,H+P ] = i(H+P ), which is compatible with

[M,Q2
1] = [M,Q1]Q1+Q1[M,Q1] = i

1

2
Q1Q1+Q1i

1

2
Q1 = iQ2

1 = i(H+P ).

(12.40)
From Equation (12.38) we easily find

H=
1

2
(Q2

1+Q
2
2) (12.41)

and therefore the Hamiltonian is positive semi-definite. Also, [H,(−1)F ] =
[P,(−1)F ] = 0 as they are quadratic in the supercharges, hence the Hamiltonian
and the momentum generator are bosonic operators.

If there exists a single state |0〉 in the Hilbert space that is annihilated by the
supercharges

Qi|0〉= 0 i= 1,2, (12.42)

then the supersymmetry is unbroken. Such a state obviously has zero energy
and, since the Hamiltonian is positive semi-definite, |0〉 is the vaccum state.
If there are many solutions to Equation (12.42), then the supersymmetry is
also unbroken, but presumably the Hilbert space separates into superselection
sectors of states constructed over each vacuum. If there are no states that
satisfy Equation (12.42), then the supersymmetry is spontaneously broken.
It is generally quite difficult to directly prove the existence of solutions to
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Equation (12.42), or the lack thereof. However, the following indirect method
sheds light on the question: one computes the index of one of the supersymmetry
generators.

We are looking for states that are annihilated by both supersymmetry
generators,Qi|0〉=0. Then with the algebra (12.38) it is easy to see that P |0〉=0,
thus we can restrict to the subspace HP=0, which is all states annihilated by
P . This subspace also splits into a bosonic and a fermionic subspace, HP=0 =

H
+
P=0⊕H

−
P=0. Within this subspace, Q2

1 =Q2
2 =H, restricted to HP=0, we can

look for states that are annihilated by one of the supercharges, call it Q̃, where Q̃
could be Q1 or Q2 or a linear combination of the two. Q̃ necessarily can only take
a state in H

+
P=0 →H

−
P=0 and a state in H

−
P=0 →H

+
P=0. Q̃ has no other action.

This fact then allows for the decomposition Q̃=Q+ +Q−, where Q+ acts only
on and maps H

+
P=0 → H

−
P=0 while Q− acts only on and maps H

−
P=0 → H

+
P=0.

Q− is the adjoint of Q+. The index of Q̃ restricted to HP=0 is then defined as

index(Q̃) = dim(Ker(Q+))− dim(Ker(Q−)), (12.43)

where Ker(Q±) is the subspace of H±
P=0 that is annihilated by Q±. If the index

is non-zero then we know for sure that there are states that are annihilated by
Q̃ and hence supersymmetry is unbroken. The index(Q̃) can be written as

index(Q̃) = Tr(−1)F = nB(E = 0)−nF (E = 0) (12.44)

as the bosonic zero modes in H
+
P=0 count as +1 for each mode and the fermionic

zero modes in H
−
P=0 count as −1 for each mode. The non-zero energy modes

are necessarily paired because of the supersymmetry, and hence cancel pairwise
in their contribution to the trace. The index being non-zero requires necessarily
that there exists at least one zero energy state and hence we can conclude that in
this case the supersymmetry is unbroken. In the sequel we will drop the subscript
P = 0 and take as given that we are working in the subspace with P = 0.

12.3.2 Supersymmetric Cohomology

The Hamiltonian is given by

H=QQ†+Q†Q (12.45)

with the superalgebra
Q2 =Q†2 = 0, (12.46)

with consequently
[H,Q] = [H,Q†] = 0. (12.47)

There also exists the operator (−1)F and usually the fermion number operator
F , which both commute with the Hamiltonian. The states in the Hilbert spaces
are graded by the eigenvalue of (−1)F . Bosonic states, a subspace denoted by
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H
+, take eigenvalue +1 while fermionic states, a subspace denoted by H

−, take
the eigenvalue −1. The fermion number operator is integer-valued, with bosonic
states having an even number of fermions and fermionic states having an odd
number. The Hamiltonian maps bosonic states to bosonic states and fermionic
states to fermionic states, while the supercharges switch the two, mapping
bosonic states to fermionic states and fermionic states to bosonic states.

H :H+ →H
+, H

− →H
−

Q,Q† :H+ →H
−, H

− →H
+. (12.48)

If we write the energy levels in an ordered list E0<E1< · · · then the Hamiltonian
preserves the energy-level subspace and the Hilbert space can be decomposed in
terms of subspaces Hm of fixed energy levels

H=
⊕
m

Hm (12.49)

with the action of the Hamiltonian, the supercharges and (−1)F satisfying

H|
Hm

=Em, Q,Q†,(−1)F :Hm→Hm. (12.50)

The energy-level subspace further decomposes into bosonic and fermionic
subspaces Hm = H

+
m ⊕ H

−
m and while the Hamiltonian preserves the bosonic

and fermionic subspaces (they are indeed eigensubspaces of the Hamiltonian)
the supercharges exchange the two

Q,Q† :H+
m→H

−
m, H

−
m→H

+
m. (12.51)

The action of the operator Q twice, vanishes, Q2 = 0. Thus we have the exact
sequence:

H
−

H
+

H
−

H
+Q Q Q

(12.52)

An exact sequence means that the image of a given map in the sequence is the
kernel of the subsequent map. This is called a Z2-graded complex of vector spaces
as the fermionic and bosonic Hilbert spaces are graded with the Z2 charge with
respect to the operator (−1)F . This gives rise to the cohomology groups:

H+(Q) =Kernel
{
Q :H+ →H

−}/Image{Q :H− →H
+
}

H−(Q) =Kernel
{
Q :H− →H

+
}
/Image

{
Q :H+ →H

−} . (12.53)

We can further refine this complex by noting that at energy level Em �= 0, the
action of Q does not take you out of the energy sector, since Q commutes with
the Hamiltonian. If a vector |Em〉 is Q closed, Q|Em〉 = 0, i.e. in the kernel of
Q, then it is necessarily exact, i.e. in the image of the previous map, since

|Em〉=H|Em〉/Em =
(
QQ†+Q†Q

)
|Em〉/Em =Q

(
Q†|Em〉/Em

)
. (12.54)
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Hence all states that are closed are also exact for all the non-zero energy levels,
and thus cohomology groups are just determined by the states in the zero energy
sector. For a state of zero energy |E0〉 we have

0 = 〈E0|H|E0〉= 〈E0|
(
QQ†+Q†Q

)
|E0〉=

∣∣Q†|E0〉
∣∣2+ |Q|E0〉|2 , (12.55)

which is only possible if both Q|E0〉= 0 and Q†|E0〉= 0. Thus the zero energy
states are annihilated by Q and hence closed. But none of them are exact, |E0〉 �=
Q|α〉, since, if this were true, Q†|E0〉= 0=Q†Q|α〉, which implies 〈α|Q†Q|α〉=
|Q|α〉|2 = 0, which is only possible if Q|α〉= 0. Thus the cohomology groups can
be identified with the set of zero energy states:

H+(Q) =H+
0

H−(Q) =H−
0 (12.56)

where H±
0 are the states of zero energy.

Q takes states of p fermions to states of p+ 1 fermions. It is reasonable to
assign vanishing fermion number to states without fermions, and the action of
Q an even number of times always gives back a bosonic subspace, while an odd
number of times give us a fermionic subspace, hence with the notation that H

p

is the subspace of states of p fermions, we have:

H
+ =⊕p evenH

p

H
− =⊕p oddH

p. (12.57)

Then the Z2-graded exact sequence in Equation (12.52) becomes a Z-graded
exact sequence

· · · H
p−1

H
p

H
p+1 · · ·Q Q Q Q

(12.58)

and we can define the cohomology group at each p:

Hp(Q) =Kernel
{
Q :Hp→H

p+1
}
/Image

{
Q :Hp−1 →H

p
}
. (12.59)

The Witten index then becomes the “Euler” characteristic of the complex

Tr (−1)F =
∑

p=0,1,···
(−1)pdim(Hp(Q)) . (12.60)

12.3.3 1-d Supersymmetric Quantum Mechanics

Consider the action

S =

∫
dtL(t) =

∫
dt

(
1

2
ẋ2− 1

2
(h′(x))2+

i

2

(
ψ†ψ̇− ψ̇†ψ

)
−h′′(x)ψ†ψ

)
.

