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1. Introduction

Let & be a space of points z, # a o-field of subsets of Z and y a o-finite
measure on 4. The elements of .# will be called measurable sets and all the
sets considered in this paper are measurable sets. A real-valued point func-
tion t(z) on & will be said to be measurable if, for each real «, the set
{z : t(x) < «} is measurable. Let .#(S), SCZ denote the o-field of all
measurable subsets of S. A real-valued function f{-) on .# will be called a
set function.

In Finch [1] a theory of integration of set functions f(M), M e .#
with respect to the measure u is developed. In that theory the integral

(L.1) I(S) = () [, 1D ()
is, when it exists, the limit of the approximating sums
(1.2) Fp(S) = 3 {(M)u(M)

H(S)

where the summation is over all elements with positive y-measure, of the
partition 71(S) of S by elements of .#(S) and the limit is taken in the sense
of Moore-Smith convergence as the partitions spread. For details of the
theory we refer to Finch [1] where it is shown that the IT-integral (1.1) is,
when it exists, a c-additive set function on .4, that is,

(1.3) If{’_;i; M,} =j§II(M1)

whenever the sets M, are mutually disjoint elements of #. Thus I, is a signed
measure on .4 and it follows from (1.2) that it is absolutely continuous with
respect to u. It follows from the Radon-Nikodym theorem that there is a
measurable point function ¢,(x) on which is finite except possibly on a set
of u-measure zero, such that

(1.4) L,(S) = (L) [, 7 te)du (@)
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where the L-integral is the Lebesgueintegral of 7, () with respect to the mea-
sure p. Further if §, (x)is any other measurable point function satisfying (1.4)
then

uiw 1 (@) # i)} = 0.
It is of interest therefore to examine the relationship between the II-
integrable set function f and the associated point function ¢,. A partial

solution to this problem is provided by the following theorem to whose
proof this paper is devoted.

THEOREM 1. Let & be a space of points x, M a o-field of subsets of Z and
i a o-finite measure on M. Let v be a o-finite signed measure on M and let
g(&) be a real-valued function of bounded variation of the variable & Write

(1.5) HM) = gly(M)[p(M)}, MeM, pM)>0,

then there exists a real-valued measurable point function 0(x) on X which is
finite, except possibly on a set of p-measure zevo, such that for each S

(1.6) (1) [ s, FODR () = (L) [ £06(2)}dn(e)
whenever either integral exists.

REMARKS. Since % is the countable union of disjoint elements of 4
on which u and » are each finite it is sufficient to prove the theorem when
u and » are each finite. Secondly it is clearly sufficient to prove the theorem
when the function g is monotonic and non-negative. From here on, therefore,
we shall assume that u is a finite measure, » is a finite signed measure and
that g is monotonic non-decreasing and non-negative.

Note that the theorem does not assert that the function g{f()} is
L-integrable with respect to u, in fact a necessary and sufficient condition
for this is the existence of the [l-itegral in (1.6). Note also that the statement
of the theorem does not assert that the signed measure » is absolutely con-
tinuous with respect to u. However the L-integrability of 8 (x) or equivalent-
ly the existence of the JI-integral (1.6) when g(£) = £is a necessary and suffi-
cient condition for the absolute continuity of » with respect to u.

To see this observe that when g(£) = ¢ the approximating sum (1.2) to
the Il-integral (1.6) is
(1.7) Fp(S) = 2 »(M)

ag)
where the summation is over those elements M of the partition I7(S) with
u(M) > 0. If » is absolutely continuous with respect to u then Fp(S) = »(S)
since p(M) = 0 implies »(M) = 0 and the I7 integral exists and has the
value »(S).

Conversely if the I7-integral exists, that is, if the I7-limit of (1.7) exists
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this limit is unique. Choosing a sequence of partitions {I7,(S)} of S with
I1,.,(S) finer than I7,(S) and such that each element of the partition IZ,,(S)
has positive yu-measure we see that this limit is »(S). Let S, be any element of
A with 4(Sg) = 0 and write S; = S, S,. Choosing a sequence of partitions
{I1,(S;)}, of S, such that each element of IT,(S,) has positive u-measure and
IT,,1(S;) is finer that I7,(S,) we obtain the limit »(S,). Since the IT-integral
has a unique value »(S,;) = »(S), that is, »(S,) = 0 and this shows that » is
absolutely continous with respect to p.

