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Subgrid-scale (SGS) modelling is formulated using a local transport of spectral kinetic
energy estimated by a wavelet multiresolution analysis. Using a spectrally and spatially
local decomposition by wavelet, the unresolved inter-scale energy transfer and modelled
SGS dissipation are evaluated to enforce explicitly and optimally their balance a priori
over a range of large-eddy simulation (LES) filter widths. The formulation determines
SGS model constants that optimally describe the spectral energy balance between the
resolved and unresolved scales at a given cutoff scale. The formulation is tested for
incompressible homogeneous isotropic turbulence (HIT). One-parameter Smagorinsky-
and Vreman-type eddy-viscosity closures are optimised for their model constants. The
algorithm discovers the theoretical prediction of Lilly (The representation of small-scale
turbulence in numerical simulation experiments. In Proceedings of the IBM Scientific
Computing Symposium on Environmental Sciences, pp. 195–210) at a filter cutoff scale in
the inertial subrange, whereas the discovered constants deviate from the theoretical value
at other cutoff scales so that the spectral optimum is achieved. The dynamic Smagorinsky
model used a posteriori shows a suboptimal behaviour at filter scales larger than those
in the inertial subrange. A two-parameter Clark-type closure model is optimised. The
optimised constants provide evidence that the nonlinear gradient model of Clark et al.
(J. Fluid Mech., vol. 91, issue 1, 1979, pp. 1–16) is prone to numerical instability due to its
model form, and combining the pure gradient model with a dissipative model such as the
classic Smagorinsky model enhances numerical stability but the standard mixed model
is not optimal in terms of spectral energy transfer. A posteriori analysis shows that the
optimised SGS models produce accurate LES results.
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1. Introduction

1.1. Background
One of the fundamental questions in large-eddy simulation (LES) concerns its closure
model. With some exceptions such as King, Hamlington & Dahm (2016), most of the
algebraic subgrid-scale (SGS) closures assume a priori their specific functional forms that
depend on resolved-scale quantities. In addition, the closure models are parameterised by
a length scale frequently chosen to be proportional to the LES grid width. See Piomelli,
Rouhi & Geurts (2015) for a grid-independent choice of a model length scale and Bose,
Moin & You (2010) for examining the grid dependence of LES solutions using an explicit
filter. A presumed analytical closure model generally behaves well in the regimes where
the assumption remains valid. Examples include the Smagorinsky model (Smagorinsky
1963) designed to work when a LES filter width is in the inertial subrange and the closure
approach developed by Bardina, Ferziger & Reynolds (1980) requiring a scale similarity.
For additional discussions, see Pope (2001). However, the validity of the modelling
assumption is generally not warranted, and nontrivial modelling errors are introduced to
LES prediction. This also applies to the commonly used eddy-viscosity models based on
the Boussinesq hypothesis, since the SGS stress is not necessarily aligned with the resolved
strain-rate tensor (Meneveau & Katz 2000). Furthermore, a presence of the LES grid
spacing in a closure model (approximating the model filter width) makes it complicated to
interpret the grid-convergence results of LES prediction.

The model errors are not necessarily reduced as the LES grid is refined or a more
accurate numerical discretisation is employed. Thus, they could have leading-order effects
on LES prediction in a grid-resolved limit or in a laminar regime, unless the SGS stress
is designed to vanish under such conditions. Moreover, turbulent fluid motions interacting
with multiphysical effects bring additional modelling challenges. For instance, turbulent
premixed flames at moderate Karlovitz numbers (Ka > 1) have a sufficient time for the
thermal effects to interact with the Kolmogorov eddies. In such regimes, a SGS closure
may potentially require to incorporate the effects of the combustion-induced energy
backscatter (O’Brien et al. 2017; Sabelnikov et al. 2023), which is difficult to model via
the resolved strain rate alone. Similarly, a priori study demonstrates that a modelled SGS
stress for a two-way coupled LES of particle-laden turbulence of the mass loading of
unity should include the inter-phase coupling effects if the particle inertia is significant
(Nabavi, Di Renzo & Kim 2022). For such configurations, the specific functional form of
the modelled SGS stress is not usually known a priori, and related theoretical studies are
scarce, making the modelling study difficult.

A number of previous studies examined the model errors of the SGS closure
and proposed alternative formulations different from the prevailing eddy-viscosity-type
models, some of which are described in Vreman, Geurts & Kuerten (1997), Meneveau
& Katz (2000) and Pope (2001). Lund & Novikov (1992) combined the symmetric and
anti-symmetric components of the velocity gradient tensor and obtained a complete set
of their products. Silvis, Remmerswaal & Verstappen (2017) investigated the desired
mathematical and physical properties of SGS model and developed a framework for
understanding and analysing existing SGS models, by which a new model can be
developed. The autonomic closure (King et al. 2016) does not make any assumption
about SGS model form and determines its general non-parametric relation dynamically.
Langford & Moser (1999) developed a SGS modelling framework by which an
approximation to an ‘ideal’ closure that accurately determines one-time, multipoint
statistics is generated from two-point statistics using stochastic estimation (Adrian 1990),
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later tested a posteriori by the same authors (Langford & Moser 2004). Algorithms based
on, for example, the neural networks could provide some breakthroughs to SGS modelling
(Duraisamy, Iaccarino & Xiao 2019; Zhou et al. 2019; Sarghini, De Felice & Santini 2003;
Xie, Yuan & Wang 2020; Vinuesa & Brunton 2022; Xu et al. 2023).

In addition, several previous studies demonstrated that spectral energy transfer can be
leveraged in SGS modelling. The recent series of work done by Domaradzki (2021a,b,
2022) formulated LES in terms of the Fourier spectral energy transfer. An effective,
spectral eddy viscosity is introduced with an assumption about the inertial subrange and a
model spectrum. It is noteworthy that the formulation is capable of minimising modelling
inputs (thus, nearly autonomous) (Domaradzki 2022). Although spectral energy flux is
not incorporated directly, the minimum dissipation model (Rozema et al. 2015) is built
upon an idea involving spectral kinetic energy. A similar argument is used to develop the
dynamic global models (Park et al. 2006).

1.2. Proposed SGS modelling framework
This study develops a framework in which a SGS closure model that satisfies a certain
energy criterion is extracted a priori from the corresponding direct numerical simulation
(DNS) data. Similar to many previous studies, it is assumed that the SGS stress can
be modelled algebraically using the resolved-scale quantities in the LES equations.
However, its specific functional form is not presumed but determined using the DNS data
a priori. This procedure implies that grid-independent LES is feasible. A second and more
important assumption is that a balance of spectral energy exchange between the unresolved
triadic interactions and modelled SGS dissipation is both necessary and sufficient for
stable and accurate LES prediction. This is consistent with the fundamental concept of
LES where a SGS closure should dissipate the correct amount of the resolved kinetic
energy that should be transferred via the triadic interactions to SGS motions. It is noted
that such energy transfer should hold not only statistically but also locally in both scale
and space, since the modelled SGS dissipation is not just a statistical quantity if the LES
equations are time integrated in the physical space.

The second assumption is justified for turbulence in equilibrium by examining the
transport equation of the Fourier spectral energy in the LES context (Pope 2001)

d
dt

Ê(κ, t)︸ ︷︷ ︸
Rate of change
of the Fourier

spectral energy

= −2νκ2Ê(κ, t)︸ ︷︷ ︸
Spectral energy flux
due to the physical

viscosity

+ T̂f (κ|κcut, t)︸ ︷︷ ︸
Spectral energy flux

due to the triadic interactions
involving resolved scales

+ T̂r(κ|κcut, t),︸ ︷︷ ︸
Spectral energy flux

due to the triadic interactions
involving unresolved scales

+ T̂F(κ, t),︸ ︷︷ ︸
Body force

forcing

(1.1)

where Ê is the Fourier energy spectrum, κ is the Fourier wavenumber, κcut is the filter
cutoff wavenumber (thus, κ < κcut in LES) and ν is the kinematic viscosity. In (1.1), the
viscous dissipation is always negative and local in κ (thus, no inter-scale interactions).
Although T̂f (second term on the right-hand side) involves the triadic interactions, they
are resolved on the LES grid. Only T̂r (third term on the right-hand side) is unclosed,
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requiring SGS modelling. Integrating (1.1) over the resolved scales κ < κcut,

����������0d
dt

∫ κcut

0
Ê(κ, t) dκ︸ ︷︷ ︸

Rate of change of the
total resolved energy

= −
∫ κcut

0
2νκ2Ê(κ, t) dκ︸ ︷︷ ︸

Total resolved
viscous flux

+
∫ κcut

0
T̂f (κ|κcut, t) dκ︸ ︷︷ ︸

Total resolved
cross-scale flux

+
∫ κcut

0
T̂r(κ|κcut, t) dκ︸ ︷︷ ︸

Total unresolved
cross-scale flux

+
∫ κcut

0
T̂F(κ, t) dκ,︸ ︷︷ ︸

Total energy flux
due to body force

(1.2)

it can be seen that a balance among the spectral energy fluxes must be achieved in LES
by correctly modelling T̂r. In general, existing closure models are not designed to satisfy
such energy balance independently of grid resolution. Without it, spectral energy transfer
could be altered in a way dependent on model and grid, providing excessive or insufficient
dissipation to the resolved scale motions.

Although spectral energy balance is elucidated using the Fourier theory, it is not
straightforward how such theory can be utilised to enforce a condition similar to
(1.1) or (1.2). Even though spectral kinetic energy and spectral energy fluxes can be
computed using the Fourier transformation at an excellent spectral resolution (Batchelor
1953), the domain has to be periodic and all spatial information is lost in evaluating
the transformation (that is, no spatial resolution). Spatially local interactions are often
encountered in turbulence with multiphysics (and even isotropic turbulence) and require
to combine a large number of Fourier modes. Thus, the Fourier formulation is not ideal
for modelling the SGS stress in the physical space, although it is an excellent statistical
analysis tool for ideal turbulent flows such as homogeneous turbulence.

The modelling challenges discussed previously can be addressed to certain extent
using different techniques. Windowed Fourier transformation (in particular, the Gabor
transformation) and coarse graining (Aluie 2013), among several others, can be used as
alternatives for their finite spatial resolution. Using the Reynolds decomposition and the
fluctuating turbulence kinetic energy (TKE), local energy transfer across a prescribed
cutoff scale can be computed (Meneveau & Katz 2000). Spatial information is made
available by formulation. However, the procedure is statistical and suited more for analysis
than modelling.

Orthogonal wavelet transformation, in particular the multiresolution framework (Mallat
1989), is one of the techniques by which the known limitations of the Fourier analysis
can be addressed for the SGS modelling purposes. The fundamental differences between
the wavelet framework and the standard (or windowed) Fourier transformation are well
documented in the literature (Mallat 1999). By design, wavelet provides a spectrally
and spatially local decomposition of turbulent motions in a physically consistent and
computationally efficient fashion. Moreover, it can be formulated in a way similar to
the Fourier transformation to examine the spectral energy transport of turbulent flows
(Meneveau 1991). A common practice is that the spatial distribution of spectral kinetic
energy and spectral energy fluxes obtained by a wavelet transformation is interpreted as
statistical variability or intermittency (Meneveau 1991).

This study proposes that the spectral and spatial information made available by wavelet
can be exploited for optimising or discovering SGS closure terms a priori. For existing
closure models such as the Smagorinsky model, the proposed optimisation procedure
generates scale-dependent, optimal model constants in a sense of spectral energy balance
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between the resolved and unresolved-scale motions. In doing so, the behaviour of SGS
models as a nominal LES grid is refined is studied systematically in a priori context. In
addition, the procedure is useful to examine the limiting behaviour of closure models at
DNS-like grid resolution. Consequently, it is argued that wavelet is more than a statistical
tool and can be crafted as a useful technique for constructing a turbulence modelling
framework including configurations where turbulent momentum transfer interacts in two
ways with multiphysics.

This paper is structured as follows. The wavelet multiresolution analysis (WMRA)
technique is formulated in the LES context in § 2. The algorithm for optimising a SGS
closure is outlined in § 3. The proposed formulation is applied to the DNS data of isotropic
turbulence, and the simulation results of DNS and the corresponding LES using the
standard dynamic Smagorinsky model (DSM) are found in § 4. The optimisation results
are reported, and related discussions are provided in § 6. A posteriori validations using the
optimised constants follow in § 7. The paper concludes in § 9 proposing relevant future
works.