(12.61)
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The variables ψ and ψ† are anti-commuting variables which will eventually be
realized by the exterior derivative or some deformation of the exterior derivative.
For the moment we just impose {

ψ,ψ†}= 0. (12.62)

The supersymmetric transformation is

δx= εψ†− ε†ψ
δψ = ε(iẋ+h′(x))

δψ† = ε† (−iẋ+h′(x)) , (12.63)

where ε = ε1 + iε2 is a complex fermionic parameter. It is reasonably easy to
see that the action is invariant under the supersymmetry transformation. The
conserved supercharges can be obtained by Noether’s theorem

Q= ψ† (iẋ+h′(x))

Q† = ψ (−iẋ+h′(x)) . (12.64)

Quantizing the system corresponds to imposing the canonical commutation and
anti-commutation relations

[x,p] = i{
ψ,ψ†}= 1 (12.65)

as the canonically conjugate momenta are p = ∂L/∂ẋ and πψ = ∂L/∂ψ̇ = iψ†,
with {ψ,πψ} = i. (The convention taken with Grassmann derivatives is action
from the left, ∂ψ1ψ2/∂ψ1 = −ψ2, in the final analysis, it is just the algebra of
the operators that counts.) The Hamiltonian is given by

H=
1

2
p2+

1

2
(h′(x))2+

1

2
h′′(x)

(
ψ†ψ−ψψ†) . (12.66)

The fermion number operator is F =ψ†ψ and satisfies the commutation relations

[F,ψ] =−ψ, [F,ψ†] = ψ†. (12.67)

As {ψ,ψ} = 0 =
{
ψ†,ψ†} the fermionic fields satisfy the algebra of fermionic

annihilation and creation operators and, if there exists the state |0〉 that is
annihilated by ψ, which we assume ψ|0〉 = 0, then the state ψ†|0〉 is the only
other independent state in the theory. Evidently ψψ†|0〉= |0〉 and ψ†ψ†|0〉= 0.
Thus we can write the fermionic operators as

ψ =

(
0 1

0 0

)
, ψ† =

(
0 0

1 0

)
. (12.68)

The full Hilbert space of the theory will be the Hilbert space of the bosonic
variable x, which is the space of complex-valued square-integrable functions of
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the variable x denoted by L2( IR,C), multiplying (tensored with the states |0〉
and the state ψ†|0〉),

H= L2( IR,C)|0〉⊕L2( IR,C)ψ†|0〉 (12.69)

the first component is identified with the bosonic subspace and the second
with the fermionic subspace. The supercharges remain form-invariant from their
classical expressions

Q= ψ† (ip+h′(x))

Q† = ψ (−ip+h′(x)) , (12.70)

and commute with the Hamiltonian. We can compute, with a little straightfor-
ward algebra, that indeed {

Q,Q†}= 2H, (12.71)

hence the supersymmetry algebra is satisfied.
The supersymmetric ground states are determined by the two conditions:

Q|E0〉=
(

0 0

d/dx+h′(x) 0

)
|E0〉= 0

Q†|E0〉=
(

0 −d/dx+h′(x)
0 0

)
|E0〉= 0. (12.72)

Expanding |E0〉= ξ1(x)|0〉+ ξ2(x)ψ†|0〉 gives(
d

dx
+h′(x)

)
ξ1(x) = 0(

− d

dx
+h′(x)

)
ξ2(x) = 0, (12.73)

which are trivially solved as

ξ1(x) = c1e
−h(x)

ξ2(x) = c2e
h(x). (12.74)

Obviously these solutions cannot both be square-integrable and the square-
integrability depends on the behaviour of h(x) as x → ±∞. The four cases
are limx→±∞h(x) = ±∞, limx→±∞h(x) = ∓∞, limx→±∞h(x) = +∞ and
limx→±∞h(x) =−∞, the first case being equivalent to the second. The first two
cases yield no square-integrable solution and hence there are no supersymmetric
ground states and Tr(−1)F =0. The latter two yield a solution with either c2 =0

or c1 =0; in each case there is one supersymmetric ground state, bosonic if c2 =0

yielding Tr(−1)F = 1 and fermionic if c1 = 0 yielding Tr(−1)F = −1. Thus we
know exactly that in the first two cases there are no supersymmetric ground
states, while in the latter two cases there is exactly one, which is bosonic if the
potential rises to +∞ as x→±∞ and fermionic if the potential falls to −∞ as
x→±∞ . We underline that these are exact results.
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12.3.3.1 Supersymmetric harmonic oscillator The example of a harmonic
oscillator is particularly simple; here we take h(x) = ω

2 x
2. Then the potential in

our Hamiltonian is 1
2 (h

′(x))2 = ω2

2 x
2 while the coefficient of the fermionic term

is h′′(x) = ω. Thus the Hamiltonian is given by

H=
1

2
p2+

ω2

2
x2+

1

2
ω
(
ψ†ψ−ψψ†) . (12.75)

The harmonic oscillator has spectrum

En =
(
n+

1

2

)
ω n= 0,1,2, · · · (12.76)

for eigenstate φn(x), which are known to be Hermite polynomials multiplied by
a Gaussian. The fermionic part yields the matrix

ω

2

(
−1 0

0 1

)
, (12.77)

which commutes with the harmonic oscillator and has the spectrum Ẽ =
(
−ω

2 ,
ω
2

)
.

Thus the spectrum of the Hamiltonian is for ω > 0,

En =

{
nω for φn(x)|0〉
(n+1)ω for φn(x)ψ†|0〉 n= 0,1,2, · · · (12.78)

and for ω < 0

En =

{
(n+1)|ω| for φn(x)|0〉
n|ω| for φn(x)ψ†|0〉 n= 0,1,2, · · · . (12.79)

We notice that for positive ω we have a bosonic zero mode but for negative ω
the supersymmetric zero mode is fermionic.

12.3.4 A Useful Deformation

We will next consider a deformation where the supersymmetric harmonic
oscillator corresponds to the lowest-level approximation. Consider the theory
with h(x) replaced with th(x), where t is just a parameter (in no sense the
time).

h(x)→ th(x). (12.80)

Then the Hamiltonian becomes

Ht =
1

2
p2+

t2

2
(h′(x))2+

t

2
h′′(x)

(
ψ†ψ−ψψ†) (12.81)

and we are interested in what happens as t→∞. In this limit, the potential
t2

2 (h′(x))2 becomes very large for most values of x, and the wave function is
pushed into regions where the potential is small. The potential is small only at
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the places xi where h′(xi) = 0, i.e. critical points of the function h(x). Around
critical points, the potential can be approximated in the lowest approximation
as a quadratic polynomial ∼ (x− xi)

2, which brings us back to the harmonic
oscillator that we have just analysed. The frequency of the harmonic oscillator
becomes tω, where ω = h′′(xi) at the critical point, and then the energy levels
are linear in t. The fermionic term now has coefficient th′′(xi) = tω, and thus
also gives a linear contribution in t to the energy, which exactly cancels the
oscillator ground-state zero-point energy for the bosonic case if ω > 0 and for
the fermionic case if ω < 0, just as we have seen explicitly above for the exact
harmonic oscillator.

Thus we are left with exactly one energy level at each critical point whose
energy does not scale linearly with t. The energy of the state is zero in the
approximation that we have employed. It may well be exactly zero, but this is
not yet determined. However, we do know that without any approximations there
is only one or no exact supersymmetric ground state in the theory, depending on
the asymptotic behaviour of h(x). Thus all or all but one of the zero-energy levels
that we have found approximately must in fact have non-zero energy. What will
be clear is that the exact energy levels of the corresponding exact eigenstates,
which are concentrated about the critical points of h(x) (as we have found to
be approximately the case), will not scale linearly with t. To first order in the
approximation, they are zero-energy modes. Perturbatively, they will actually
remain zero-energy modes to all orders. Their energy can only become non-
zero through non-perturbative corrections. These non-perturbative corrections
are just instanton corrections, corresponding to tunnelling transitions between
the perturbative zero-energy modes.