It follows from the above that theorem 1, contains the Radon-Nikodym
theorem as a particular case and for this reason our proof of it does not
depend on the Radon-Nikodym theorem. An example showing that the
theorem can be true when » is not absolutely continuous with respect to u,
in fact when p is absolutely continuous with respect to v is given in section 3.
One use of theorem 1 is that it reduces the calculation of the /7-integral to
that of an L-integral, such a use is illustrated in section 4 by application to
a problem in information theory.

2. Some preliminary results

In this section we state some preliminary results which are required
for the proof of theorem 1.

Lemma (2.1). Let R denote the set of real numbers and let {o;} be a
sequence of real wumbers which is dense in R. Suppose that {M («,)} is a family
of elements of M, indexed by the dense sequence o; and such that

(i) M(x,)CM,) if o< ®%;

(@) M) =Ne,>a,M(x)
For any real « define

M) = N M)
“f >a
then there exists a real-valued measurable point function 6 (x) on X' such that
M) ={z:0() = a}.

If further
(iii) lim,,, p{Z —M (@)} =0, lim, ,, p{M(—a)} =0,
then 6(x) is finite except possibly on a set of u-measure zero.

This lemma is proved easily by writing

2.1) Ox) =inf {a e M(x)}.
Using lemma (2.1) one may prove

LemMA (2.2). If u is a finite measure on M, v is a finite signed measure
on M then there exists a measurable point function 6(x) on M which is finite
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except possibly on a set of u-measure zero, such that if for each real a,

(2.2) M) ={z:0(x) < o}
then
3 v(M) S au(M), MCM()

»(M) = ap(M), MCE—M(a).
Proor. For each real « and each M e .# write
AM; o) = »(M) —op(M)

Let {«,} be a dense sequence of real numbers, for each «,, A(M; «,) is a finite
signed measure on .# and so, by the Hahn decomposition of £ with respect
to this signed measure, there exists an element M{«;) of .4 such that

AM; ;) <0, M C M)

(2.4) AMM; ) =0, MCE—Ma,).

The proof of lemma (2.2) consists in verifying that we can choose the sets
M («,) to satisfy the conditions of lemma (2.1). Since this verification uses
standard procedures, for example, Royden [3], it will be omitted.

3. Proof of theorem 1

We proceed now to the proof of theorem 1. Since g is non-negative and
monotonic non-decreasing the inequality

M) <a Mecd#, uM)>0
is equivalent to the inequality
(M) — (g 'a)u(M) <0, MeA, p(M)>o0.
Here and in what follows
gte = sup{§ : g(§) = a}.
Thus if 6(z) is the measurable point function of lemma (2.2) we have,

HM) <o if MCM(gla)

(3.1) .
fM)za if MCE—-M(gla)
where
Mg} = {2:0(z) = g "o}
and

gifx)} =inf {a: x e M{g'a)}.

Let 6 be an arbitrary positive real number and let {§,}, j=0,1,--- bea
sequence of real numbers with é, = 0, and such that
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0<6,—6;.; <6, =1, and sup §, = +o0.

3

Write

(3.2) M;={z:6,_, < glfx)} <4}, j=1.
Then for any § such that u(M,) > 0 we have

(3.3) 5, =<fM)<45,, Mec#, MCM,;, u(M)>0.

It follows that the total variation
(M) = sup{f(4,)—f(4,) : n(4;) > 0,4, C M}

on f on .# with respect to g does not exceed 8 on the measurable subsets of
each M;. Thus

(3.4) M) =6, Me M, MCM,;; uM)>0.
Write

HM) i [(M) =mn

A VA M) =n

for each M e .# with u(M) > 0.
Let S be any element of .#, then
II(S) = {SM,}, j=0,1,2,.--

is a partition of S. It follows from {3.4) and theorem (3.3) of Finch [1], that
f™(-) is IT-integrable on .# (S) with respect to g, that is,

() [ s, 7 M) (21)

= (D) lim 3 [*(SM,)u(SM,)

J= —00

(3.5)

exists.
Because of (3.2) and (3.3) it follows also that the sum on the right-hand
side of (3.5) is an approximating sum for the Lebesgue integral

(L) [;e™B@))n@)
where
g()@)_{” if g(¢) >mn,

and hence that

(3.6) (1) [ ) 1 DM = (L) [ £(012)}dp )
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Letting # — oo in (3.6) we obtain (1.6) whenever either integral exists. The
uniqueness of 6(z) follows immediately since if ¢ () is another such measur-
able point function

(L) [ g™ {0@)} — g™ {p @) Ndu(z) = 0
for all Se.# and each n > 0, hence

u{z; () # 6(x)} = 0.