2. WMRA framework for SGS modelling

The present study employs a WMRA framework originally developed by Meneveau
(1991) for studying the spectral energy transport and later extended to turbulent channel
flows (Dunn & Morrison 2003), turbulent combustion (Kim et al. 2018), droplet-laden
turbulence (Freund & Ferrante 2019) and particle-laden turbulence (Nabavi et al. 2022).
Compared with the Fourier analysis of spectral energy transfer, wavelet offers several
distinct advantages (Meneveau 1991; Kim et al. 2018; Nabavi et al. 2022). With a
sufficiently complex wavelet basis, a spatial localisation of the analysis at a good spectral
resolution can be achieved. This study extends the analysis framework to SGS modelling
in which an optimal model constant (or a set of constants) is estimated based on an
argument that spectral energy balance is required between the resolved and unresolved
scales. Moreover, it is suggested that the modelling framework can potentially extract
an optimal functional form of the SGS stress satisfying the spectral energy balance. The
model constant estimation is performed a priori using the corresponding DNS database,
but a posteriori results validate the findings.

Following the wavelet formulations developed to analyse the spectral energy transfer
of turbulence (Meneveau 1991; Kim et al. 2018; Nabavi et al. 2022), this study applies
the WRMA framework to evaluate the spectrally and spatially local energy transfer due
to the unresolved triadic interactions of momentum. Given a SGS closure, this study also
uses WMRA to compute the modelled SGS dissipation per scale and location. The current
modelling procedure enforces weakly a balance between the two spectral energy fluxes so
that the SGS closure is optimised. In this section, the WMRA framework for spectral
energy transfer is summarised first, and the specific procedure for estimating optimal
model coefficients and discovering an optimal model form is described. The notation is
consistent with that of Nabavi et al. (2022).

For a scalar field C[x0, t] (such as a componentwise velocity ui, where i = 1, 2, 3)
defined at the cell centre locations x0 of a computational grid with uniform spacing
Δ discretising a triply periodic domain, the three-dimensional (3-D) discrete wavelet
transformation is applied to obtain a wavelet series expansion of C[x0, t]. In this study,
Δ is used to denote the DNS grid spacing. The 24-point Coifman basis is used to conduct
wavelet transformation. The standard orthonormal wavelet series expansion (Mallat 1999;
Meneveau 1991) is employed, and the complete details are found in Nabavi et al. (2022).
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For an integer scale index s, the corresponding wavenumber is defined as κs = 2π/�s
where �s = 2sΔ is the dyadic wavelet grid spacing along a direction. The maximum
scale level supported by a discrete data of size N along a direction is S = log2 N. Thus,
s = 1 and S indicate the smallest resolved and largest scales, respectively, with the
corresponding length scales being �1 = 2Δ and �S = 2SΔ (that is, the side length of
the domain). Such definitions show that the spectral and spatial resolutions of the wavelet
analysis become coarser and finer, respectively, toward small scales (and vice versa for
large scales). Using �s, the wavelet colocation grid points xs are defined. The wavelet
transformation retains information on direction, characterised by the integer directionality
index d = 1, . . . , 23 − 1.

For the incompressible Navier–Stokes equations

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂xj∂xj
+ fi, (2.2)

where ui is a velocity component (i = 1, 2, 3), p is the hydrodynamic pressure, ρ is the
mass density of fluid and fi is an external forcing, TKE is defined as k = 1

2 uiui, and the
wavelet energy spectrum at a given scale s is given locally at xs by

E

∧

(s)[xs, t] = 2−3s

κs ln 2

7∑
d=1

1
2

u∧(s,d)
i [xs, t]u∧(s,d)

i [xs, t], (2.3)

in a triply periodic domain. In a non-periodic domain, the direction dependence is
kept in (2.3) as E

∧

(s,d). By formulation, wavelet-transformed quantities retain both
spectral and spatial information (that is, dependence on s and xs) at a cost of reducing
spectral resolution at high wavenumbers. However, the reduced spectral resolution can be
compensated by using a more complex basis such as the Coifman family. The directional
information (that is, dependence on d) is useful to examine anisotropy in turbulence.
Following Nabavi et al. (2022) and Meneveau (1991), the transport equation of the wavelet
energy spectrum is given as

∂

∂t
E

∧

(s)[xs, t] = T

∧(s)
V [xs, t] + T

∧(s)
C [xs, t] + T

∧(s)
P [xs, t] + T

∧(s)
F [xs, t], (2.4)

where the right-hand side terms correspond to spectral kinetic energy fluxes due to
the viscous diffusion, convective interactions, pressure transport and external forcing,
respectively. The complete details of the spectral energy fluxes are referred to Nabavi
et al. (2022). In this study, the mean wavelet energy spectrum E

∧(s)[t] = 〈E

∧(s)[xs, t]〉xs is
examined where 〈 〉xs = (23s/N3)

∑
xs

denotes average over the wavelet-colocation grid

points at scale s. The mean energy fluxes are defined in the same way as T

∧(s)
X [t] =

〈T ∧(s)X [xs, t]〉xs where X = V , C, P and F. Summing the mean wavelet energy spectrum
and the mean spectral energy fluxes recovers TKE (as required by the Plancherel theorem)
and the global energy balance in the physical space, respectively.

For SGS modelling study, the spectral energy fluxes are further formulated in the LES
context. Similar to the formulation in the Fourier space (Pope 2001), the transport equation

982 A18-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.101


Optimising SGS closures for spectral energy transfer

of the resolved wavelet energy spectrum is written at s � scut as

∂

∂t
E

∧

(s,d)[xs, t]︸ ︷︷ ︸
Rate of change of

the resolved wavelet
spectral energy

= T

∧(s,d)
V [xs, t]︸ ︷︷ ︸

Spectral energy flux
due to the physical

viscosity

+ T

∧(s,d)
C,f [xs, t]︸ ︷︷ ︸

Spectral energy flux
due to the resolved
triadic interactions

+ T

∧(s,d)
C,r [xs, t]︸ ︷︷ ︸

Spectral energy flux
due to the unresolved
triadic interactions

+ T

∧(s,d)
P [xs, t]︸ ︷︷ ︸

Spectral energy flux
due to the pressure

gradient

+ T

∧(s,d)
F [xs, t],︸ ︷︷ ︸

Spectral energy flux
due to a body force

(2.5)

where the right-hand side terms correspond to the spectral energy fluxes due to different
mechanisms. The directional dependence is retained for optimisation. In evaluating the
triadic interaction terms in (2.5), the scale decomposition proposed by Meneveau (1991)
is used, by which velocity field is decomposed into components smaller and larger than a
prescribed filter cutoff scale scut via

ui[x0, t] = u<scut
i [x0, t] + u�scut

i [x0, t] =
scut−1∑

s=1

u(s)
i [x0, t] +

S∑
s=scut

u(s)
i [x0, t]. (2.6)

Using (2.6), the nonlinear convection term is rewritten as

∂

∂xj
(uiuj) = ∂

∂xj

(
uiuj − u�scut

i u�scut
j

)
+ ∂

∂xj

(
u�scut

i u�scut
j

)
. (2.7)

In the current a priori modelling framework, the true LES field is not available and should
be estimated. One possible approach is to use a threshold filtering (Goldstein & Vasilyev
2004; De Stefano & Vasilyev 2012; De Stefano, Dymkoski & Vasilyev 2022), which is not
followed by the current study. In the Fourier context, the resolved-scale motions can be
estimated using scale-sharp filtering. In general, such practice does not lead to an accurate
representation of the true LES solution. Furthermore, numerical errors associated with
performing LES a posteriori are not taken into account. This is presumably the case for
wavelet scale-cutoff filter (Meneveau 1991). However, in order to develop the optimisation
framework, this study assumes that the superfilter scale velocity field approximates the
resolved-scale motions, namely

ūi ≈ u�scut
i , (2.8)

which solves the filtered momentum equations

∂ ūi

∂t
+ ūj

∂ ūi

∂xj
= − 1

ρ

∂ p̄
∂xi

+ ν
∂2ūi

∂xj∂xj
−

∂τ r
ij

∂xj
+ f̄i, (2.9)

where the overbar denotes a LES filtering operation and τ r
ij is the deviatoric part of the SGS

stress tensor, namely, τR
ij = τ r

ij + 1
3τR

kkδij. The isotropic part of the SGS stress is included in
the filtered pressure (Pope 2001). Similar to the Fourier formulation, the last term in (2.7)
represents the resolved triadic interactions, and the corresponding spectral energy flux is
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estimated a priori as

T

∧(s,d)
C,f [xs, t] = − 2−3s

κs ln 2
u∧(s,d)

i [xs, t]u�scut
j

∂u�scut
i
∂xj

∧(s,d)

[xs, t]. (2.10)

The spectral energy flux due to the resolved triadic interactions can be also written for
s > scut as

T

∧(s,d)
C,f [xs, t] =

S∑
s′,s′′=scut

∑
xs′ ,xs′′

7∑
d′,d′′=1

u∧(s,d)
i [xs, t] u∧(s

′,d′)
j [xs, t]

∂ui

∂xj

∧(s′′,d′′)

[xs, t], (2.11)

where a scale triad involves three resolved scales (s, s′, s′′), all larger than scut. The
unresolved component of the triadic energy transfer T

∧(s,d)
C,r is not available a posteriori. It

can be estimated a posteriori using, for instance, presumed probability density function
(Pope 2001), spectral enrichment (Bassenne et al. 2019; Ghate & Lele 2020) and
autonomic closure (King et al. 2016). However, those approaches require extra modelling
efforts or assumptions. For modelling, it can be evaluated a priori using the spectral energy
flux due to the full triadic interactions (represented by the DNS data) via

T

∧(s,d)
C,r [xs, t] = T

∧(s,d)
C [xs, t] − T

∧(s,d)
C,f [xs, t]. (2.12)

In (2.5), the physical viscous diffusion is primarily an energy sink, that is, T

∧(s,d)
V � 0.

Similar to the LES formulation in the Fourier context, the triadic energy transfer involving
the resolved-scale motions, T

∧(s,d)
C,f , is represented on the LES grid and does not require

any modelling, as indicated by the resolved scale triad in (2.11). It is the unresolved
triadic interaction term T

∧(s,d)
C,r that requires a SGS closure. The pressure transport T

∧(s,d)
P

does not involve any inter-scale transfer. Summing (2.5) over all resolved scales (s > scut),
wavelet colocation points, and directions yields a spectral energy balance for turbulence in
equilibrium in the LES context:

���������������0
∂

∂t

S∑
s=scut

∑
xs

7∑
d=1

κsE

∧

(s,d)[xs, t] =
S∑

s=scut

∑
xs

7∑
d=1

κsT

∧(s,d)
V [xs, t]

+
S∑

s=scut

∑
xs

7∑
d=1

κsT

∧(s,d)
C,f [xs, t]

+
S∑

s=scut

∑
xs

7∑
d=1

κsT

∧(s,d)
C,r [xs, t]

+
S∑

s=scut

∑
xs

7∑
d=1

κsT

∧(s,d)
P [xs, t]

+
S∑

s=scut

∑
xs

7∑
d=1

κsT

∧(s,d)
F [xs, t]. (2.13)

This study seeks to find a SGS closure that enforces a spectral energy balance constraint
between the resolved and unresolved scales. Such energy balance is checked a priori
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Optimising SGS closures for spectral energy transfer

or a posteriori (Meneveau & Katz 2000). However, this study enforces the energy
balance explicitly so that an analytical form of the optimal (in a sense of spectral energy
balance) SGS closure is discovered a priori. Although the modelling procedure uses
a corresponding DNS database, the optimisation uncovers an analytical form of the
SGS closure terms, by which further generalisation can be made towards different flow
conditions. Considering that the convective energy flux is responsible for redistributing
energy over a range of scales (Meneveau & Katz 2000), it is proposed that the spectral
energy transfer due to the modelled SGS stress should balance with T

∧(s,d)
C,r . In order to

do so, (2.9) is formulated similar to (2.5) to obtain a transport equation of the resolved
spectral kinetic energy equation as

∂

∂t
Ē

∧

(s,d)[xs, t]︸ ︷︷ ︸
Rate of change of

the resolved wavelet
spectral energy

= T̄

∧

(s,d)
V [xs, t]︸ ︷︷ ︸

Spectral energy flux
due to the physical

viscosity

+ T̄

∧

(s,d)
C,f [xs, t]︸ ︷︷ ︸

Spectral energy flux
due to the resolved
triadic interactions

+ T̄

∧

(s,d)
SGS [xs, t]︸ ︷︷ ︸

Spectral energy flux
due to the modelled SGS

stress

+ T̄

∧

(s,d)
P [xs, t]︸ ︷︷ ︸

Spectral energy flux
due to the pressure

gradient

+ T̄

∧

(s,d)
F [xs, t],︸ ︷︷ ︸

Spectral energy flux
due to a body force

(2.14)

where the overbar denotes the wavelet energy spectrum and spectral energy fluxes
evaluated using the LES velocity and pressure. With an assumption that (2.14) converges
to (2.5) by using an ideal SGS closure, the following condition is enforced as

T

∧(s,d)
C,r [xs, t] ≈ T̄

∧

(s,d)
SGS [xs, t] where s > scut, (2.15)

where scut = 1, . . . ,S , and T̄

∧(s,d)
SGS is the modelled SGS dissipation evaluated a posteriori.