Expanding the function h(x) about a critical point xi where h′(xi) = 0,
and assuming h′′(xi) �= 0, which simply means that the critical points are
non-degenerate, we have

h(x) = h(xi)+
1

2
h′′(xi)(x−xi)2+

1

6
h′′′(xi)(x−xi)3+ · · · (12.82)

and evidently

h′(x) = h′′(xi)(x−xi)+
1

2
h′′′(xi)(x−xi)2+ · · · . (12.83)

Scaling x−xi→ x̃− x̃i = (x−xi)/
√
t and correspondingly p→ p̃=

√
tp gives

h(x) = h(xi)+
1

2t
h′′(xi)(x̃− x̃i)2+

1

6t3/2
h′′′(xi)(x̃− x̃i)3+ o

(
1

t2

)
(12.84)

and for the Hamiltonian

Ht = t

(
1

2
p̃2+

1

2
(h′′(xi))

2
(x̃− x̃i)2+

1

2
h′′(xi)

(
ψ†ψ−ψψ†))

+o(
√
t)+ o(1)+ o

(
1√
t

)
+ · · · . (12.85)
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Thus we can imagine computing perturbatively in 1/
√
t where the leading term

is given by

Hlocal = t

(
1

2
p̃2+

1

2
(h′′(xi))

2
(x̃− x̃i)2+

1

2
h′′(xi)

(
ψ†ψ−ψψ†))

=
1

2
p2+ t2

1

2
(h′(xi))

2
+ t

1

2
h′′(xi)

(
ψ†ψ−ψψ†) (12.86)

where in the last equality we have put back x̃→ x=
√
tx̃ after shifting so that

the critical point occurs at x=0. Obviously this is the supersymmetric harmonic
oscillator that we have just treated and completely understand. There will be,
in this approximation, one bosonic supersymmetric ground state of zero energy,
as in Equation (12.78), for each critical point with h′′(xi)> 0 and one fermionic
supersymmetric ground state of zero energy, as in Equation (12.79), for each
critical point with h′′(xi)< 0. The eigenstate, say if bosonic, will be of the form
(unnormalized)

|E0〉 ≈ e
− t

2
h′′(xi)(x−xi)2 |0〉, (12.87)

which is the first approximation to the exact zero-energy state (unnormalized)
which in this case is

|E0〉= e−th(x)|0〉 (12.88)

but with h(x) expanded about xi with the constant value of h(xi) absorbed into
the normalization. Evidently, if we compute the perturbative corrections to the
energy state in Equation (12.87), using the perturbatively (in 1/

√
t) expanded

Hamiltonian (12.85), we will simply rebuild the exact zero-energy state given in
Equation (12.88) from a Taylor expansion of h(x). However, at each stage of the
perturbative calculation the wave function will be concentrated around x= xi, a
Gaussian multiplied by polynomial corrections corresponding to the higher levels
of the harmonic oscillator. The energy admits an expansion in even powers of
1/
√
t since the contribution from odd powers vanishes due to parity. However,

the energy must actually remain zero at all stages of the perturbation, since we
know that the energy of the exact wave function is exactly zero. Perturbative
contributions at a higher order cannot correct a non-zero contribution to the
energy at a lower order, hence the correction to the energy must be absent at
each order. We can do this calculation around each critical point and, hence,
perturbatively we will construct as many zero-energy modes as there are critical
points.

Since we know that in fact there is at most only one exact zero-energy mode,
all but one combination of these perturbatively found zero modes must be non-
perturbatively corrected to finite energy. The Witten index will be given as

Tr(−1)F =

N∑
i=1

sign(h′′(xi)) (12.89)
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as each bosonic zero mode for h′′(xi)> 0 contributes +1 and each fermionic zero
mode for h′′(xi)< 0 contributes−1. Evidently, this sum must equal±1 or 0, as we
have found, dependent on the asymptotic behaviour of h(x). This makes perfect
sense as the number of concave and convex critical points can only change in equal
numbers if we deform h(x) locally, as long as the asymptotic behaviour of h(x)
is kept invariant. As we have said, these perturbatively found zero modes must
not be exact zero modes, thus they must lift away from zero energy due to non-
perturbative corrections. But then supersymmetry imposes that for each bosonic
mode lifting away from zero energy there must be a corresponding fermionic
one that is exactly degenerate in (non-zero) energy. Thus the non-perturbative
corrections must simultaneously lift the bosonic and fermionic perturbatively
found zero modes away from zero energy in pairs.

The generalization of this theory to n dimensions and on a Riemannian
manifold will bring us to Morse theory in the next section.

12.4 Morse Theory

There is a connection between the Betti numbers and critical points of real-valued
functions defined on a manifold [94, 10, 89, 125, 62, 19, 64]. We do not consider
arbitrary real-valued functions, but an essentially generic class of functions that
are called Morse functions. Morse functions, for which we will use the notation
h(x), are defined to be those real-valued functions that have a finite number
of non-degenerate, isolated critical points. A critical point is where the first
derivative of the function vanishes, which evidently is independent of the system
of coordinates that are used. Thus the critical points of a Morse function occur
at a finite number of discrete points, Pa, and the condition that they be non-
degenerate means that the determinant of the matrix of second derivatives in
any system of local coordinates containing Pa, the so-called Hessian matrix, has
a non-zero determinant. This means the eigenvalues of the Hessian are non-
zero. We can diagonalize the Hessian, a real symmetric matrix, by an orthogonal
transformation of the coordinates, and shift the coordinates so that the critical
point occurs at the origin of the coordinates. We can also rescale the resulting
coordinates so that the positive eigenvalues are +1 and the negative eigenvalues
are −1. Then around a critical point Pa with p negative directions, there exists
a coordinate system in which a Morse function appears as

h(x) = ca−
p∑
i=1

x2i +
n∑

i=p+1

x2i , (12.90)

where ca is the value of the Morse function at the critical point. This rather
reasonable fact corresponds to the Morse Lemma. It is clear that with an
infinitesimal deformation of the Morse function, all values of the function ca
at the critical points can be taken to be distinct. Furthermore, we can assume
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that the values of the Morse function at the critical points are labelled in a
monotone, ascending order, cl < cl+1, l= 0, · · · ,N . p is called the Morse index of
a critical point, and the number of critical points with Morse index p is called
the Mp.

A surprising fact corresponds to the understanding that the manifold can be
reconstructed out of any Morse function that is defined on it. One considers the
inverse map defining the submanifold (not including its boundary)

Mc = {x ∈M� h(x)< c} . (12.91)

Clearly for c<c0, where c0 is the global minimum of the Morse function,Mc<c0 =

∅. The global minimum must exist as the manifold is assumed to be compact. As
we increase c, when we pass c0, but stay below the next critical point where the
value of the Morse function is c1, the manifold Mc1>c>c0 is topologically always
the same and what is called a 0-cell. The nomenclature, 0-cell, corresponds to the
fact that the critical point which is the global minimum has 0 negative directions.
A 0-cell is in fact topologically an n-dimensional ball, without its boundary. It
is evident that the topology of Mc>c0 does not change as we increase c, until
we come to the value of c1, the next critical point of the Morse function. At the
critical point c1, there are p negative directions and n−p positive directions. The
manifold must attach a p-cell to the 0-cell that rises from the global minimum
and the topology of the manifold must change as c passes from below c1 to above
c1 by the attachment of a p-cell. A p-cell corresponds to a topological manifold
that has p negative directions and n− p positive directions, such a manifold is
sometimes called a p-handle.

This construction will continue at each critical point of the Morse function.
The topology of the set Mc will be invariant for cl < c < cl+1, the topology
change occurring exactly and only at the critical points of the Morse function
with values cl. At each critical point of the Morse index p we will have to attach a
p-cell. Finally, for c> cN , where cN is the global maximum of the Morse function,

Mc>cN =M (12.92)

and at this point we will have reconstructed the entire manifold. As we approach
the final critical point, we must attach an n-cell, as the global maximum has n
negative directions. An n-cell is also, topologically, an n-dimensional ball, as was
the 0-cell at the global minimum, except that it now has n negative directions.
Nothing precludes the attachment of n-cells, 0-cells or in general any number
of p-cells at intermediate critical points; if there are local critical points with p

negative directions, that is what is required. Indeed, in principle, for a critical
point of the Morse index p, we must add a p-cell. The detailed description of
this attachment of p-cells, or p-handles as they are sometimes called, is rather
straightforward and unremarkable. We will not describe it in any more detail.
The reader can consult the literature cited above for the full details.
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Obviously, the reconstruction of the manifold based on a given Morse function
must obey some constraints imposed on it due to the actual global topology of the
manifold. The actual global topology of the manifold cannot arbitrarily change
by its reconstruction based on a given Morse function. The actual topology of the
manifold specifically constrains how many p-cells exist in the manifold. Hence
the reconstruction based on a Morse function must be in some sense redundant.
This gives the first hint that the number of critical points with Morse index p

must be restricted by the global topology of the manifold.
The crudest example of such a restriction is, for example, the condition that

there must exist only one global maximum and one global minimum for the Morse
function. The topology of the manifold, that it is compact, imposes this condition.
As any Morse function on the manifold can be interpreted as a height function,
with a corresponding topology preserving deformation of the manifold, we can
easily see that it is possible to eliminate pairwise, for example, a local maximum
and a local minimum by simply deforming the Morse function or equivalently
the manifold. Indeed, we will be able to show that the number of critical points,
Mp, of the Morse index p is bounded below by exactly the topological properties
of the manifold expressed in the Betti number Bp,

Mp ≥Bp. (12.93)

These correspond to the weak Morse inequalities. There are also strong Morse
inequalities, which we will introduce when appropriate in the sequel.