This completes the proof of the theorem.

As remarked in section one the formulation of theorem 1 does not intro-
duce explicitly the condition that » should be absolutely continuous with
respect to u, although, as we have shown, if the Il-integral (1.6) exists
when g(&) = & this implies that the signed measure » is absolutely continuous
with respect to u. To illustrate that meaningful results may be obtained when
v is not absolutely continuous with respect to suppose in fact that » and x
are both finite measures and that u is absolutely continuous with respect to »
with density ¢(z), so that

w(M) = (L) [ $(@)dv(a).
Suppose also that ¢{z) belongs to the class L,(») for some p > 1, so that
(L) [, @) (@)

exists for each M e .#.
Comnsider the identity

{u(M) (M)} v (M) = {»(M)[p(M)}~*"u(M)
where »(M) > 0. By applying theorem 1 to the left-hand side we obtain

(3.7) (D) [ ) @O0 (M) = (L) [ ()} (@)
Since u is absolutely continuous with respect to »

w(M)\? _ (M)
v(M)>0{"’(M)} V( )_,u(M)>0{/4(IM)

Y

where the summations are over the elements of the partition /I(S) of S ¢ #
with positive » and x4 measure respectively. Thus the I7-integral of which the
right-hand side is the approximating sum exists and equals the IZ-integral
of (3.7), that is,

(38) (D[, POORM;eDu00) = @D [, o HOOPOD}Py (O).
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Since the IT-integral on the left-hand side of (3.8) exists theorem 1 ensures
the existence of 0(z) such that

(D) [ 5, @O0 O}~5-0 u (M)
= (L) [ @)} eVdp(a).

In fact it is clear that 0(z) = {$(z)}! except on a set of » measure zero.
Equation (3.9) is the desired example of theorem 1 when » is not absolutely
continuous with respect to u.

(3.9)

4, An application to information theory

Let & be a space of points z, # a o-field of subsets of £ and let
{P("16,)}, 1 = 1,2, - -, k, be a finite family of probability measures on 4.
We write 6® = (8,, 0,, - - -, 6,), call the 6, indices or index values and refer
to 0™ as the indexing set. The elements of .# we refer to as events. For each
6 € 6% we call the ordered pair {Z, P(-|{#)} a probability space.

In Finch [2] it is shown that an appropriate measure of the amount of
conditional information about the particular probability space {Z, P(-0;)}
provided by the occurrence of the event M when it is known that 0 € §®
is given by
I{%, P(-16)} : M|0 € 6%]

(1) = —log [P(M0)[S}, P(MID)], 0 e0®.

The quantity
(4.2) G(MI6®) = &1 35, P(M]6,),

is a probability measure over # and, according to Finch [2], can be inter-
preted as the generalised probability that the event M occurs under the
logical disjunction of hypotheses 6, vB,v---v,.

The quantity (4.1) defines an amount of information provided by the
occurrence of a particular event M € .#. In order to define an average
amount of information it is natural to introduce the quantity

4 E-I[{Z, P(16)}16W)

(“3) = (D) [ 11, PCI6)} : M10 € 0W]G (1),

for each 6 € 6% whenever the I7-integral exists. The quantity (4.3) is the
expected amount of conditional information about the probability space
{Z, P(-|6)} provided by an experiment, whose possible outcomes are the

events of #, when it is known that 0 € %,
The quantity

(4.9) a(O|M; 0%) = P(M0)/Sh,P(M6,), 6 o™
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is called the acceptability of the index value 8 in the light of the occurrence
of the event M when it is known that 8 € §®. In terms of the acceptabilities
we may rewrite equation (4.3) in the form

E-I[{Z, P(16)}16%]

(4.5) = —(I) L{ log {a(0]M; 6%3}G (M [6%).

It follows from theorem 1 that when this [T-integral exists there is a real-
valued measurable point function on &, a (6}z; 6®) which is finite, except
possibly on a set of G(-|0%*) measure zero, such that

E - I[{%, P(|0)}jo < 6®]

(&.6) = — () [, Yog {a(ble; 6} - Gldalo™)

and where the Lebesgue integral exists if and only if the I7T-integral (4.5)
exists.

Since the probability measure P(-|0) is absolutely continuous with re-
spect to the probability measure G(-]6%*) for each 6 € 8™ it follows from the
proof of theorem 1 also, that the point function a{fjz; %) is in fact the
density of P(-|8) with respect to the measure 2G(-]0*). Thus theorem 1
reduces the calculation of the /Z-integral (4.5) to that of the L-integral (4.6).
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