One may presume a closure model and conduct LES to obtain T̄

∧(s,d)
SGS . If so, however,

enforcing (2.15) between the filtered DNS and a posteriori LES solutions locally in
space and in time becomes questionable. Instead, the modelled SGS energy flux T̄

∧(s,d)
SGS

is approximated by its a priori subfilter-scale (SFS) flux T̄

∧(s,d)
SFS as

T̄

∧

(s,d)
SGS [xs, t] ≈ T

∧(s,d)
SFS [xs, t] = − 2−3s

κs ln 2
u∧(s,d)

i [xs, t]
∂τ r

ij

∂xj

∧

(s,d)[xs, t]. (2.16)

This formulation is based on an observation that T

∧(s,d)
C,r is the only term in which the

unresolved scales are allowed to alter energy contained in the resolved scales (in a priori
context). The other mechanisms are either scale local or dependent on the resolved scales
only, and thus no closure model is needed. In this study, (2.15) and (2.16) are used as a
constraint for which a functional form of a SGS closure τ r is optimised in terms of spectral
energy transfer. However, due to the stochastic nature of turbulence and a limitation set by
a priori approach, the constraint is enforced weakly.

3. Algorithm for discovering an optimal SGS closure

This section describes the algorithm for optimising an existing SGS closure and
discovering a new model, both from a perspective of optimal energy balance between the
resolved and unresolved scales. It is emphasised that the proposed formulation determines
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ηk s=scut xs d=1

s 7

Figure 1. Proposed SGS modelling using a wavelet multiresolution framework.

an analytical form of the SGS closure τ r
ij in (2.9) in such a way that it achieves optimally

the spectral energy balance (2.15) with respect to the corresponding DNS data. Although
the modelling procedure is a priori, it is not limited to approximating the resolved-scale
velocity field. The formulation educes the SGS stress by enforcing weakly the spectral
energy balance existing in the analytical LES transport equation (2.5). Thus, it is believed
that uncertainties associated with a priori estimation could be reduced to a certain extent.

Figure 1 illustrates schematically the proposed modelling procedure for turbulent flows
in a triply periodic box. The overall procedure remains the same for other configurations.

(i) Wavelet transformation. Orthonormal wavelet transformation is applied to an
instantaneous snapshot obtained from DNS, namely,

u∧(s,d)
i [xs, t] =

∑
x0

ui[xs, t]G(s,d)[x0 − xs], (3.1)

where G(s,d)[x0 − xs] is a 3-D discrete wavelet basis obtained by a tensor product of
one-dimensional wavelet basis.

(ii) Estimate the resolved-scale motions. The filter cutoff scale scut is chosen such
that scut = log2(Δ̄f /Δ) where Δ̄f is a priori LES filter width. The resolved-scale
motions are estimated using (2.8). Even if the resolved fluid motions are
approximated by the filtered velocity field, Δ̄ ≈ Δ̄f is not generally true. Instead,
most of the literature assume that the LES filter width is several times larger than
the LES grid spacing. Wavelet coefficients at s < scut are set to be zero, which is
equivalent to suppressing fluid motions smaller than the a priori LES filter width
Δ̄f = 2scutΔ. Although such operation does not behave as a scale-sharp filter in
the same way as the Fourier transformation does, scales smaller than s = scut are
suppressed and only larger (more precisely, superfilter) scales are retained:

ūi[x0, t] ≈ u�scut
i [x0, t] =

S∑
s=scut

∑
xs

7∑
d=1

u∧i[xs, t]G(s,d)[x0 − xs]. (3.2)

(iii) Evaluate the targeted spectral energy flux across the cutoff scale. Using the
WMRA framework (Meneveau 1991; Nabavi et al. 2022), the inter-scale energy flux
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T

∧(s,d)
C,r involving the unresolved-scale motions for a given scut is computed using

(2.10) and (2.12). The inter-scale energy flux is defined at the wavelet colocation
points, and its minimum spatial resolution is the same as the corresponding LES
grid (that is, Δ̄). Thus, it can serve as a targeted spectral energy flux for a selected
filter cutoff scale, which a ‘correct’ SGS closure should transfer to scales smaller
than scut (that is, subgrid scales).

(iv) Inverse wavelet transformation. Wavelet coefficients at s < scut are discarded
and only those at s � scut are transformed back to the physical space. Thus, the
inverse transformation is obtained on a grid having the same resolution as the LES
grid, not the original DNS grid. This step completes performing LES a priori.

(v) Evaluate the modelled spectral energy flux on a nominal LES grid. Using
the estimated resolved-scale velocity field u�scut

i ≈ ūi defined on the physical-space
grid of spacing Δ̄, the modelled SGS energy dissipation is calculated. An existing
SGS closure such as the Smagorinsky model is employed so that the SGS
dissipation is calculated using (2.16) parameterised by unknown coefficients ηk,
where k = 1, 2, . . . ,K with K being the number of the undetermined model
constants (for instance, K = 1 for the Smagorinsky model). The unknown constants
are determined at the next optimisation step.

Although this study evaluates the SGS energy dissipation using an existing
closure model, the following generalisation is possible without any reformulation.
In other words, a functional form of the SGS stress may remain undetermined, and
a general functional relation combining velocity and its gradients is assumed as

τ r
ij ≈ f (u, ∇u, ∇2u, . . .), (3.3)

with the corresponding unknown coefficients ηk. Indeed, this generates a
combinatorially large number of the candidate terms (that is, K � 1) since the
nonlinear products and the magnitude of the individual terms are also taken
into account. This practical difficulty can be addressed partially by performing
optimisation a priori and enforcing the energy constraint weakly. In addition,
dimensional, physical and tensorial requirements can eliminate a large number
of terms in (3.3) in a way similar to what Silvis et al. (2017) proposed. Using
standard algorithms in multivariate optimisation, it is possible to determine the set
of unknowns for many candidate terms in (3.3). Still, (3.3) is not most convenient to
incorporate for the current study where the feasibility of the optimisation framework
is assessed. Thus, (3.3) is not used in this study, and to demonstrate the feasibility
of the formulation, four different models for τ r

ij containing one or two undetermined
constants are examined in § 6.

(vi) Optimise for the model constants. For a general SGS closure for τ r
ij , the

unknowns ηk where k = 1, 2, . . . ,K are determined a priori by enforcing (2.15)
weakly in the least-squares sense. Although the number of the unknowns (that is,
K) can be very large depending on the choice of the candidate terms in τ r

ij , the
number of data points on the filtered DNS database is usually much larger than K,
making (2.15) a strongly overdetermined system. By doing so, it is anticipated that
uncertainties associated with the present a priori modelling approach and numerical
errors associated with wavelet transformation could be reduced.

For a given filter cutoff scale scut and a flow snapshot at t = tm, where m =
1, 2, . . . ,M, the unknown model coefficients are determined by minimising the
scale-normalised, squared error between the unresolved triadic and the modelled
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SGS energy fluxes via

η
(scut)
k [tm] = arg min

ηk

S∑
s=scut

∑
xs

7∑
d=1

2−3s

κs ln 2
|T ∧(s,d)

C,r [xs, tm] − T

∧(s,d)
SFS [xs, tm]|2, (3.4)

where k = 1, 2, . . . ,K. It should be noted that T

∧(s,d)
C,r remains the same for different

closure models. The minimisation problem is solved using a standard multivariate
optimisation algorithm. In addition, the minimisation is repeated for a series of flow
snapshots, and ηk is averaged over time if turbulence is stationary. The optimisation
procedure is repeated over a range of the filter cutoff scale scut. In addition, the
minimisation problem can be penalised by including a regularisation parameter to
promote the sparsity of the unknown constants, useful to make the discovered SGS
closure compact. However, the present study does not include any regularisation
term. The modelling algorithm is summarised as follows.

The discovered SGS closure is examined for its mathematical and physical properties.
In addition, the closure is compared with the existing LES models to understand the
advantages and drawbacks, useful in improving the algorithm outlined in this section.
The discovered model is implemented in a computational fluid dynamics code and tested
a posteriori for canonical flows.

This section concludes by summarising some of the differences and similarities between
the current wavelet framework and the optimal-LES formulation of Langford & Moser
(1999). A primary conceptual difference is that Langford & Moser (1999) adopted a
concept of an ‘ideal’ LES in a context of one-time, multipoint statistical accuracy,
whereas the current formulation focuses on numerical stability as a consequence of
matched spectral energy transfer across a nominal filter cutoff scale. In formulating
optimisation, Langford & Moser (1999) minimised a least-squares difference between the
‘true’ SGS force and modelled SGS force, both found on the right-hand side of the filtered
Navier–Stokes equations. The wavelet framework uses the unresolved triadic energy flux
and modelled SGS dissipation, both found on the right-hand side of the filtered kinetic
energy equation. In performing optimisation, Langford & Moser (1999) used stochastic
estimation (Adrian 1990) with N-point correlations as model inputs so that the unknown
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estimation kernels are determined. The current modelling is formulated in a wavelet
multiresolution context, and available DNS fields are provided so that model constants are
determined. Both formulations allow to keep an arbitrary number of terms in the modelled
SGS stress, although the number is not known a priori. In Langford & Moser (1999), a
correct inter-scale energy transfer towards the SGS motions was reported as a consequence
of using an optimal LES formulation, whereas such energy transfer was evaluated a priori
and used by the wavelet framework as a part of optimisation criteria. Using wavelet
offers additional benefits by further constraining optimisation. For instance, the unresolved
triadic energy flux can be conditioned to be negative so that energy backscatter effects on
SGS closure can be studied. Directional information available in wavelet statistics allows
to study anisotropy effects on SGS modelling. Overall, although both formulations are
rooted in the concept of optimisation for determining SGS models, technical differences
seem to be significant.

4. Simulations of homogeneous isotropic turbulence

The proposed modelling strategy is tested for forced homogeneous isotropic turbulence
(HIT) simulated by DNS and a series of LES, respectively. The Smagorinsky closure
(Smagorinsky 1963), in particular, its dynamic variant (Germano et al. 1991) is employed
for validation. In the classic Smagorinsky model (CSM), the Boussinesq approximation is
invoked, and the deviatoric part of the SGS stress tensor τ r

ij is modelled as

τ r
ij ≈ −2C2Δ̄2|S̄|S̄ij, (4.1)

where C is the Smagorinsky constant, S̄ij is the filtered strain-rate tensor, and |S̄| is the
magnitude of the filtered strain-rate tensor, namely,

|S̄| =
√

2S̄ijS̄ij. (4.2)

Thus, the eddy viscosity is defined as νt = C2Δ̄2|S̄| so that τ r
ij = −2νtS̄ij. In the DSM

(Germano et al. 1991), the Smagorinsky constant C is not prescribed but determined using
the dynamic procedure. Computational work is done using the NGA solver (Desjardins
et al. 2008) that supports scalable, massively parallel simulations of incompressible
turbulent flows. A kinetic-energy-conserving, second-order, centred finite-difference
discretisation is employed, which is fully validated in the past for the LES of various
turbulent flows. Additional tests are performed to confirm that the NGA code is
conservative and its numerical errors do not affect the conclusion of this study.