12.4.1 Supersymmetry and the Exterior Algebra

The realization of supersymmetry that we will use corresponds to the following
identification in the exterior algebra of a Riemannian manifold, M, of dimension,
n, where we will further assume that it is equipped with a smooth metric gij .
Let Q= d, Q† = δ, and

Q1 = d+ δ Q2 = i(d− δ), H= dδ+ δd. (12.94)

Then
H=Q2

1 =Q2
2 and {Q1,Q2}= 0, (12.95)

i.e. the supersymmetry algebra is satisfied. p-forms are bosonic or fermionic
depending on whether p is even (bosonic) or odd (fermionic). TheQi map bosonic
states to fermionic states.

What are the supersymmetric ground states for this quantum-mechanical
theory? Evidently they are the zero modes of the Laplacian, those p-forms that
are annihilated by the Laplacian, H = dδ + δd = ∇2. But these are just the
harmonic forms. The harmonic forms satisfy exactly

∇2ρp = 0. (12.96)
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The number of harmonic p-forms is exactly the dimension of the pth homology
group, dimHp(M, IR). Hence the number of supersymmetric ground states,
dimHp(Q), of a supersymmetric quantum mechanics defined on a Riemannian
manifold, M, is exactly equal to the Betti numbers, Bp, of the manifold.
Interestingly, supersymmetry has some relation to the global topology of the
manifold as defined by the Betti numbers.

The Witten index is obviously a topological invariant, the number of
supersymmetric ground states can only change by pairs of bosonic–fermionic
states lifting away from zero energy or coming down to zero energy. Therefore,
we see that the Euler characteristic

χ(M) =

n∑
p=0

(−1)pBp =
n∑
p=0

(−1)pdimHp(Q) = Tr (−1)F (12.97)

is in fact a topological invariant of the manifold.

12.4.2 The Witten Deformation

We deform the exterior algebra with an additional real parameter, t, and an
arbitrary smooth real-valued function, h(x), defined on M, which will be the
appropriate Morse function, and then we let

dt = e−htdeht δt = ehtδe−ht. (12.98)

These operators continue to satisfy d2t = 0= δ2t , and so we define

Q1t = dt+ δt, Q2t = i(dt− δt), Ht = dtδt+ δtdt (12.99)

and the supersymmetry algebra is satisfied for each t

Q2
1t =Q2

2t =Ht, {Q1t,Q2,t}= 0. (12.100)

Then with Qt = (Q1t− iQ2t)/2, deformed supercharges are given by

Qt = d+ tdh∧ Q†
t = δ+ t(dh∧)†. (12.101)

As before, the exact supersymmetric ground states are those that are exactly
annihilated by Qt and by Q†

t . These would be the analogue of the harmonic
forms. In the local coordinate system these are easily determined; for example,
for states annihilated by Qt we need to find p-forms that satisfy

Qtωp = (d+ tdh)ωp = 0. (12.102)

Writing ωp = ωi1···ipdx
i1 ∧ ·· · ∧ dxip we get

(∂iωi1···ip + t∂ihωi1···ip)dx
i ∧ dxi1 ∧ ·· · ∧dxip = 0. (12.103)

This has an evident solution

ωi1···ip = e−thci1···ip , (12.104)
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where ci1···ip is constant, and similarly for Q†
t . However, this does not mean that

we have actually found a harmonic form, the coordinate system is in principle
only a patch on the manifold. To find the set of harmonic forms is, in general, a
complicated exercise. The set of exact supersymmetric ground states does exist
and their numbers are given by the corresponding Betti numbers.

We define the Betti numbers, Bp, analogous to the definition of the de Rham
cohomology, as the number of linearly independent p-forms that satisfy dtωp =
0, i.e. closed with respect to dt, but which cannot be written as the exterior
derivative of a p−1-form, i.e. ωp �= dtχp−1, i.e. that are not exact with respect to
dt. The point is that this definition of the Betti numbers is actually independent
of the parameter t, the Betti numbers so defined must be equal to their usual
values at t= 0. dt differs from d by conjugation with an invertible operator eht,
thus the mapping ωp→ e−htωp is an invertible mapping of closed but not exact
p-forms in the sense of d, mapped to closed but not exact p-forms in the sense
of dt. The dimensions of these spaces are independent of t.

At each point, P , of the manifold, M, choose a basis, {ak}, of the tangent
space, TP . We will also consider the dual basis {a∗k} of the cotangent space T ∗

P .
The tangent space basis vectors and the dual space basis vectors can be thought
of as operators on the exterior algebra, acting through what is called interior
product for the {ak} and through the usual exterior product for the {a∗k}. Thus
explicitly we have

a∗i = dxi ∧
ai = ι∂/∂i , (12.105)

where the interior product ιV is defined as

ιV (ωp) = χp−1 � χp−1(V1, · · · ,Vp−1) = ωp(V,V1, · · · ,Vp−1). (12.106)

This is just a fancy way of saying that we contract the vector index on the
first index of the differential form. Thus for the present case V = δikai = ak and
ωp = ωi1···ipa

∗i1 ∧ ·· · ∧ a∗ip then ιak(ωp) = ωk,i2···ipa
∗i2 ∧ ·· · ∧ a∗ip . Even more

explicitly

ak(a
∗i1 ∧ ·· · ∧a∗ip) =

p∑
l=1

(−1)l−1δ
il
k a

∗i1 ∧ ·· · ∧a∗il−1 ∧a∗il+1 ∧ ·· ·a∗ip . (12.107)

The operators {a∗k} are dual to the {ak}, and their action on the exterior algebra
corresponds simply to exterior multiplication. Explicitly, the action on a given
p-form is simply given by a∗k(ωp) = a∗k ∧ ωp. These operators play the role of
fermion creation and annihilation operators. The supercharges can be written in
this notation as

Qt = d+ t∂iha
∗i ∧ and Q†

t = δ+ tgij∂ihaj . (12.108)
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The function h(x) can be differentiated in the coordinate system, then one can
calculate in a straightforward, but somewhat tedious, manner,

Ht = dδ+ δd+ t2gij∂ih∂jh+ tg
jkDiDjh

[
a∗i,ak

]
, (12.109)

where gij is the assumed Riemannian metric on the manifold M and
Di is the covariant derivative with respect to the Levi–Civita connection
associated to the metric, explicitly, DiDjh = Di∂jh = ∂i∂jh − Γlij∂lh with
Γijk =

1
2g
il (∂iglj +∂jgli−∂lgij). For large t, the potential t2gij∂ih∂jh dominates,

and the wave function concentrates about the minima (critical points) of this
potential. Corrections can be computed as an expansion in powers of 1/

√
t,

exactly as in the one-dimensional case.

12.4.3 The Weak Morse Inequalities

h(x) will be called the Morse function, and we will assume it is non-degenerate,
meaning that it only has isolated critical points at coordinates xa, at which
∂jh(x

a) = 0. Therefore, at each critical point the matrix of second derivatives,
DiDjh, must be non-singular, i.e. it does not have any vanishing eigenvalues.
We define Mp to be the number of critical points with p negative eigenvalues.
The first Morse inequality states that Mp ≥Bp, which we will be able to prove
with our supersymmetric quantum mechanical model.

Let λ(n)p (t) be the nth smallest eigenvalue of Ht acting on p-forms. We will see
that

λ(n)p (t) = tA(n)
p + o(1)+ o(1/t), (12.110)

which admits an expansion in powers of 1/t due to parity. The Betti number,
Bp, is equal to the number of exactly zero eigenvalues. For large t, the number
of the eigenvalues that vanish can be no larger than the number of A(n)

p that
vanish, simply because a vanishing eigenvalue requires A(n)

p = 0. We will show
that the number of A(n)

p that vanish is equal to the number of critical points of
the Morse function with p negative eigenvalues, which means that Mp ≥Bp.

At each critical point we can use Gaussian normal coordinates xi, coordinates
in which the metric is simply δij and shift the origin so that they are chosen to
vanish at the position of the critical point. The Morse function can be expanded
in a Taylor series; in general, this gives

h(x) = h(0)+
1

2

n∑
i,j=0

(
∂2

∂i∂j
h(0)

)
xixj + · · · . (12.111)

A further orthogonal rotation of the coordinates keeps the metric δij ; however,
the real symmetric matrix of second partial derivatives can be diagonalized, with
eigenvalues λi = ∂i∂ih(0) in the new coordinates. Then we get

h(x) = h(0)+
1

2

∑
i

λi(x
i)2+ · · · (12.112)
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and
∂ih(x) = λix

i+ · · · . (12.113)

The Hamiltonian then also admits a local expansion about each critical point,
using the general expression Equation (12.109) and noting that the metric is δij ,
the Levi–Civita connection vanishes so that covariant derivatives are ordinary
derivatives and ∂ih(xi) = λix

i+ · · · using Equation (12.112)

Ht =

n∑
i=1

(
− ∂2

∂xi∂xi
+ t2λ2i (x

i)2+ tλi[a
∗i,ai]

)
+ · · · . (12.114)

The explicitly written term, although an approximation to the full Hamiltonian,
is sufficient to compute the A(n)

p . To compute the expansion of the eigenvalues
in powers of 1/t requires calculating the higher-order terms in the Hamiltonian
and continuing the perturbative expansion.

As the operators ai and a∗i are also simply linear operators on the exterior
algebra by exterior or interior multiplication, they commute with the simple
harmonic oscillator part and hence the local Hamiltonian in lowest approximation
can be written as two commuting terms

Hlocal =

n∑
i=1

Hi+ tλiKi (12.115)

with

Hi =− ∂2

∂xi∂xi
+ t2λ2i (x

i)2 (12.116)

while
Ki = [a∗i,ai]. (12.117)

Hi is the Hamiltonian of the simple harmonic oscillator, with the well-known
spectrum Ei(Ni) = t|λi|(1+2Ni), where Ni=0,1,2, · · · , taking into account that
the λi are not necessarily positive. The corresponding eigenfunctions are Hermite
polynomials multiplied by Gaussians centred at the origin, and hence rapidly fall
off for |λixi| � 1/

√
t.

The eigenvalues of Ki are simply ±1. The action of Ki on a p-form ω is
Kiω = [a∗i,ai]ω = a∗iaiω − aia

∗iω = 2a∗iaiω − {ai,a∗i}ω = (2a∗iai − 1)ω. The
first operator is simply the fermionic Hamiltonian for one degree of freedom for
each i, which has eigenspectrum 0 or 2, acting on the fermionic vacuum state or
the one fermion state, which yields the eigenspectrum ±1 for Ki. Another way to
see this is to realize that the action of Ki on a p-form ω = ωi1···ipa

∗i1 ∧ ·· · ∧a∗ip
obviously gives back ω if i ∈ (i1 · · · ip) but gives back −ω if i /∈ (i1 · · · ip).

As Ki and Hi commute, the eigenvalues simply add; thus, the spectrum of
Hlocal is

Et(Ni,ni) = t

n∑
i=1

(|λi|(1+2Ni)+niλi), Ni = 0,1,2, · · · ,ni =±1. (12.118)
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If we restrict the action of Hlocal to p-forms, then the sum over Ki in the
Hamiltonian contains p terms for which the eigenvalue of Ki is +1; thus, the
number of ni that equal +1 must be equal to p. The remaining Ki will have
eigenvalue −1, thus the number of these will be n−p, where n is the dimension
of M.

The only way it is possible for the energy Et(Ni,ni) to vanish is if all Ni = 0,
ni = 1 for each negative λi and ni =−1 for each positive λi. We can solve this
constraint if we choose the p-form to consist of the p-fold exterior product of
coordinate differentials of exactly those coordinate directions which correspond
to the negative eigenvalues. Thus the energy eigenvalue is (allowing for a minor
relabelling of the independent directions in the manifold)

Et(Ni,ni) = t

p∑
i=1

(|λi|(1)+λi)+ t
n∑

i=p+1

(|λi|(1)−λi) = 0 (12.119)

as ni = +1 for the first p directions with negative eigenvalues and ni = −1 for
the n− p remaining directions for which the eigenvalues are positive.

Thus for a critical point with Morse index equal to p, i.e. with p negative
directions at the critical point of the Morse function h, it is possible to satisfy
these conditions. We choose a p-form with a coefficient function given by the
ground state of the harmonic oscillator (which puts all the Ni = 0), and which
consists of exactly those coordinate differentials which correspond to the p

negative directions, λi, which gives the desired ni = +1. Thus at a critical
point of Morse index p, we can construct exactly one eigenfunction which could
have a zero eigenvalue. These are zero-energy eigenfunctions of the approximate
Hamiltonian given in Equation (12.115). We could, in principle, compute the
corrections that are brought to these approximate zero-energy levels, but we can
be assured that they will remain low-lying levels even as t→∞, the key point
being that A(n)

p vanishes for all of these levels. The dimension of the subspace
spanned by these levels is Mp, the number of critical points with Morse index p.

For an actual vanishing eigenvalue of the full Hamiltonian (12.109), all
higher perturbative and non-perturbative corrections must also vanish. This
will happen for the exact supersymmetric ground states. The number of exact
supersymmetric ground states is given by the Betti number, Bp, which is equal
to the number of p-forms with zero eigenvalues of the Laplacian, dδ + δd, or
the deformed Laplacian, dtδt + δtdt. For each actual zero eigenvalue, we know
that the A(n)

p must also vanish, as the computation of A(n)
p is the first step of

computing the exact eigenvalue in perturbation. We have determined that the
number of approximate states corresponding to A(n)

p = 0 is Mp, the number of
critical points of Morse index p. Hence the number of actual zero eigenvalue
states must be less than or equal to Mp. Thus we obtain the result

Mp ≥Bp. (12.120)
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These are called the weak Morse inequalities.

12.4.4 Polynomial Morse Inequalities

We actually wish to prove something stronger, that the Morse numbers always
dominate the Betti numbers as encapsulated in the polynomial Morse inequality
which states that there exists a set of non-negative integers Qp such that

n∑
p=0

Mpt
p−

n∑
p=0

Bpt
p = (1+ t)

n−1∑
p=0

Qpt
p. (12.121)

This is an inequality in the sense that Qp ≥ 0. As the weak Morse inequalities
give us that Mp ≥ Bp, it is clear that the coefficient of tp on the left-hand side
is necessarily positive semi-definite. The right-hand side has the coefficient Qp+
Qp−1 (with Qn =Q−1 = 0) for tp, which then must be positive semi-definite.