Both DNS and LES runs are performed in the same computational domain of a triply
periodic box with the side length of L = 2π. A total of 5123 control volumes discretise
the computational box of DNS (thus, Δ = 2π/512), and the LES grid resolution varies
from Δ̄ = 2π/256 (2563 grid points) to Δ̄ = 2π/32 (323 grid points) by a factor of 2.
Thus, 4 different LES grid resolutions (323, 643, 1283 and 2563 grid points) are examined
in this study. Variables are made dimensionless in the same way as Bassenne, Moin
& Urzay (2018). To sustain turbulence, an external forcing (Bassenne et al. 2016) is
applied with TKE kept constant over time, that is k ≈ k∞, in which variables having a
subscript ∞ are measured after the DNS prediction becomes statistically stationary. The
Reynolds number based on the Taylor microscale λ is Reλ = u�λ/ν = 85, where u� is the
integral velocity (also, the root mean square of the fluctuating velocity). For DNS, spatial
resolution is κmax�k,∞ = 1.6, where κmax = π/Δ is the maximum wavenumber supported
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Figure 2. Time evolution of (a) the normalised viscous dissipation rate and (b) the Smagorinsky constant
determined by the dynamic process. In (b), the horizontal dotted line corresponds to the theoretical estimation
of Lilly (1967).

by the DNS grid and �k,∞ is the Kolmogorov length scale. The nominal eddy-turnover
time t�,∞ = 1

3 (u′
iu

′
i)/ε estimated using the DNS result is used to normalise time. The

velocity field is initialised to be solenoidal and isotropic using a prescribed Passot–Pouquet
spectrum (Passot & Pouquet 1987). The computational time-step size is determined so
that the resulting Courant number is approximately 0.5. For analysis and modelling, 12
instantaneous snapshots are sampled every 1.6t�,∞ after the initial transient effects become
insignificant at t � 14.4t�,∞ (see figure 2a).

Figure 2(a) shows the time evolution of the dissipation rate. As the LES grid is
refined, the dissipation rate converges to its true value predicted by DNS. Following
the initial overshoot, the dissipation rate remains more or less constant for all cases
(even though it is not forced explicitly to do so), qualitatively similar to Bassenne
et al. (2016). In the LES context, Lilly (1967) estimated the Smagorinsky constant via
C2

S = 1/π2(2/3CK)3/2 ≈ 0.17322, where CK = 1.5 is the Kolmogorov constant and the
LES filter width is assumed in the inertial subrange. In figure 2(b), the theoretical value
is compared with the dynamically determined Smagorinsky constants. As the LES grid
is refined, the model constant decreases monotonically but does not converge to zero (as
expected). With 643 grid points, the dynamic model predicts the Smagorinsky constant
very close to the theoretical estimation, implying that the LES filter width of the 643-point
grid LES using the standard dynamic model lies in the inertial subrange.

For validation, the Fourier energy spectrum is plotted in figure 3. The current DNS result
shows good agreement with that of Bassenne et al. (2018). For the 323-point grid, the LES
result of Bassenne et al. (2019) is also compared. Under the same flow condition and using
the same SGS closure, the energy spectra of Bassenne et al. (2019) and the present study
agree well with each other. On 1283-point grid, it appears that the LES grid width is in
the dissipation range, and LES achieves the DNS-like resolution with 2563 points as the
energy spectra are indistinguishable between DNS and LES.

Figure 3(b) shows results when no explicit SGS model is used. On coarse grids
(�643 points), LES prediction is largely inaccurate due to insufficient spatial resolution
and missing SGS dissipation. The energy spectrum becomes similar to that of DNS
on 2563-point grid. However, mild energy pileup is observed at high wavenumbers on
1283-point grid. Figure 3(b) shows that on �643 grids, SGS models are needed for
accurate turbulence prediction. It also shows that numerical errors associated with the
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Figure 3. Time-averaged Fourier energy spectra for LES results using (a) the DSM and (b) no explicit SGS
model.
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Figure 4. Time-averaged wavelet spectra of (a) TKE and (b) enstrophy. In (a), the Fourier energy spectra of
Bassenne et al. (2018) (DNS on 5123 grid points) and Bassenne et al. (2019) (DSM on 323 grid points) are
shown. In (b), the Fourier enstrophy spectrum of Bassenne et al. (2018) (DNS on 5123 grid points) is shown.

computational code and its discretisation are not large enough to affect the conclusion of
the present modelling and simulation.

5. Mean wavelet statistics for the LES database

Wavelet analysis is performed on the LES-generated snapshots of the forced HIT to
examine the LES-grid convergence of the mean wavelet energy fluxes. Thus, the analysis
results reported in this section are a posteriori. The standard DSM is used. Figure 4(a)
shows the wavelet energy spectra for the current DNS and LES predictions. Due to the
good spectral accuracy of the Coifman basis coif4 used in this analysis, the wavelet
spectra follow closely the Fourier energy spectrum. LES results using �643 points
show insignificant differences with each other. Energy pileup at high wavenumbers is
expected and attributed to the spectral leakage of wavelet transformation (Mallat 1999).
In figure 4(b), the wavelet enstrophy spectra are shown. Unlike the wavelet energy
spectrum, the LES-grid dependence is more pronounced, showing a relevance of using
the enstrophy spectrum to show the LES-grid effects. In both figures, LES achieves a
DNS-like resolution with �2563 grid points.
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Figure 5. Time-averaged mean wavelet spectral energy fluxes due to (a) the resolved convective momentum
transport, (b) physical viscosity, (c) modelled SGS energy transfer, (d) pressure gradient and (e) external
forcing. In (a,d), the horizontal dotted line denotes the neutral energy transfer.

Figures 5(a–e) show the spectral energy fluxes due to different mechanisms of the
momentum transport in (2.5). For a stationary HIT, the weighted sum of all the energy
fluxes is equal to zero (less than 0.01 % of u3

k,∞ for all the cases) so that the instantaneous
kinetic energy remains the same, namely, dk̄/dt ≈ 0, as required by (2.13). For its nature of
redistributing energy across scales (Meneveau & Katz 2000), the wavenumber-weighted
sum of 〈T ∧(s)C,f 〉xs is negligible. The physical viscous and modelled SGS energy transfer
mechanisms are purely dissipative on average across all scales (see figure 5b,c) and thus
negative if integrated with respect to κs. For the current incompressible flow, the pressure
transport mechanism is much less important than the others except for the largest scale
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(see figure 5d). The linear forcing that sustains turbulence is a net energy source by design
(Bassenne et al. 2016), and thus its mean energy input is positive (see figure 5e).

Figure 5(a) shows the mean wavelet energy flux due to the resolved triadic interactions.
For DSM (1283) and DSM (2563), 〈T ∧(s)C,f 〉xs nearly coincides with the DNS flux, whereas
the lower-resolution LES results show clear deviation. Thus, N3 � 1283 points is sufficient
to directly resolve the mean triadic interactions of this forced HIT. As figure 5(b) shows,
the mean dissipation range is nearly resolved using N3 = 2563 grid points, whereas it is
not completely the case for DSM (1283). As a result, the SGS energy transfer for DSM
(1283) is small but not negligible as shown in figure 5(c). On the other hand, the mean
spectral energy fluxes for DSM (2563) are nearly indistinguishable with the DNS fluxes
(except for the pressure mechanism, as discussed in the following), and its SGS energy
transport remains virtually neutral.

The lower-resolution LES (323 and 643 grid points) demonstrates a much stronger
dependence on the SGS energy transport. For the triadic energy transfer (figure 5a), the
crossover wavenumber at which scales switch between a net energy source and sink moves
toward large scales as LES grid becomes coarse. This indicates an artificial reduction of the
inertial subrange and extension of the dissipation range (see also figure 5b). The modelled
SGS dissipation has O(1) impacts on spectral kinetic energy transfer, as demonstrated in
figure 5(c).

In figure 6, the mean spectral energy fluxes due to the resolved triadic interactions,
physical viscous transport and modelled SGS energy transfer are plotted to show the
relative importance of the SGS energy transfer over the physical viscous dissipation
mechanism at several LES-grid resolutions. As the LES-grid resolution improves
(figure 6a–d), contributions from the mean SGS energy transport decay to near-zero for
the dynamic Smagorinsky closure, leaving the physical viscous dissipation as the only
energy sink. Even if the model constant C (shown in figure 2b) does not converge to zero
in the DNS-resolution limit (for instance, 2563-point grid), the mean SGS energy flux
converges to zero in the wavelet context. For DSM (643), the viscous and SGS energy
fluxes are nearly identical with less than 2.5 % errors. For DSM (323), the modelled SGS
dissipation is a dominant energy sink across all scales. Similarity between the viscous and
SGS energy fluxes is expected as the Smagorinsky closure is built upon the eddy-viscosity
hypothesis. As a consequence, the modelled SGS stress takes the same functional form as
the physical viscous stress and increases the effective viscosity of turbulence (or decreases
the effective Reynolds number), explaining the extended dissipation range observed in
figure 5(b). Figure 6 shows the LES-grid convergence of the modelled SGS dissipation
but also emphasises in the wavelet context the well-known limitation of the Bousinessq
hypothesis.

Figure 7 shows the mean cumulative energy flux of convective transfer involving the
unresolved (or subfilter-)scale motions. This energy flux describes the amount of energy
flow rate across a grid (or filter) cutoff scale scut involving the unresolved (or subfilter)
scale motions (that is, no interactions between resolved scales are included). Thus, it is
evaluated as a wavenumber-weighted sum of the detailed convective spectral energy flux
(2.12) as

Π

∧(scut,d)
SFS [xscut ] =

S∑
m=scut

(κm ln 2)T

∧(m,d)
C,r [xm|xscut ], (5.1)

where the superfilter-scale detailed fluxes are evaluated on the cutoff scale grid so that
there is no redundancy in information and the Plancherel formula is satisfied between
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Figure 6. Time-averaged mean wavelet spectral energy fluxes due to the resolved triadic interactions, physical
viscous transport and modelled SGS energy transfer for (a) DSM (323), (a) DSM (643), (a) DSM (1283) and
(a) DSM (2563). The horizontal dotted line denotes the neutral energy transfer.

the physical and wavelet spaces. Note that scut > 1 since scut = 1 does not give any
SFS information. A positive value of the cumulative energy flux denotes net energy
transfer toward scales smaller than scut (that is, forwardscatter or downscale energy
transfer), whereas its negative mean value indicates net energy backscatter towards
superfilter scales (Meneveau 1991). For all simulation results, net forward energy scatter is
observed, as expected for the current HIT setup. For DNS, a peak of the mean cumulative
energy flux is found at the dimensionless wavenumber of 0.2 within the inertial subrange
(see figure 4a), wherein the mean cumulative energy flux nearly coincides with the mean
energy dissipation rate. Figure 7 shows that the physical inertial subrange is predicted
using �1283 LES-grid points. This can be compared with figure 2(b) where 643-point LES
predicts the theoretical Smagorinsky constant most accurately. Such comparison implies
that estimating a correct model constant in LES using, for instance, the dynamic procedure
is not always sufficient to predict a physically correct turbulent flow and also shows an
importance of model error.

It should be noted that all the analyses made in this section concern wavelet statistics
averaged in space per scale. Thus, the spatially local characteristics of wavelet statistics
is averaged out. Such spatial locality is important for high-Reynolds-number turbulent
flows, but even for homogeneous turbulence, spatial locality is known to be dynamically
significant at small scales. For instance, figure 6 shows a posteriori balance involving
several different mechanisms of spectral energy transport. Locally in space, however, the
stochastic nature of turbulence causes a dynamic energy imbalance, some of which should
be taken care of by the SGS closure model. However, existing SGS models are not designed
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Figure 7. Time-averaged spectra of the cumulative triadic energy flux. Only scut = 2, . . . ,S are shown for
each case.

to consider such spatial locality, partially due to the fundamental modelling assumption.
This study is motivated by an argument that the local wavelet statistics (that is, before
taking the averaging operation 〈 〉xs) can be made useful to overcome the limitation set
by inherent modelling assumptions and guide the SGS modelling study by discovering an
optimal closure model in terms of spectral energy balance such as (2.15).