The polynomial Morse inequality is equivalent to the following two assertions,
called the strong Morse inequalities (as originally proven by Morse):

m∑
p=0

(−1)p+mMp ≥
m∑
p=0

(−1)p+mBp for m= 0,1, · · · ,n (12.122)

n∑
p=0

(−1)pMp =

n∑
p=0

(−1)pBp. (12.123)

We can prove the equivalence as follows. If we take the second equality,
Equation (12.123), we have(

n∑
p=0

Mpt
p−

n∑
p=0

Bpt
p

)∣∣∣∣∣
t=−1

= 0, (12.124)

i.e. t=−1 is a root of the polynomial
∑n
p=0Mpt

p−
∑n
p=0Bpt

p and hence it is
divisible by 1+ t. Thus we have immediately and trivially

n∑
p=0

Mpt
p−

n∑
p=0

Bpt
p = (1+ t)

n−1∑
p=0

Qpt
p. (12.125)

Since the coefficients are integers on the left-hand side, the Qn must also be
integers. It remains to show that Qn ≥ 0. To see this we analyse the identity
power by power in t. We start with the t0 term. This term gives

M0−B0 =Q0, (12.126)

which the first inequality, Equation (12.122), for m = 0 requires Q0 ≥ 0. Next,
for the t term we have

M1−B1 =Q1+Q0 (12.127)

or replacing for Q0 from above

M1−M0− (B1−B0) =Q1, (12.128)
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which the first inequality, Equation (12.122), for m = 1 then requires Q1 ≥ 0.
Doing one more step, before concluding the general relation, we have for the
coefficient of t2

M2−B2 =Q2+Q1 (12.129)

replacing for Q1 from above

M2−M1+M0− (B2−B1+B0) =Q2. (12.130)

Again from the first inequality, Equation (12.122), form=2 then requires Q2≥ 0.
We see then that in general

m∑
p=0

(−1)p+mMp−
m∑
p=0

(−1)p+mBp =Qm for m= 0,1, · · · ,n− 1 (12.131)

and hence we can conclude that Qm ≥ 0 for all m= 0,1,2, · · ·n− 1.
To prove the converse, the polynomial Morse inequality, Equation (12.121), by

comparing powers of t, as we have just seen, implies
n∑
p=0

(−1)p+mMp−
n∑
p=0

(−1)p+mBp =Qm for m= 0,1, · · · ,n− 1 (12.132)

but now we assume that the Qm ≥ 0. Hence we recover the first inequalities in
Equation (12.122) trivially. To recover the second equality, Equation (12.123),
we simply put t=−1 in Equation (12.121).

The second equality, Equation (12.123), is related to the Euler characteristic
of the manifold. This is defined as the alternating sum of the Betti numbers

χ(M) =

n∑
p=0

(−1)pBp =
n∑
p=0

(−1)pMp. (12.133)

From the weak Morse inequalities, we know that Mp ≥Bp. Thus the number of
critical points of Morse index, p, could be greater than the Betti number, Bp,
but then there must be exactly the same surplus of critical points with opposite
value of (−1)p, i.e. each additional critical point of Morse index, p, must pair
with another critical point of Morse index of opposite parity. As p determines if
the state is fermionic or bosonic, we identify these pairs of critical points with the
approximate, supersymmetric, bosonic and fermionic zero energy pairs of states
associated with each critical point, but those which must actually lift away from
exact zero energy when non-perturbative corrections are taken into account, as
the actual number of supersymmetric zero energy states is strictly given by the
Betti numbers.

It is straightforward [64] to prove the strong Morse inequalities using the simple
ideas of supersymmetry and what we have understood about the spectrum. We
know that the eigenvalues and corresponding eigenstates of Ht separate into
two subsets as t→∞; those whose energies diverge linearly as t gets large and
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a finite number whose energies do not. There are Mp states for each p whose
energies do not diverge with t. These further split into two subsets, the first
Bp states whose energies are exactly zero and the remaining Mp −Bp states
whose energies are of o(1). We will call these latter Mp −Bp states the low-
lying states. But now we recall that, since the low-lying states have non-zero
energy, supersymmetry requires that they come in bosonic–fermionic pairs. The
fermionic states correspond to odd p and the bosonic states correspond to even
p, hence we must have ∑

p odd

(Mp−Bp) =
∑
p even

(Mp−Bp). (12.134)

This immediately implies the second of the strong Morse inequalities,
Equation (12.123)

n∑
p=0

(−1)pMp =
n∑
p=0

(−1)pBp. (12.135)

To obtain the first strong Morse inequality we consider the mapping that Q1t

induces on the fermionic and bosonic subspaces of low-lying levels. As Q2
1t =

Ht and evidently Q1t commutes with the Hamiltonian, it must preserve the
eigensubspaces of Ht. Q1t, being a fermionic operator, maps the eigensubspace
of p-forms to the eigensubspace of p+1-forms and p−1 forms. Let Λpt denote the
subspace of low-lying eigenstates of p-forms, clearly of dimension Mp−Bp. For
any state |ψ〉 in this subspace Q1t|ψ〉 �= 0 and HtQ1t|ψ〉=Q3

1t|ψ〉=Q1tHt|ψ〉=
EQ1t|ψ〉, where Ht|ψ〉=E|ψ〉. If Q1t maps two distinct states to the same state,
then it must annihilate their difference, which is not possible as this does not
preserve the eigenspace. Thus the mapping Q1t : Λ

p
t → Λp−1

t ⊕ Λp+1
t must be

one-to-one, into (injective). Hence we can conclude

Q1t :

2j−1⊕
p odd p=1

Λpt →
2j⊕

p even p=0

Λpt

Q1t :

2j⊕
p even p=0

Λpt →
2j+1⊕

p odd p=1

Λpt (12.136)

for each j � 0≤ 2j < n and 0≤ 2j+1<n. But since the mappings are injective,
the dimension of the domain must be less than or equal to the dimension of the
image. This yields:

(M1−B1)+ · · ·+(M2j−1−B2j−1)≤ (M0−B0)+ · · ·+(M2j −B2j)

(M0−B0)+ · · ·+(M2j −B2j)≤ (M1−B1)+ · · ·+(M2j+1−B2j+1).

(12.137)

These inequalities are identical to the first strong Morse inequality,
Equation (12.122), if we bring the Ms and Bs to opposite sides.
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12.4.5 Witten’s Coboundary Operator

The polynomial Morse inequality is equivalent to the understanding that the
critical points of a Morse function form a model for the cohomology of the
manifold M. We define Xp to be a vector space of dimension Mp for each p ∈
0,1,2, · · · ,n. Xp can be thought of as a vector space spanned by the critical points
of Morse index p. The polynomial Morse inequality, Equation (12.121), means
that there exists a coboundary operator δW : Xp → Xp+1 (we add a subscript
W to honour Witten), where δ2W = 0 and the corresponding Betti numbers,
the dimension of the cohomology groups associated to δW , are identical to the
Betti numbers of the manifold M. The homotopy classes in this cohomology
are elements of Xp, which are closed under the action of δW , but differ only by
elements which are obtained by the action of δW on some element of Xp−1, the
analogue of the standard notion of closed modulo exact forms, or cycles, etc. The
explicit expression for δW is not given in the original work of Morse or others;
however, Witten found an appropriate expression for it.

Witten proposed the following construction. First, consider possible zero
modes of the Laplacian. The number of independent such p-forms gives the
Betti numbers, Bp. We have an upper bound on the Betti numbers, Mp ≥ Bp
in the Morse inequalities. However, although perturbation theory might suggest
a given mode is a zero mode, tunnelling effects can lift the degeneracy. Exact
instanton effects can give energies of the order of ∼ e−tS where S is the action of
the instanton, which for large t is smaller than any perturbative correction. Thus
Witten was led to consider instanton configurations that tunnel from one zero
mode to another. In fact, tunnelling from putative zero modes which are p-forms
to putative zero modes which are p+1-forms are exactly the instanton modes
that are required. However, as we have seen, the p+1-form chosen at a given
critical point of Morse index, p+1, requires a choice of the exterior product of
all the coordinate differentials that correspond to the p+1 negative directions.
The orientation or order of the differentials remains arbitrary. Thus a tunnelling
transition from a state at a critical point of Morse index, p, to a state at a critical
point of Morse index, p+1, must also fix a sign. We determine the sign with the
following construction.

Consider instanton paths, Γ, that pass from a critical point, B, of Morse
index, p+1, to a critical point, A, of Morse index, p. The instanton path has
initial tangent vector v within VB , the p+1-dimensional vector space of negative
directions at B. Let |b〉, a p+1-form, be the state of zero energy at the critical
point B. Then |b〉 chooses an orientation of VB, and we can choose an orientation
of the p-dimensional subspace, ṼB , corresponding to the orthogonal complement
of v within |b〉, as we can generate a p-form from |b〉 by contracting it (by interior
multiplication) with v. Then the instanton path from B to A gives a mapping
of ṼB to VA, the p-dimensional vector space of negative directions at A. This
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mapping induces an orientation of VA. However, the state |a〉 corresponding to
the perturbative zero mode at A already gave an orientation of VA. We define

nΓ =

{
+1 if the induced orientation agrees with that fixed by |a〉
−1 if the induced orientation disagrees with that fixed by |a〉

(12.138)
and

n(a,b) =
∑
Γ

nΓ, (12.139)

where the sum runs over all instantons paths (paths of steepest descent) from B

to A. Then we can define the coboundary operator, for any basis element |a〉 of
Xp at A

δW |a〉=
∑
b

n(a,b)|b〉, (12.140)

where the sum runs over all basis elements of Xp+1 (in other words, this is a
set of perturbative zero modes that are p+ 1-forms that are concentrated at
the critical points of Morse index p+1 of the Morse function). The effect of the
instantons is to non-perturbatively correct the energy of some of the perturbative
zero modes, their energy behaves as ∼ e−tS , for large t. Thus all states in Xp are
not annihilated by the Laplacian δW δ∗W + δ∗W δW .