6. SGS model optimisation

6.1. Discovering spectrally optimal model constants
An analytical form of a SGS closure that optimally describes the spectral energy balance
(2.15) is discovered using the DNS database. Since the true SGS stress is not available
a posteriori, this study performs optimisation a priori using the triadic interactions
involving the SFS motions (2.12) and the modelled SGS stress (2.16), both evaluated
a priori. This approach seems to allow only a priori interpretation for the discovered
SGS terms. However, since the spectral energy flux requirement is enforced weakly,
the discovered model is expected to be affected indirectly by the discrepancies between
a priori and a posteriori formulations. Instead of assuming a most general form of SGS
closure such as (3.3), it is possible to compute the SGS stress using existing closures
such as the Smagorinsky model (4.1). If so, however, any error associated with the model
form persists, fundamentally limiting the modelling efforts and its extension to a range of
turbulent flows. The algorithm outlined in § 3 is not limited to a particular closure model.
However, for demonstration purposes, this study focuses on existing closure models and
the optimisation results are presented for the forced HIT described in § 4 and analysed in
§ 5. Specific SGS closure models examined in this study are given by

τ r
ij ≈ −2

(
η1Δ̄

2|S̄|)S̄ij (one-parameter Smagorinsky-type closure), (6.1)

τ r
ij ≈ −2

(
2.5η1

√
Bβ

αijαij

)
S̄ij (one-parameter Vreman-type closure), (6.2)

τ r
ij ≈ η1Δ̄

2 ∂ ūi

∂xk

∂ ūj

∂xk
(one-parameter nonlinear gradient closure), (6.3)
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τ r
ij ≈ η1Δ̄

2 ∂ ūi

∂xk

∂ ūj

∂xk
− 2

(
η2Δ̄

2|S̄|)S̄ij (two-parameter Clark-type closure). (6.4)

In (6.2), αij = ∂ ūi/∂xj is the resolved velocity gradient tensor, and Bβ is the second
invariant of βij = Δ̄2αmiαmj (Vreman 2004). In the two eddy-viscosity models (6.1) and
(6.2), the terms inside the parenthesis correspond to the eddy viscosity νt of the models,
respectively. In (6.1), the unknown constant η1 is expected to converge to the Lilly’s
theoretical prediction C2

S = 0.17322 if the nominal LES filter width lies in the inertial
subrange where the CSM (4.1) is designed. Since the theoretical value of the Vreman
model constant for HIT is c = 2.5C2

S = 2.5(0.17)2 = 0.07 (Vreman 2004), the unknown
value η1 in (6.2) is also expected to converge to 0.172. For the nonlinear gradient model
(6.3) (Clark, Ferziger & Reynolds 1979), the unknown constant is expected to be close to
1/12 at a DNS-like grid resolution (Pope 2001). However, such condition is unlikely to
be obtained in the current a posteriori grid resolution (see § 4). It should be noted that no
explicit constraint is made on the sign of the unknown ηk, where k = 1, . . . ,K. Employing
a constrained optimisation algorithm can find optimal constants requiring to have a certain
sign.

In the presence of strong downscale energy transfer (that is, forward energy scatter)
across a cutoff scale, T ∧(s,d)

C,r [xs, t] becomes strongly positive locally in space. The spectral

energy balance (2.14) dictates that T

∧(s,d)
SGS [xs, t] should be sufficiently large. Thus, the

current a priori optimisation is expected to predict a large model constant to dissipate large
spectral energy transfer toward the subfilter scales. A large model constant is also expected
where the nominal LES grid resolution is coarse (equivalently, low cutoff wavenumber).
As the LES grid width Δ̄ becomes large, more energy should be dissipated by the SGS
closure is supposed, thus making the optimised model constant larger. On the other hand,
the optimised value of ηk is expected to be very small if a priori LES grid resolution is
sufficiently high and, thus, the unresolved triadic interaction is weak in transferring energy.

6.2. Eddy-viscosity SGS closures
Optimisation is performed to determine an unknown constant η1 in (6.1) and (6.2). Figure 8
compares the optimal model constants for the Smagorinsky-like and Vreman-like models
for a range of the filter cutoff scales. In the inertial subrange (see also figure 4a), the
optimal constants for both models recover the Lilly’s theoretical prediction C2

S = 0.17322,
which validates that the current optimisation produces a result consistent to the theoretical
estimation (Lilly 1967). Since the Smagorinsky closure is designed specifically for the
inertial subrange, the optimal model constant is not expected to remain the same as the
theoretical value C2

S across all cutoff scales. Still, the current optimisation framework is
useful to estimate (at least, a priori) if a given closure provides a sufficient amount of
dissipation to balance the inter-scale energy transfer towards the subfilter scales.

If the LES filter width is reduced, figure 8 shows that optimisation predicts progressively
smaller constants for both Smagorinsky- and Vreman-like closures, presumably toward
zero in the limit of κcut → ∞. This is a desired property of SGS closure model if LES
grid is refined and, thus, more turbulent motions are resolved. Figure 8 suggests that such
property is closely tied to the optimal spectral energy balance the current optimisation
enforces. It is also suggested that a SGS model designed by the current optimisation
formulation has a potential to ensure such property (at least a priori and to be checked
a posteriori in a future work). Indeed, the physical viscous mechanism dominates on
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Figure 8. The optimised model constants for the one-parameter Smagorinsky-like (6.1) and Vreman-like (6.2)
closure models. A posteriori estimation of the Smagorinsky constants is shown as ∗ (green) as a function of
the grid-based wavenumber scaled by 2−1.

average over the SGS dissipation at such grid resolution regardless of the value of model
constant (Pope 2001), which can be also seen a posteriori in figure 6(c,d). Still, spatially
local SGS energy transfer is not taken into consideration in such argument, which could
be significant where small-scale turbulent motions are known to play a crucial role such
as those in chemically reacting turbulent flows. Furthermore, the SGS model constant is
often used to compute the SGS scalar transport, which may amplify the model error in
two-way interactions involving fluid momentum. In addition, figure 8 demonstrates that
the standard practice of using the same Smagorinsky constant CS at refined LES-grid
resolution cannot avoid excessive dissipation as many previous studies report. In addition,
figure 8 provides quantitative information as to which value of the model constant should
be used to achieve the spectral energy balance when LES grid resolution is varied. As
κcut → 0, the estimated model constants become almost several times larger than CS for
both models. In such a limit, the SGS model is expected to converge to the Reynolds
stress. Thus, the observed trend in figure 8 is qualitatively consistent since the SGS model
is responsible for nearly all energy dissipation.

In figure 8, the dynamically determined Smagorinsky constants reported in figure 2(b)
are plotted together. It should be noted that there is a fundamental ambiguity in directly
comparing the filter cutoff wavenumber κcut defined in the context of a priori wavelet
analysis (see Schneider & Vasilyev 2010) and the grid cutoff wavenumber 2π/Δ̄ in a
posteriori sense. In addition, it is not straightforward to estimate a quantitative relation
between the wavelet filtering (3.2) used to evaluate T

∧(s,d)
SGS and the grid filtering implicitly

applied to the current DSM formulation. In this study, the wavenumber used to plot the
model constants from the individual DSM simulations is scaled by 1/2. Although the
factor of 1/2 is arbitrary, this choice is justified by the observation that in figure 2(b),
DSM (643) predicts the model constant C2 ≈ C2

S and the Smagorinsky-like closure (6.1)
has a spectrally optimal constant of η1 ≈ C2

S at κcut�k,∞ ≈ 0.39. Assuming that the inertial
subrange behaviour of the static Smagorinsky model and DSM are the same, the filter and
grid cutoff wavenumbers are matched by introducing the artificial factor of 1/2. It should
be also noted that in the literature of the implicitly filtered LES it is usually assumed
that the LES filter width is several times larger than the LES grid width. This study
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Filter cutoff wavenumber κcut�k,∞ = 0.05 0.1 0.2 0.39 0.78 1.57
Equivalent grid resolution — — N3 = 323 643 1283 2563

Smagorinsky (6.1) 0.1441 0.0907 0.0529 0.0324 0.0238 0.0184
Vreman (6.2) 0.1575 0.1010 0.0578 0.0354 0.0267 0.0216
Gradient (6.3) 0.2653 0.2230 0.1829 0.2962 0.3705 0.2723
Clark (6.4), η1 0.0711 0.0603 0.0953 0.2493 0.3756 0.3290

η2 0.1428 0.0889 0.0503 0.0233 −0.0018 −0.0165

Table 1. The optimised model constants for a range of the filter cutoff wavenumbers. The equivalent LES grid
resolution is determined so that the inertial subrange behaviour is matched between a priori and a posteriori
results. The theoretical estimation of the Smagorinsky constant in the inertial subrange is C2

S = 0.17322 = 0.03,
and the gradient model (Clark et al. 1979) has its coefficient equal to 1/12 = 0.083 as κcut → ∞.

suggests that as far as the optimal spectral energy transfer is concerned, the constant
is 2. However, this number is a consequence of using the wavelet filtering for a priori
analysis and likely to be specific to the current study only. Figure 8 shows that the DSM
becomes suboptimal in the context of the spectral energy balance at κcut → 0. Thus, the
eddy viscosity estimated by the dynamic procedure is expected to be smaller than the
optimal value at a coarse LES grid resolution. Indeed, the current LES performed using a
finite difference cannot rule out possibilities that numerical errors contribute to the reduced
eddy viscosity, which will be examined in a future work. Regardless, the dynamically
determined Smagorinsky constant behaves in a way that is spectrally optimal as the LES
grid is refined so that the inertial subrange is resolved.

Figure 8 demonstrates that the proposed optimisation formulation generates SGS model
constants in a way consistent with the theoretical and a posteriori numerical studies.
It also shows qualitatively correct grid convergence of the model coefficients for both
Smagorinsky- and Vreman-type eddy viscosity models. This is useful to understand the
existing SGS models, to assess and compare their performance over a range of filter
cutoff scales, to design new SGS closure models and potentially to predict SGS scalar
fluxes or SGS interactions with different physics. Table 1 summarises the model constants
optimised for each SGS closure model considered in this study. At the filter cutoff
wavenumber κcut�k,∞ = 0.2, both Smagorinsky- and Vreman-type eddy viscosity models
select the constants close to C2

S = 0.17322 = 0.03, which is also obtained for DSM (643).
The above discussions are obtained for the time-averaged model constants found

by the optimisation algorithm. Although the forced HIT is statistically stationary,
the instantaneous variation of the model constants ηk[tm], where m = 1, 2, . . . , 12, is
examined. In figure 9, each line corresponds to the result from each snapshot, and the
lines with filled symbols correspond to the time-averaged model constants (reported in
figure 8). Although the optimised constants show similar trends at different time instants,
they also show a significant temporal variation, in particular, for large filter widths. This is
attributed not only to the relatively smaller sample size of large-scale wavelet statistics but
also partially to the fundamentally inhomogeneous and anisotropic nature of large-scale
fluid motions.

6.3. Gradient SGS model
The nonlinear gradient model (Clark et al. 1979) is developed based on an argument that
in the DNS-resolution limit Δ̄/�k 
 1 the exact SGS stress behaves proportional to the
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Figure 9. The optimised model constants for the (a) Smagorinsky-type and (b) Vreman-type closures for all
12 DNS snapshots. The filled symbols indicate the time-averaged model constants reported in figure 8.
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Figure 10. The optimised model constants for the pure gradient-type closure (6.3): (a) time-averaged and
(b) instantaneous model constants where the line with filled symbols indicates the time average.

nonlinear product of velocity gradients via τR
ij ∼ (Δ̄2/12)(∂ ūi/∂xk)(∂ ūj/∂xk) + O(Δ̄4).

The model is, however, known to be unstable and is thus combined with the static
Smagorinsky closure for numerical stability (Vreman, Geurts & Kuerten 1996) or its
dynamic variant is used (Vreman et al. 1996, 1997). Using the pure gradient-type closure
given in (6.3) (thus, the original Clark model without the eddy-viscosity part), the
SGS energy flux is estimated a priori using (2.16), and the optimisation is performed
to determine the unknown constant η1 via (3.4). In the DNS-like resolution (that is,
κcut → ∞), η1 is expected to converge to 1/12.

Figure 10(a) shows the model constant η1 optimised for the pure gradient-type model
(6.3). Unlike the eddy-viscosity models discussed in § 6.2, the discovered model constant
does not show monotonic variation over scales. In addition, the optimised constants are
consistently larger than the theoretical estimation 1/12. However, this is expected because
the theoretical value is justified only when the Kolmogorov scale is well resolved (Clark
et al. 1979).
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Figure 11. The optimised model constants for the Clark-type closure (6.4) for (a) the gradient and (b) the
Smagorinsky parts of the closure.

Similar to figure 9, the optimised constants for all 12 snapshots are plotted in
figure 10(b). It is observed that at coarse LES-grid resolution, the optimised constant
sometimes takes a negative value so that the spectral energy balance is achieved. Since the
current HIT has a net energy transfer towards subfilter scales (see figure 7), figure 10(b)
shows that the nonlinear gradient product in (6.3) increases (rather than dissipates) the
resolved kinetic energy, showing its inadequacy as a SGS closure model if LES grid
resolution is coarse. This observation is consistent to an anti-dissipative nature of the
original Clark model when η1 = 1/12 is used by Clark et al. (1979) and Vreman et al.
(1996) where numerical instability is observed unless an additional dissipation mechanism
by, for instance, the static Smagorinsky model is included.

The present optimisation procedure determines not only scale-dependent model
constants but also points out if a model form of a certain SGS closure produces physically
consistent effects on LES. Figure 10(a) suggests that due to its model form based on
velocity gradient product, the gradient model constant at very coarse LES grid resolution
should be sometimes negative so that the triadic energy transfer towards the unresolved
scales can be balanced by the modelled SGS stress. The constant is scale dependent as
indicated by table 1, but should converge to 1/12 in the DNS-like grid resolution (Clark
et al. 1979). The constant appears to decrease towards the theoretical value 1/12 as Δ̄

decreases further. However, with the current DNS grid resolution of 5123 grid points where
Δ/�k = O(1), it is difficult to confirm such convergence.

6.4. Clark model
The proposed SGS modelling framework can be used to optimise a SGS closure having
more than a single unknown constant so that the spectral energy criterion (2.15) is satisfied.
The optimisation is applied to the Clark-like SGS closure (6.4). The scale-dependent,
spectrally optimal model constants are determined by the optimisation algorithm and
plotted in figure 11 (also see table 1). Note that they are determined to satisfy (3.4)
simultaneously but reported separately in figures 11(a) and 11(b). In figure 11(a), the
gradient part of the Clark-like closure is compared with the optimised gradient model (6.3).
Similarly, figure 11(b) compares the optimised eddy-viscosity component of (6.4) with the
optimised Smagorinsky closure (6.1). In Clark et al. (1979), the eddy viscosity is arbitrarily
included to ensure numerical stability, which is however reported to cause excessive
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dissipation in transitional regimes (Vreman et al. 1996). As shown in figure 11(b), the
eddy-viscosity contribution remains similar to the standalone Smagorinsky closure at
κcut�k,∞ < 0.39. As a result of the additional dissipation, the spectrally optimal condition
(2.15) requires the other constant η1 associated with the gradient part of the model to be
close to the theoretical value 1/12 (see figure 11a). Thus, if the standard Clark model is
used (that is, η1 = 12 and η2 = 0.1732), the current optimisation suggests that the model is
spectrally suboptimal. This seems to explain why the dynamic Clark model (Vreman et al.
1997) is successful at coarse LES grid since the dynamic procedure chooses a correct SGS
dissipation dynamically.

If the filter cutoff scales become small, the gradient part of the Clark model should
dissipate three or four times more energy for spectral energy balance, represented by
higher η1 in figure 11(a) at κcut�k,∞ � 0.39. If such η1 is used, the optimised Smagorinsky
constant is required to be negative at κcut�k,∞ � 0.8. Thus, if a Smagorinsky-type model
is used with the standard or dynamically determined coefficient, the LES prediction
is expected to be too dissipative since the Smagorinsky constant should be positive.
Thus, across all filter cutoff wavenumbers, combining the gradient model and the static
Smagorinsky model is not the best choice, creating artificial dissipation originating from
the model itself. Using the dynamic procedure is useful to alleviate the dissipation, but
cannot address the issue completely. This conclusion appears to be consistent to the
previous studies where the dynamic Clark model produces much better accurate LES
prediction (Vreman et al. 1996, 1997) since the Smagorinsky constant is adjusted to better
achieve a spectral energy balance. Additional a posteriori studies using the optimised
(using the constants in table 1) and dynamic Clark models are needed to support the
conclusion.

7. A posteriori validation

The SGS model constants optimised a priori to satisfy the spectral energy criterion
(2.15) are used to conduct LES a posteriori. A posteriori study is performed in the
following way. For a given equivalent grid resolution reported in table 1, the corresponding
optimal constant for a model is prescribed instead of its theoretical value (for instance,
C2

S = 0.17322 for the Smagorinsky-type model). The LES runs are performed at a series
of equivalent grid resolution listed in the table. Under the same flow and simulation
conditions, additional LES is performed using the standard models, including the static
Smagorinsky closure with η1 = C2

S = 0.17322 in (6.1), the DSM (Germano et al. 1991),
the standard gradient with η1 = 1/12 in (6.3) and the standard Clark model with η1 =
1/12 and η2 = C2

S = 0.17322 in (6.4). In addition, LES without an explicit SGS model
is performed for comparison. The Vreman-type model is not tested since its optimised
constants are similar to those of the Smagorinsky-type closure as shown in figure 8.

Figure 12 compares the Fourier energy spectra obtained a posteriori for the
Smagorinsky-type models. On a coarse grid (323 points), model dependence is observed,
whereas finer-grid (1283-point) results are similar among different models since a
posteriori SGS energy flux is already very small on finer-resolution grids (see figure 5c).
At all grid resolution examined in this study, the optimised Smagorinsky constants give a
posteriori prediction close to those using the dynamic model. In particular, the result in
figure 12(a) follows the dynamic Smagorinsky prediction of Bassenne et al. (2019) who
used the same flow condition and a numerical scheme of the same spatial accuracy. The
energy spectrum obtained for the static Smagorinsky model remains slightly higher (thus,
closer to the DNS prediction). This is expected because its model constant C2

S = 0.17322
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Figure 12. Time-averaged Fourier energy spectra for a posteriori LES runs using Smagorinsky-type closures
on (a) 323 and (b) 1283 grid points. In (a), the LES result of Bassenne et al. (2019) is shown for comparison.

is lower than the dynamically determined constant and the optimal constant found by the
proposed algorithm (see figure 8), thus reducing the SGS energy dissipation. However,
the 323 point grid does not sufficiently resolve the inertial subrange, making the choice of
C2

S = 0.17322 questionable. Thus, the close agreement of the static Smagorinsky model
is presumably a consequence of model error. On the finer 1283-point grid, energy spectra
are similar among different models. The optimised model performs nearly the same as
the DSM, which is expected because the optimal constant is nearly the same as the
dynamically determined model constant (see figure 8). The simulation using the static
Smagorinsky model slightly underpredicts spectral energy since the optimal dissipation is
obtained η1 < C2

S = 0.17322 as reported in figure 8. As pointed out in figure 3(b), a mild
energy pileup still exists at small scales if a SGS model is not used.

In figure 13, a posteriori LES results on 323-point grid obtained using the gradient-type
models are plotted. The energy spectrum of the pure gradient model (6.3) is similar to
that of no-model LES, confirming that its SGS dissipation is insufficient and thus the
model cannot be used standalone (Clark et al. 1979). The standard Clark model with η1 =
1/12 and η2 = C2

S = 0.17322 in (6.4) predicts an energy spectrum similar to that of the
dynamic Smagorinsky. The optimised Clark model using η1 = 0.0953 and η2 = 0.0503
found by the present optimisation (see table 1) predicts an energy spectrum close to the
dynamic model result of Bassenne et al. (2019). A posteriori LES using the optimised
two-parameter Clark models on �1283-point grid are not stable, and thus the results are
not reported. However, this is expected because the corresponding optimal constants for
the Smagorinsky part of the mixed model are negative (see table 1 and figure 11b).

Comparison of the Fourier energy spectra shows that the optimised constants found
a priori by the current wavelet framework result in reasonable a posteriori prediction
accuracy. For both Smagorinsky- and Clark-type closures, the optimised SGS models
behave a posteriori similar to the DSM. Table 1 indicates that the optimised model
constants of the Smagorinsky- and Clark-type models (the eddy-viscosity component of
the latter, in particular) are close to each other on 323 point grid (0.0529 vs 0.0503).
The gradient part of the optimised Clark model takes η1 = 0.0953 (see table 1), slightly

982 A18-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.101


Optimising SGS closures for spectral energy transfer

103

102

101

100

10–1

10–2 10–1 100

κ�k,∞

Ê(
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Figure 13. Time-averaged Fourier energy spectra for a posteriori LES runs using gradient-type closures on
323 grid points. Bassenne et al. (2019) used the DSM.

larger than the standard choice of η1 = 1/12 = 0.083 which does not produce sufficient
SGS dissipation as figure 13 shows. Thus, the optimised two-parameter Clark model
is essentially the optimised Smagorinsky model, explaining observed similarities in
figures 12 and 13. Both a priori and a posteriori results suggest that the dynamic procedure
works presumably in a way consistent to the spectrally optimal state that this study
employs, that is, the unresolved triadic energy transfer is balanced by the modelled SGS
dissipation.

8. Optimisation at higher Reynolds numbers

Results so far are obtained for low-Reynolds-number HIT at Reλ = 85. Although the
formulation and algorithm do not make any assumption regarding Reynolds number
or inertial subrange, it is useful to demonstrate their applicability to higher Reynolds
numbers. In this section, the optimisation framework is applied to the space–time-resolved
DNS database of Cardesa, Vela-Martín & Jiménez (2017) at Reλ = 315, in which a
pseudospectral method is employed to simulate forced incompressible HIT in a triply
periodic box using 1024 Fourier modes per direction. The ratio of the domain width
L = 2π to the nominal Kolmogorov length is L/�k,∞ = 1516, whereas L/�k,∞ = 1005 for
HIT at Reλ = 85 described in § 4. A total of 10 snapshots taken approximately one integral
time scale apart are used to optimise the Smagorinsky-like closure (6.1). Figure 14(a)
compares the Fourier energy spectra between Reλ = 85 (corresponding to the DNS result
on figure 3) and 315 (Cardesa et al. 2017). At Reλ = 315, a substantially extended inertial
subrange is observed up to κ�k,∞ ≈ 0.1. At wavenumbers smaller than κ�k,∞ ≈ 0.1,
spectral energy density is amplified compared with the result for Reλ = 85 by an order of
magnitude at the largest scale, partially attributed to different external forcing techniques
used by the two DNS setups. Agreement at κ�k,∞ � 0.1 is reasonably good.

The model optimisation is performed using the DNS data for Reλ = 315, and spectrally
optimal Smagorinsky constants are shown in figure 14(b) and also tabulated in table 2
as a function of the reduced filter cutoff wavenumber. In table 2, the equivalent LES
grid resolution is obtained in the same way as table 1. Also shown in figure 14(b) is
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Reλ = 85 (5123, finite difference)

Reλ = 85 (DSM, finite difference)
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Figure 14. (a) Time-averaged Fourier energy spectra. (b) Optimised model constants for the one-parameter
Smagorinsky-like (6.1) model. Dynamic estimation of the Smagorinsky constants is shown as ∗ (green) for
Reλ = 85 (or × (blue) for Reλ = 315) as a function of the grid-based wavenumber scaled by 2−1 for Reλ = 85
(or 2−3 for Reλ = 315).

Filter cutoff wavenumber κcut�k,∞ = 0.022 0.044 0.088 0.176 0.352 0.704 1.407
Equivalent grid resolution 323 643 1283 2563 5123 — —
Smagorinsky (6.1) 0.0418 0.0319 0.0286 0.0242 0.0162 0.0088 0.0046

Table 2. The optimised model constants for a range of the filter cutoff wavenumbers. The equivalent LES grid
resolution is determined so that the inertial subrange behaviour is matched between a priori and a posteriori
results. The theoretical estimation of the Smagorinsky constant in the inertial subrange is C2

S = 0.17322 = 0.03.

the optimisation result for Reλ = 85, the same as the one for the Smagorinsky closure
in figure 8. At small filter cutoff scales resolving the inertial subrange, both sets of
constants decrease in magnitude at similar rates. For Reλ = 315, the constant is reduced to
0.0046 (see table 2), whereas the constant is 0.0184 for Reλ = 85 (see table 1). The filter
cutoff wavenumbers at which the optimal Smagorinsky constants recover the theoretical
prediction (Lilly 1967) are different between the low- and high-Reynolds-number flows
at κcut�k,∞ = 0.39 and 0.088, respectively. This is expected from figure 14(a) since the
inertial subranges for the two flows extend up to different wavenumbers, respectively. For
Reλ = 315, the inertial subrange is resolved if the filter cutoff wavenumber is κcut�k,∞ �
0.1 (see figure 14a), whereas for Reλ = 85, κcut�k,∞ � 0.4 is expected to resolve inertial
subrange motions. If the filter cutoff scales do not resolve the inertial subrange, the
optimised Smagorinsky constants of the two flows differ significantly from each other.
However, this is expected because figure 14(a) shows that spectral energy contents at those
scales are considerably different.

Figure 14(b) shows that if the nominal LES filter width resolves the inertial
subrange, spectrally optimal Smagorinsky constants show little sensitivity to Reynolds
number. This is encouraging for extending the optimisation framework to more practical
Reynolds numbers. However, since the current comparison is affected by Reynolds
number difference, external forcing that sustains HIT, and potential numerical errors
associated with finite difference used for HIT at Reλ = 85, a subsequent study comparing
optimisation results using the two numerical methods at the same Reynolds number of
HIT forced using the same external forcing technique is necessary.
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Figure 15. Time evolution of the Smagorinsky constant determined by the dynamic process. The horizontal
dotted line corresponds to the theoretical estimation of Lilly (1967).