Denoting Yp as the number of actual zero eigenvalues of δW δ∗W +δ∗W δW acting
on Xp, then Yp also give upper bounds on the Betti numbers, and the strong
Morse inequality, Equation (12.121), remains valid with Mp replaced with Yp.
Witten conjectures that, in fact, Yp =Bp.

12.4.6 Supersymmetric Sigma Model

To demonstrate that δW as defined in Equation (12.140) provides the
appropriate coboundary operator, Witten considered the Lagrangian version of
the supersymmetric quantum-mechanical model that we have been considering,
that for which the supercharge is given explicitly by dt. Canonical quantization
of the model defined by the action, in Minkowski time∫

dτL=
1

2

∫
dτ

(
gij

(
dxi

dτ

dxj

dτ
+ ψ̄ii

Dψj

Dτ

)
+

1

4
Rijklψ̄

iψkψ̄jψl

− t2gij
dh

dxi
dh

dxj
− t D2h

DxiDxj
ψ̄iψj

)
(12.141)

where a sum over all repeated indices is understood, gives the required algebraic
symmetries and explicitly the supercharge. This is the Lagrangian of the 1+1-
dimensional supersymmetric sigma model restricted to 0+1 dimensions. Here the
ψ and ψ̄ (the complex conjugate field to ψ) are anti-commuting fermionic fields,
xi are local coordinates, gij is the metric tensor and Rijkl is the corresponding
Riemann curvature tensor on M, and D/Dxi is the covariant derivative with
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the Levi–Civita connection of the metric while D/Dτ is the covariant derivative
along the direction tangent to the time trajectory. Specifically, acting on the
fermions we have

D

Dτ
ψi = ∂τψ

i+Γijk∂τx
jψk. (12.142)

Under the supersymmetry transformations

δxi = εψ̄i− ε̄ψi

δψi = ε
(
iẋi−Γijkψ̄

jψk+ tgij∂jh
)

δψ̄i = ε̄
(
−iẋi−Γijkψ̄

jψk+ tgij∂jh
)

(12.143)

for infinitesimal anti-commuting parameters ε and ε̄, the action is invariant,
δ
∫
dτL= 0. The corresponding supercharges are as required

Qt = ψ̄i(igij ẋ
j + t∂ih)

Q̄t = ψi(−igij ẋj + t∂ih). (12.144)

There is also a symmetry-conserving fermion number, ψi→ e−iθψi, ψ̄i→ eiθψ̄i,
which gives the conserved charge, the fermion number

F = gijψ̄
iψj . (12.145)

In quantizing the system we will first consider the system at t = 0 (all the
supersymmetry and other symmetries are equally valid at t= 0). We impose the
canonical commutation and anti-commutation relations[

xi,pj
]
= iδij{

ψi, ψ̄j
}
= gij , (12.146)

then the conserved supercharges are simply Q = iψ̄ipi and Q̄ = −iψipi. The
supercharges have the opposite fermion number

[F,Q] =Q,
[
F,Q̄

]
=−Q̄. (12.147)

We impose that the Hamiltonian is given by the supersymmetry algebra{
Q,Q̄

}
= 2H0 (12.148)

and consequently the fermion number is conserved, [F,H0] = 0. The natural
realization of this algebra is, as we have been using, provided by the exterior
algebra of differential forms, Λ∗(M) ⊗ C equipped with its hermitian inner
product from Equation (12.17)

(ω,χ) =

∫
M
ω̄∧∗χ (12.149)
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for two p-forms, ω and χ. Then the observables in this realization of the algebra
on this Hilbert space, when acting explicitly on a p-form ω, are:

xi : xiω

pi :−i∂iω
ψ̄ : dxi ∧ω
ψi : gijι∂/∂xjω (12.150)

(ιV is the interior multiplication defined in Equation (12.106)). Then with the
state |0〉 denoting the form annihilated by all of the ψi we have the schema:

|0〉 = 1

ψ̄i|0〉 = dxi

ψ̄iψ̄j |0〉 = dxi ∧ dxj

· · ·
ψ̄1 · · · ψ̄n|0〉 = dx1 ∧ ·· · ∧dxn. (12.151)

The fermion number of a state that is a p-form is simply equal to p, thus
the Hilbert space separates into bosonic and fermionic subspaces depending on
whether p is even or odd, respectively. Thus the canonically quantized system
reproduced with complete fidelity the supersymmetric system of the exterior
algebra that we studied in subsection (12.4.1).

Recall then that the supersymmetric states are just the zero-energy states,
those annihilated by the Laplacian, the so-called harmonic forms. We underline
that the set of harmonic forms of the manifold characterize the de Rham
cohomology of the manifold. Equally well, the space of supersymmetric ground
states characterize the cohomology of the Q-operator. As there is the conserved
fermion number which satisfies [F,Q] = Q, the Q-cohomology is graded by the
fermion number and equal to the degree p of the form. As Q is identified with the
exterior derivative d, the graded Q-cohomology and the de Rham cohomology
must be equal

Hp(Q) =Hp
dR(M). (12.152)

The Witten index, (−1)F , can be evaluated and we find

Tr
(
(−1)F

)
=

n∑
p=0

(−1)pdim(Hp(Q) =
n∑
p=0

(−1)pdim(Hp
dR(M) =χ(M), (12.153)

where χ(M) is the Euler characteristic of the manifold. The Witten index
only receives contributions from the supersymmetric ground states; as we have
seen, the non-zero energy modes are all paired in fermionic–bosonic pairs and
their contributions cancel. Thus the calculation of the topological invariant, the
Euler characteristic, can be done by studying the zero-energy modes of this
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supersymmetric quantum mechanical system. Witten’s magical trick was to add
an external field to this system, which causes a separation of the zero- and low-
energy modes from the finite-energy modes, and in the limiting case makes the
calculation of the zero mode sector very simple.

Now adding in the deformation by th, the supercharges are then given by

Qt = ψ̄i(igij ẋ
j + t∂ih) = dxi∧ (

∂

∂xi
+ t∂ih) = d+ tdh∧= e−thdeth = dt (12.154)

and
Q†
t = δ+ t(dh∧)∗ = ethδe−th = δt, (12.155)

where ∗ denotes the adjoint. The Hamiltonian then is as before

H=
1

2

{
Qt, Q̄t

}
=

1

2
(dtd

∗
t + d

∗
t dt), (12.156)

chosen to satisfy the supersymmetry algebra. The supersymmetric ground states
again define the Qt-cohomology. However, since the th deformation is obtained
by a similarity transformation

Qt = e−thQeth (12.157)

the cohomology is isomorphic to the undeformed case. As the cohomology of the
undeformed Q is isomorphic to the de Rham cohomology, we can compute the
de Rham cohomology with the deformed operator Qt.

The perturbative approximation to the Hamiltonian around a critical point is
given by

Ht =

n∑
i=1

(
− ∂2

∂xi∂xi
+ t2λ2i (x

i)2+ tλi[a
∗i,ai]

)
(12.158)

with exact, zero-energy ground-state wave functions, which we will label |φω〉,
corresponding to the harmonic oscillator ground state, φ, multiplied by an
appropriate p-form, ω, where p is the Morse index of the critical point, as
discussed previously. Indeed, perturbative corrections to the energy of these wave
functions must vanish to all orders: the energy remains exactly zero to all orders
in perturbation theory. One can find the modification of the wave function, order
by order, so that its energy remains zero in each order in perturbation theory.
This is because the corrections are calculated in terms of local data at the critical
point. From local data it is not possible to know which critical points are actually
necessary because of the global topology of the manifold and which critical points
are removable by deformations. States that have zero energy to lowest order
have zero energy to all orders. The same reasoning applies to the calculation of
tunnelling in the double-well potential. In perturbation theory we can never get
a non-zero tunnelling amplitude, these amplitudes are non-perturbative in the
coupling and are not seen at any order in perturbation theory.