Using the equivalent grid resolution in table 2, a posteriori LES runs are conducted
for the standard and optimised Smagorinsky models, respectively. In addition, LES runs
using the standard DSMs are performed on the same equivalent grid resolution. Figure 15
shows the dynamic Smagorinsky constants on the equivalent grid resolution. Due to
higher Reynolds number, the dynamic procedure predicts the Smagorinsky constant the
same as the theoretical estimation on 1283-point grid (as opposed to 643 for Reλ = 85).
The dynamically determined Smagorinsky constants are plotted in figure 14(b) as ×
(blue). Agreement between the spectrally optimal (a priori) and dynamically determined
(a posteriori) coefficients is better at Reλ = 315 than Reλ = 85, presumably due to the
extended inertial subrange shown in figure 14(a).

Further comparison is made in figure 16 by showing the Fourier energy spectra obtained
a posteriori. On 323-point grid (figure 16a), the optimised Smagorinsky constant results
in energy spectrum nearly indistinguishable from that of the DSM, consistent with
figure 12 obtained for Reλ = 85. The standard Smagorinsky model using C2

S = 0.03 is
less dissipative on the equivalent LES grid resolution of 323 (see table 2), also observed
in figure 16(a). At a refined LES grid of 1283 points (figure 16b), all a posteriori energy
spectra collapse as designed for Smagorinsky-type closures (Pope 2001). Reduced spectral
energy at the largest scales appears to stem from using the different external forcing
technique by Bassenne et al. (2016), rather than numerical errors or Reynolds number
effects.

9. Conclusions

LES has been an attractive approach simulating high-Reynolds-number turbulent flows
in terms of computational efficiency and accuracy compared with the traditional,
low-fidelity simulation techniques. Although it is still being debated whether LES will
replace completely the Reynolds-averaged Navier–Stokes formulations in industry design
processes in the foreseeable future, the technology is certainly useful and widely used in
academia and some parts of the industry as a high-fidelity prediction tool. Nevertheless,

982 A18-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.101


M. Nabavi and J. Kim

105

100

Ê(
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Figure 16. Time-averaged Fourier energy spectra for a posteriori LES runs using Smagorinsky-type closures

on (a) 323 and (b) 1283 grid points.

many of the technological aspects of LES as well as its fundamental modelling concept
are not entirely free from criticism (Pope 2004).

Numerical errors associated with LES have been studied extensively, including the
effects of filter commutativity (Vasilyev, Lund & Moin 1998; Haselbacher & Vasilyev
2003; van der Bos & Geurts 2005; Klein & Germano 2020), discretisation error (Ghosal
1996; Geurts 2009; Viré & Knaepen 2009), truncation error (Kravchenko & Moin 1997),
numerical dispersion and dissipation (Mittal & Moin 1997; Yalla, Oliver & Moser 2021),
the averaging effects for the dynamic models (Lilly 1992; Meneveau, Lund & Cabot
1996), grid anisotropy (Rozema et al. 2015; Schumann, Toosi & Larsson 2020) and
grid-independent LES (Bose et al. 2010). Some of those errors are intrinsically tied with
SGS model errors, which have been also investigated to some extent (Vreman et al. 1997;
Meneveau & Katz 2000; Pope 2001; Silvis et al. 2017). However, the modelling errors are
much less straightforward to assess, and a systematic approach by which different SGS
models are compared is lacking.

In practice, a SGS closure is selected a priori considering the state of turbulent flow
to be simulated. Such choice is often informed by corresponding a priori studies. Since
a SGS model is designed typically with certain assumptions about turbulence (such
as flow regime, scale similarity and filter scale in the inertial subrange), such practice
becomes less reliable if turbulence is in a strongly non-equilibrium state or non-turbulent
regions are found in the LES domain. One of the consequences is that the model errors
become significant, and may not disappear (or may even increase) if the LES grid is
refined. In such cases, it is not straightforward to distinguish model errors from those
originating from different sources. Other approaches such as the autonomic closure (King
et al. 2016) or machine learning (Duraisamy et al. 2019; Vinuesa & Brunton 2022) can
be incorporated to address the closure problem dynamically and adaptively. However,
fundamental and technical questions regarding the physical consistency of their LES
prediction and computational efficiency remain unaddressed. In particular, a dynamic
determination of correct SGS stresses via, for instance, a data-driven procedure seems
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technically feasible and useful, but its predictability, uniqueness and consistency to the
filtered governing equations are not well understood as of yet.

This study proposes a framework by which DNS data are leveraged to inform the
selection of an optimal SGS closure model a priori. It is assumed that an algebraic SGS
model describes the behaviour of LES-predicted solutions over a range of filter cutoff
scales. An optimal SGS model is selected by using a WMRA and by weakly enforcing a
spectral energy balance between the filtered and unfiltered scales. Using WMRA, spectral
energy fluxes for inter-scale energy transfer and modelled SGS energy dissipation are
computed locally in scale and space. Constraining a SGS model with the energy balance
is rooted in the fundamental idea of LES that a SGS model should dissipate a correct
amount of energy transferred by the resolved scale of fluid motions towards the unresolved
motions.

This article has presented the formulation and validated it by demonstrating that optimal
model constants are found for prescribed SGS closure models for forced HIT. Two
eddy-viscosity models (static Smagorinsky and static Vreman models), the nonlinear
gradient closure (Clark et al. 1979) and the Clark model (Clark et al. 1979) have been
tested. The optimisation results, even if they are obtained a priori, are consistent both
quantitatively and qualitatively with the theoretical estimation, the analytical limiting
behaviour and a posteriori LES prediction using the DSM (Germano et al. 1991).
A posteriori tests performed using the optimised model constants confirm such findings.
The formulation can be used for SGS models having more than one undetermined constant.

Despite some encouraging results, the proposed framework requires non-trivial
improvements in both fundamental and technical aspects. The presumed availability of
a DNS database makes the framework less straightforward to extend to higher-Reynolds-
number flows in which DNS is not always feasible. One possible solution is to leverage
the high-resolution 3-D experimental data of high-Reynolds-number turbulent flows. By
using experimental data, potential artifacts stemming from physical models often used for
multiphysical turbulence simulation can be circumvented.

These difficulties can also be addressed by optimising SGS model constants for several
low- and intermediate-Reynolds-number turbulent flows and extrapolating the models
statistically or with an aid of machine learning algorithms to flow regimes where DNS
is not tractable. Such extrapolation is common in conventional flow modelling. Early
pioneering works in LES modelling focused on (primarily due to limited computing
resources) low-Reynolds-number canonical configurations of turbulent flows such as HIT,
free shear flow and channel flows (Lesieur & Metais 1996; Meneveau & Katz 2000).
Insight gained from the analysis and modelling of lower-Reynolds-number turbulence was
extended and applied to realistic turbulent flows at high Reynolds numbers. It is expected
that the current formulation based on spectral energy transfer is presumably as effective at
high Reynolds numbers where inertial subrange is well developed (as demonstrated for a
Smagorinsky-type model in § 8) and the optimisation criterion (2.15) is justified provided
that LES filter width is not excessively small to resolve the dissipation range.

A specific extrapolation procedure is presumably dependent on optimisation results
(such as their statistical fluctuations and asymptotic behaviour) at lower Reynolds numbers
and not known a priori. However, it seems feasible that a practice of extrapolating
wind-tunnel or subscale flight test data to full-scale flight conditions in terms of Reynolds
number can be one of the candidates (Pettersson & Rizzi 2008; Kulkarni et al. 2022)

The extrapolation efforts to higher Reynolds numbers can be streamlined by employing
recent advances in data-driven modelling. For instance, Lozano-Durán & Bae (2023)
combined canonical, low-to-intermediate Reynolds number, building-block flows to train
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artificial neural networks and improve LES wall-modelling in realistic turbulent flows
around complex geometry. Examples of other recent works leveraging machine learning
algorithms for novel LES modelling are discussed by, for example, Vinuesa & Brunton
(2022).

In addition, the optimisation procedure constrains a SGS model with the spectral energy
balance. Although the energy criterion seems consistent to the fundamental concept of
LES, it concerns primarily the numerical stability of LES prediction (rather than prediction
accuracy). This suggests that there could be another criterion that should be enforced
simultaneously on a SGS model, and the energy criterion employed in this study is one
of the necessary conditions for the true SGS closure as pointed out by several previous
studies (Meneveau 1994; Silvis et al. 2017).

Although this study uses incompressible HIT at a low Reynolds number to demonstrate
the feasibility of the modelling framework, the framework is not limited to such condition.
The current formulation is developed based on the spectral transport of TKE as shown in
(2.14) and an energy balance across a grid-cutoff scale (2.15), neither of which depend on
flow regimes. For instance, the unresolved inter-scale energy flux (2.12) can be formulated
and evaluated for compressible flows. An existing algebraic SGS model for compressible
turbulence (for instance, Moin et al. (1991)) can be used to compute T̄

∧(s,d)
SGS .

Technical improvements are desired regarding the use of wavelet transformation. It
is well known that the analysis results using wavelet transformation depends on the
choice of its basis (Mallat 1999). Thus, it is likely that the optimisation results would
depend on the wavelet basis used by this study. For instance, a factor of 2−1 rescaling is
made on the wavenumber so that the inertial subrange behaviour is matched between the
current optimisation and the dynamic Smagorinsky LES. The factor depends presumably
on wavelet basis or the spectral accuracy of numerical discretisation. Thus, several
commonly used wavelet bases should be tested, and a priori optimisation results should
be accompanied by a posteriori validation.

In (2.8), the resolved-scale motions are estimated by performing a scale-cutoff filtering
in the wavelet space (Meneveau 1991). Although this choice provides a priori estimation
of the filtered velocity, it is well known in the Fourier context that a scale-sharp filter does
not provide an accurate estimation of the grid-resolved fluid motions, which is presumably
the case for wavelet as well. It is believed that a better estimation of the resolved-scale
motions improves the optimisation results, which is left for a future work.

Although wavelet is used as a key technique for constructing the proposed modelling
framework, the choice is not unique. In other words, a decomposition technique that is not
based on wavelet transformation can be incorporated in the current framework to evaluate
the spectral energy fluxes. However, it is still required that such technique provides a finite
resolution in scale and in space simultaneously.

Acknowledgements. The authors acknowledge Professor H. Kasbaoui at Arizona State University for
providing the NGA code for simulation. J.K. is grateful to Professor M. Lee at the University of Houston for
useful discussions. The authors acknowledge Research Computing at Arizona State University for providing
computing resources reported within Jennewein et al. (2023).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Miralireza Nabavi https://orcid.org/0000-0003-4619-1853;
Jeonglae Kim https://orcid.org/0000-0003-3977-0662.

982 A18-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-4619-1853
https://orcid.org/0000-0003-4619-1853
https://orcid.org/0000-0003-3977-0662
https://orcid.org/0000-0003-3977-0662
https://doi.org/10.1017/jfm.2024.101


Optimising SGS closures for spectral energy transfer

Author contributions. J.K. developed the concept and formulated the optimisation framework. M.N.
performed the preliminary DNS and LES runs of the forced HIT at Reλ = 85 using the NGA code. M.N.
also performed the preliminary wavelet analysis in § 5 as well as some of the preliminary optimisation for
the Smagorinsky closure in § 6. J.K. performed the production DNS and LES runs using the NGA code and
conducted the analysis and optimisation. The figures and the manuscript were prepared by J.K.

REFERENCES

ADRIAN, R. 1990 Stochastic estimation of sub-grid scale mations. Appl. Mech. Rev. 43 (5), S214–S218.
ALUIE, H. 2013 Scale decomposition in compressible turbulence. Physica D 247 (1), 54–65.
BARDINA, J., FERZIGER, J. & REYNOLDS, W.C. 1980 Improved subgrid-scale models for large-eddy

simulation. Fluid and Plasma Dynamics Conference, Snowmass, Colorado. AIAA Paper 80–1357.
BASSENNE, M., ESMAILY, M., LIVESCU, D., MOIN, P. & URZAY, J. 2019 A dynamic spectrally enriched

subgrid-scale model for preferential concentration in particle-laden turbulence. Intl J. Multiphase Flow
116, 270–280.

BASSENNE, M., MOIN, P. & URZAY, J. 2018 Wavelet multiresolution analysis of particle-laden turbulence.
Phys. Rev. Fluids 3 (8), 084304.

BASSENNE, M., URZAY, J., PARK, G.I. & MOIN, P. 2016 Constant-energetics physical-space forcing methods
for improved convergence to homogeneous-isotropic turbulence with application to particle-laden flows.
Phys. Fluids 28 (3), 035114.

BATCHELOR, G.K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
VAN DER BOS, F. & GEURTS, B.J. 2005 Commutator errors in the filtering approach to large-eddy simulation.

Phys. Fluids 17 (3), 035108.
BOSE, S.T., MOIN, P. & YOU, D. 2010 Grid-independent large-eddy simulation using explicit filtering. Phys.

Fluids 22 (10), 105103.
CARDESA, J.I., VELA-MARTÍN, A. & JIMÉNEZ, J. 2017 The turbulent cascade in five dimensions. Science

357 (6353), 782–784.
CLARK, R.A., FERZIGER, J.H. & REYNOLDS, W.C. 1979 Evaluation of subgrid-scale models using an

accurately simulated turbulent flow. J. Fluid Mech. 91 (1), 1–16.
DE STEFANO, G., DYMKOSKI, E. & VASILYEV, O.V. 2022 Localized dynamic kinetic-energy model for

compressible wavelet-based adaptive large-eddy simulation. Phys. Rev. Fluids 7 (5), 054604.
DE STEFANO, G. & VASILYEV, O.V. 2012 A fully adaptive wavelet-based approach to homogeneous

turbulence simulation. J. Fluid Mech. 695, 149–172.
DESJARDINS, O., BLANQUART, G., BALARAC, G. & PITSCH, H. 2008 High order conservative finite

difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys. 227 (15),
7125–7159.

DOMARADZKI, J.A. 2021a Large eddy simulations of high Reynolds number turbulence based on interscale
energy transfer among resolved scales. Phys. Rev. Fluids 6 (4), 044609.

DOMARADZKI, J.A. 2021b Toward autonomous large eddy simulations of turbulence based on interscale
energy transfer among resolved scales. Phys. Rev. Fluids 6 (10), 104606.

DOMARADZKI, J.A. 2022 Near-autonomous large eddy simulations of turbulence based on interscale energy
transfer among resolved scales. Phys. Rev. Fluids 7 (11), 114601.

DUNN, D.C. & MORRISON, J.F. 2003 Anisotropy and energy flux in wall turbulence. J. Fluid Mech. 491,
353–378.

DURAISAMY, K., IACCARINO, G. & XIAO, H. 2019 Turbulence modeling in the age of data. Annu. Rev. Fluid
Mech. 51, 357–377.

FREUND, A. & FERRANTE, A. 2019 Wavelet-spectral analysis of droplet-laden isotropic turbulence. J. Fluid
Mech. 875, 914–928.

GERMANO, M., PIOMELLI, U., MOIN, P. & CABOT, W.H. 1991 A dynamic subgrid-scale eddy viscosity
model. Phys. Fluids 3 (7), 1760–1765.

GEURTS, B.J. 2009 Analysis of errors occurring in large eddy simulation. Phil. Trans. R. Soc. Lond. A 367
(1899), 2873–2883.

GHATE, A.S. & LELE, S.K. 2020 Gabor mode enrichment in large eddy simulations of turbulent flow. J. Fluid
Mech. 903, A13.

GHOSAL, S. 1996 An analysis of numerical errors in large-eddy simulations of turbulence. J. Comput. Phys.
125 (1), 187–206.

GOLDSTEIN, D.E. & VASILYEV, O.V. 2004 Stochastic coherent adaptive large eddy simulation method. Phys.
Fluids 16 (7), 2497–2513.

982 A18-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.101


M. Nabavi and J. Kim

HASELBACHER, A. & VASILYEV, O.V. 2003 Commutative discrete filtering on unstructured grids based on
least-squares techniques. J. Comput. Phys. 187 (1), 197–211.

JENNEWEIN, D.M., et al. 2023 The Sol Supercomputer at Arizona State University. In Practice and Experience
in Advanced Research Computing, PEARC ’23, pp. 296–301. Association for Computing Machinery.

KIM, J., BASSENNE, M., TOWERY, C.A.Z, HAMLINGTON, P.E., POLUDNENKO, A.Y. & URZAY, J. 2018
Spatially localized multi-scale energy transfer in turbulent premixed combustion. J. Fluid Mech. 848,
78–116.

KING, R.N., HAMLINGTON, P.E. & DAHM, W.J.A. 2016 Autonomic closure for turbulence simulations.
Phys. Rev. E 93 (3), 031301.

KLEIN, M. & GERMANO, M. 2020 Analysis and modelling of the commutation error. Fluids 6 (1), 15.
KRAVCHENKO, A.G. & MOIN, P. 1997 On the effect of numerical errors in large eddy simulations of turbulent

flows. J. Comput. Phys. 131 (2), 310–322.
KULKARNI, A.R., LA ROCCA, G., VELDHUIS, L.L.M & EITELBERG, G. 2022 Sub-scale flight test model

design: developments, challenges and opportunities. Prog. Aerosp. Sci. 130, 100798.
LANGFORD, J.A. & MOSER, R.D. 1999 Optimal LES formulations for isotropic turbulence. J. Fluid Mech.

398, 321–346.
LANGFORD, J.A. & MOSER, R.D. 2004 Optimal large-eddy simulation results for isotropic turbulence.

J. Fluid Mech. 521, 273–294.
LESIEUR, M. & METAIS, O. 1996 New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech.

28 (1), 45–82.
LILLY, D.K. 1967 The representation of small-scale turbulence in numerical simulation experiments. In

Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, pp. 195–210.
LILLY, D.K. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids 4 (3),

633–635.
LOZANO-DURÁN, A. & BAE, H.J. 2023 Machine learning building-block-flow wall model for large-eddy

simulation. J. Fluid Mech. 963, A35.
LUND, T.S. & NOVIKOV, E.A. 1992 Parameterization of subgrid-scale stress by the velocity gradient tensor.

In Annual Research Briefs, Center for Turbulence Research. Stanford University.
MALLAT, S. 1999 A Wavelet Tour of Signal Processing. Elsevier.
MALLAT, S.G. 1989 A theory for multiresolution signal decomposition: the wavelet representation. IEEE

Trans. Pattern Anal. 11 (7), 674–693.
MENEVEAU, C. 1991 Analysis of turbulence in the orthonormal wavelet representation. J. Fluid Mech. 232,

469–520.
MENEVEAU, C. 1994 Statistics of turbulence subgrid-scale stresses: necessary conditions and experimental

tests. Phys. Fluids 6 (2), 815–833.
MENEVEAU, C. & KATZ, J. 2000 Scale-invariance and turbulence models for large-eddy simulation. Annu.

Rev. Fluid Mech. 32 (1), 1–32.
MENEVEAU, C., LUND, T.S. & CABOT, W.H. 1996 A Lagrangian dynamic subgrid-scale model of

turbulence. J. Fluid Mech. 319, 353–385.
MITTAL, R. & MOIN, P. 1997 Suitability of upwind-biased finite difference schemes for large-eddy simulation

of turbulent flows. AIAA J. 35 (8), 1415–1417.
MOIN, P., SQUIRES, K., CABOT, W. & LEE, S. 1991 A dynamic subgrid-scale model for compressible

turbulence and scalar transport. Phys. Fluids 3 (11), 2746–2757.
NABAVI, M., DI RENZO, M. & KIM, J. 2022 Modulation of interphase, cross-scale momentum transfer of

turbulent flows by preferentially concentrated inertial particles. Phys. Rev. Fluids 7 (4), 044305.
O’BRIEN, J., TOWERY, C.A.Z., HAMLINGTON, P.E., IHME, M., POLUDNENKO, A.Y. & URZAY, J. 2017

The cross-scale physical-space transfer of kinetic energy in turbulent premixed flames. Proc. Combust. Inst.
36 (2), 1967–1975.

PARK, N., LEE, S., LEE, J. & CHOI, H. 2006 A dynamic subgrid-scale eddy viscosity model with a global
model coefficient. Phys. Fluids 18 (12), 125109.

PASSOT, T. & POUQUET, A. 1987 Numerical simulation of compressible homogeneous flows in the turbulent
regime. J. Fluid Mech. 181, 441–466.

PETTERSSON, K. & RIZZI, A. 2008 Aerodynamic scaling to free flight conditions: past and present. Prog.
Aerosp. Sci. 44 (4), 295–313.

PIOMELLI, U., ROUHI, A. & GEURTS, B.J. 2015 A grid-independent length scale for large-eddy simulations.
J. Fluid Mech. 766, 499–527.

POPE, S.B. 2001 Turbulent Flows. Cambridge University Press.
POPE, S.B. 2004 Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6 (1),

35.

982 A18-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.101


Optimising SGS closures for spectral energy transfer

ROZEMA, W., BAE, H.J., MOIN, P. & VERSTAPPEN, R. 2015 Minimum-dissipation models for large-eddy
simulation. Phys. Fluids 27 (8), 085107.

SABELNIKOV, V.A., LIPATNIKOV, A.N., NIKITIN, N.V., PÉREZ, F.E.H. & IM, H. 2023 Backscatter of scalar
variance in turbulent premixed flames. J. Fluid Mech. 960, R2.

SARGHINI, F., DE FELICE, G. & SANTINI, S. 2003 Neural networks based subgrid scale modeling in large
eddy simulations. Comput. Fluids 32 (1), 97–108.

SCHNEIDER, K. & VASILYEV, O.V. 2010 Wavelet methods in computational fluid dynamics. Annu. Rev. Fluid
Mech. 42, 473–503.

SCHUMANN, J.-E., TOOSI, S. & LARSSON, J. 2020 Assessment of grid anisotropy effects on
large-eddy-simulation models with different length scales. AIAA J. 58 (10), 4522–4533.

SILVIS, M.H., REMMERSWAAL, R.A. & VERSTAPPEN, R. 2017 Physical consistency of subgrid-scale models
for large-eddy simulation of incompressible turbulent flows. Phys. Fluids 29 (1), 015105.

SMAGORINSKY, J. 1963 General circulation experiments with the primitive equations: I. The basic experiment.
Mon. Weath. Rev. 91 (3), 99–164.

VASILYEV, O.V., LUND, T.S. & MOIN, P. 1998 A general class of commutative filters for LES in complex
geometries. J. Comput. Phys. 146 (1), 82–104.

VINUESA, R. & BRUNTON, S.L. 2022 Enhancing computational fluid dynamics with machine learning. Nat.
Comput. Sci. 2 (6), 358–366.

VIRÉ, A. & KNAEPEN, B. 2009 On discretization errors and subgrid scale model implementations in large
eddy simulations. J. Comput. Phys. 228 (22), 8203–8213.

VREMAN, A.W. 2004 An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and
applications. Phys. Fluids 16 (10), 3670–3681.

VREMAN, B., GEURTS, B. & KUERTEN, H. 1996 Large-eddy simulation of the temporal mixing layer using
the Clark model. Theor. Comput. Fluid Dyn. 8 (4), 309–324.

VREMAN, B., GEURTS, B. & KUERTEN, H. 1997 Large-eddy simulation of the turbulent mixing layer.
J. Fluid Mech. 339, 357–390.

XIE, C., YUAN, Z. & WANG, J. 2020 Artificial neural network-based nonlinear algebraic models for large
eddy simulation of turbulence. Phys. Fluids 32 (11), 115101.

XU, D., WANG, J., YU, C. & CHEN, S. 2023 Artificial-neural-network-based nonlinear algebraic models for
large-eddy simulation of compressible wall-bounded turbulence. J. Fluid Mech. 960, A4.

YALLA, G.R., OLIVER, T.A. & MOSER, R.D. 2021 Numerical dispersion effects on the energy cascade in
large-eddy simulation. Phys. Rev. Fluids 6 (9), L092601.

ZHOU, Z., HE, G., WANG, S. & JIN, G. 2019 Subgrid-scale model for large-eddy simulation of isotropic
turbulent flows using an artificial neural network. Comput. Fluids 195, 104319.

982 A18-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.101

	1 Introduction
	1.1 Background
	1.2 Proposed SGS modelling framework

	2 WMRA framework for SGS modelling
	3 Algorithm for discovering an optimal SGS closure
	4 Simulations of homogeneous isotropic turbulence
	5 Mean wavelet statistics for the LES database
	6 SGS model optimisation
	6.1 Discovering spectrally optimal model constants
	6.2 Eddy-viscosity SGS closures
	6.3 Gradient SGS model
	6.4 Clark model

	7 A posteriori validation
	8 Optimisation at higher Reynolds numbers
	9 Conclusions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