However, the wave functions, |φiωi〉, are not necessarily exact ground states,
where we have added a label i to denote different critical points. The perturbative
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zero-energy states are not necessarily exact ground states. Hence the number of
exact, supersymmetric actual ground states are clearly less than or equal to the
number of critical points. An exact supersymmetric ground state is annihilated
by the supercharge. For the case of the perturbative ground states, although we
will find, if calculated perturbatively,

Ht|φiωi〉= (QtQ
†
t +Q

†
tQt)|φiωi〉= 0, (12.159)

which also requires
Qt|φiωi〉= 0 (12.160)

to all orders in perturbation theory, we can in fact have non-perturbative
corrections

Qt|φiωi〉=
N∑
j=1

|φjωj〉〈φjωj |Qt|φiωi〉+ · · · , (12.161)

where the + · · · corresponds to amplitudes to non-zero-energy states (which are
suppressed by large energy denominators as t→∞). The explicit mixing that
can be important is between the perturbative zero-energy states. Thus we want
to compute

〈φjωj |Qt|φiωi〉=
∫
M
φjωj ∧∗(d+ tdh∧)φjωi. (12.162)

But such an amplitude is exactly what we are looking for with the coboundary
operator δW between zero modes localized at different critical points. If ωj is a
q-form and ωi is a p-form, this matrix element can only be non-zero if q = p+1,
i.e. transitions between perturbative zero-energy modes correspond to critical
points of Morse indices that differ by one negative direction. This can also be
seen from fermion number conservation, the action of Qt on the state |φiωi〉
changes its fermion number by one unit. It also should not be surprising that the
eventual δW that we will be able to define will satisfy δ2W =0, since it is obtained
from the action of Qt = dt. Clearly Q2

t = 0, hence we can expect δ2W = 0.
We will return below to the notation of subsection 12.4.5 with |a〉 for |φiωi〉

and 〈b| for 〈φjωj | and the understanding that if |a〉 corresponds to a p-form then
〈b| corresponds to a p+1-form. It is also clear that the action of Qt on the low-
lying states annihilates any exact, supersymmetric ground state that is a p-form
as these are harmonic with respect to Qt. Thus only the Mp−Bp low-lying but
not exact supersymmetric ground states will be mixed with low-lying p+1-forms.
But additionally, none of these states can be the exact supersymmetric ground
states that are p+1-forms, since the inner product

〈b|Qt|a〉= (Qt|b〉)† |a〉= 0 (12.163)

if |b〉 corresponds to an exact supersymmetric ground state, as these are also
harmonic with respect to Qt. Thus the action of Qt on the set of states |a〉 only
mixes the Mp−Bp not exact ground states but low-lying states with the Mp+1−
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Bp+1 corresponding low-lying states |b〉. This is as it should be; since mixing
causes the energies to go up, this cannot happen to any exact supersymmetric
ground state.

12.4.7 The Instanton Calculation

We will use the path integral to compute this amplitude, since we know that it
is exactly through the path integral that we can uncover tunnelling amplitudes
through the path integral, and from the amplitude we will extract the coboundary
operator, δW . The bosonic sector of the model is governed by the Lagrangian,
in Euclidean time∫

dτLb =
1

2

∫
dτ

(
gij
dxi

dτ

dxj

dτ
+ t2gij

dh

dxi
dh

dxj

)
. (12.164)

We can show that the stationary points of the corresponding action are the paths
of steepest descent using a Bogomolny-type identity [17]. Indeed,∫

dτLb =
1

2

∫
dτgij

(
dxi

dτ
± tgik dh

dxk

)(
dxj

dτ
± tgjl dh

dxl

)
∓ t

∫
dτ
dh

dτ
. (12.165)

The first integral is positive semi-definite, while the second integral is equal to
tΔh. Therefore, if tΔh ≥ 0, we choose the plus (lower) sign, while if tΔh ≤ 0,
we choose the minus (upper) sign. Then the second term is always positive, and
thus ∫

dτLb ≥ t |Δh| (12.166)

with equality for (assuming Δh is positive)

dxi

dτ
− tgij dh

dxj
= 0. (12.167)

This is exactly the equation of steepest descent, physically stating that the
tangent vector to the curve is parallel to the gradient, up to reparametrization.
Also it should be noted that this equation is not the same as the usual instanton
equation which we have seen can be interpreted as ordinary, conservative,
Newtonian cinematic motion of a particle in the reversed potential. Such a
motion would never follow a path of steepest descent and stop at a lower value
of the potential. Here the equation of steepest descent is first order in the “time”
coordinate, and thus allows such motion. The solution to Equation (12.167)
obviously exists, which then implies SE =

∫
dτLb = t |Δh|. Then for the operator

dt whose matrix elements we want to compute, they will then be proportional
to e−t|Δh|. If we want to compute matrix elements of the Hamiltonian dd∗+d∗d
then we get two factors of SE and hence the amplitude is proportional to e−2t|Δh|.

The next step in the calculation is to compute the determinant of the
fluctuations in Gaussian approximation about the instanton configuration. It is
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in this stage that the calculation dramatically simplifies due to supersymmetry.
The non-zero eigenvalues are all paired in bosonic and fermionic multiplets. The
fermionic determinant is exactly cancelled by the bosonic square root of the
determinant. The bosonic zero mode corresponding to Euclidean time translation
invariance, which would normally give rise to a diverging factor of β, is also
exactly cancelled by a corresponding fermionic zero mode which would normally
give rise to a vanishing determinant. These zero modes can be explicitly obtained
first for the bosonic case in the usual way, the bosonic zero mode corresponds
to the Euclidean time derivative of the instanton. Then the fermionic zero mode
is obtained by a supersymmetry transformation of the bosonic zero mode. To
show the cancellation of the contribution of the zero modes requires some care,
we refer the reader to the detailed calculation in [62]. Finally the amplitude is
given by the factor

〈b|dt|a〉= e−t|Δh|. (12.168)

However, we still have not determined the sign of the amplitude; the functional
integral always gives rise to an ambiguous sign due to the fermions. To determine
the sign, we go back to the calculation of the amplitude in the usual WKB
method of Schrödinger quantum mechanics. Here we know that the states |a〉 at
the critical point A and |b〉 at the critical point B rapidly die off, away from their
respective critical points. Any overlap is greatest along the paths that connect
the two critical points that are the semi-classical solutions to the equations of
motion, the paths that keep the Euclidean action stationary. These paths are the
instantons, the paths of steepest descent or ascent between the critical points.
Thus the behaviour of the states along the paths of steepest descent are enough
to determine the sign of the matrix element 〈b|dt|a〉. The quantum mechanical
problem becomes effectively one-dimensional along the path of steepest descent,
and we find that the state |a〉 drops off as e−th along the instanton that ascends
from A to B. It must ascend, as |a〉 was a p-form, hence A was a critical point of
p negative directions while |b〉 was a p+1-form, hence B was a critical point of
p+1 negative directions. If we descend from A we can only reach other critical
points with fewer negative directions, we can never reach B.

To determine the sign, we start at |b〉 at B and the orientation of the space
of negative directions at |b〉, which we called VB. Calculating |b〉 along the path
of steepest descent in the WKB approximation we find the wave function of the
state |b〉 at A, but it is still a p+1-form. However, with the limiting direction
of the tangent vector as we arrive at A, we can induce an orientation of VA, the
space of negative directions at A. Then the sign of the matrix element 〈b|dt|a〉
is +1 if this induced orientation of VA matches that furnished by the state |a〉,
otherwise it is −1. This is exactly the construction of the sign n(a,b) that was
described in section 12.4.5, but appended with the explicit transport afforded by
the WKB calculation of the wave function along the path of steepest descent.
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Hence the Witten coboundary operator is given by

δW |a〉=
∑
b

e−t(h(B)−h(A))n(a,b)|b〉. (12.169)

Since the path descends from B to A, the exponent has the right sign. This factor
can be removed by rescaling the wave functions by

|a〉→ eth(A)|a〉, (12.170)

which corresponds to undoing the conjugation by eth which transformed d to dt.
Hence the Witten coboundary operator is given by

δW |a〉=
∑
b

n(a,b)|b〉 (12.171)

and the notion that the set of critical points of a Morse function form a model
of the cohomology of the manifold M is verified.
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