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ABSTRACT

The concept of economic equilibrium under uncertainty is applied to a model
of insurance market where, in distinction to the classic Borch’s model of a
reinsurance market, risk exchanges are allowed between the insurer and each
insured only, not among insureds themselves. Conditions characterizing an equi-
librium are found. A variant of the conditions, based on the Pareto optimality
notion and involving risk aversion functions of the agents, is derived. An exis-
tence theorem is proved. Computation of the market premiums and optimal
indemnities is illustrated by an example with exponential utility functions.
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1. INTRODUCTION

We investigate the problem of finding an equilibrium for a model of an insur-
ance market in which each potential policyholder (insured) shares his initial risk
with the insurer (paying a premium to the insurer) without possibility of risk
exchange with the other insureds.

The notion of Walrasian equilibrium borrowed from mathematical eco-
nomics has been applied to insurance models since Borch’s works (1960, 1962).
This concept implies that contracts made in the market are Pareto-optimal
and, which is of importance, premiums of the contracts are determined by
the market conditions as a whole, not only by covered risks. Borch’s theorem
on Pareto-optimal risk exchanges in the model of a reinsurance market was
extended to a constrained case in Gerber (1978), an overview of applications
of the Borch’s theorem can be found in Lemaire (1990). A characterization of
equilibrium in the reinsurance market was developed in Buhlmann (1980, 1984)
and later in Aase (1993, 2002) where risk allocation problems in financial mar-
kets were also studied. Actually, a particular case of the model suggested in
the paper, where risk is allocated between insurer and the only insured (n = 1),
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has been studied in the frame of the Borch’s model of reinsurance market by
several authors, e.g., Lemaire (1990), Aase (1993, 2002). The presented work
is expected to be consistent with the known results for the case n = 1.

Our setting differs from the classical Borch’s model of a reinsurance mar-
ket by the following: in the suggested model, each insured is independent of
the other insureds in the sense that he concludes a treaty on risk exchange
with the insurer only, isolated from the other insureds. In particular, the agents
cannot hand in all their initial risks to a pool and then distribute shares of the
summary risk back, as suggested by the optimal risk sharing rules in the rein-
surance market model. Such independence (or separation) of insureds is
justified by that we regard them as individual buyers of direct insurance, not
as (re)insurance companies that might trade risks among themselves. It is worth
noting that the model is not within the monopoly theory, according to which
the monopolist (insurer) maximizes his utility constrained by that the insured’s
utility equals indifference value. However, the insured may just refuse the insur-
ance contract, not losing anything of his utility, while the related decrease in
insurer’s utility is then quite perceptible. In this sense, the monopoly solution
is not stable. The variation of the Borch’s model suggested in the paper is free
of such a disadvantage (and, by the way, is ‘‘more fair’’ for the insureds): in
the equilibrium each agent has his maximal utility under equilibrium prices and
has no desire to change the decision.

The main purpose of the paper is to give necessary and sufficient conditions
for determining an equilibrium and then to compare them with the characteri-
zation of equilibrium in the classical model of a reinsurance market. The equi-
librium notion employed in the present work substantiates a choice of a single
contract among the family (generally uncountable) of Pareto-optimal contracts.
The paper uses results in Golubin (2005) on description of Pareto optima in
the insurance market.

The article is organized as follows. In section 2 the model of an insurance mar-
ket under investigation is presented. Section 3 gives a characterization of an
equilibrium in the market. Section 4 deals with Pareto-optimal contracts and pro-
vides two variants of necessary and sufficient conditions for Pareto optimal-
ity in the model. In section 5 we derive an equilibrium condition based on the
Pareto optimality characterization and involving the risk aversion (tolerance)
functions of the agents. We end the exposition with a discussion (section 6) of
the equilibrium existence problem.

2. THE MARKET MODEL

We study a market consisting of n + 1 agents: an insurer and a group of n
insureds. The initial insureds’ risks (losses) Xj, j = 1, …, n are nonnegative inde-
pendent stochastic variables defined on the same probability space (W,F, P ).
The sigma-algebra of events F = s(X ) is generated by the initial risks portfo-
lio X = (X1,…,Xn). It means that the uncertainty in the model is completely
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described by the initial risks Xj. The distribution function of Xj is denoted by
Fj (x) =

def
P{Xj # x}.

The agents’ preferences are represented by their utility functions ui(x) such
that u�i (x) > 0 and u�i (x) < 0 for all i = 0, …, n.

The insurer and an insured negotiate to conclude a treaty on risk exchange
between them. We suppose that any coalitions within the group of insureds are
not allowed, so each insured stands as a separate decision maker in bargain-
ing with the insurer. A resulting risk exchange is identified with a set of Borel-
measurable functions I = (I1,…, In) called indemnity functions or policies,
defined on [0,3), and satisfying the standard constraints 0 # Ij (x) # x for
j = 1, …, n. This means that an indemnity payment Ij (Xj) to the j-th insured is
always nonnegative and not greater than the loss size Xj. Like in the model of
a reinsurance market studied in Borch (1962) and Buhlmann (1980, 1984), we
introduce a price functional that assigns the premium H [Y ] for a risk Y of an
insured as 

H [Y ] = E [FY ] . (1)

Here F is a positive stochastic variable defined on (W,F,P) and therefore it can
be represented as an appropriate Borel-measurable function (see, e.g., Tucker
(1967)), F = ƒ(X1,…,Xn). The price of a constant risk must be the same con-
stant, so we assume EF = 1. Following Buhlmann, we will call F a market
price density. An explanation of the term is that one can interpret H [Y ] as an
expectation of Y with respect to a distorted probability measure, EQY = E [FY ].
Here F is the Radon-Nikodym derivative of measure Q with respect to the
original measure P. The linearity of the price functional allows for eliminating
a kind of arbitrage possibilities: Let Y1 be a share of an insured’s risk Xj and
Y2 = Xj –Y1 be the rest of the risk. The insurer may, first, insure the entire risk
Y1 +Y2 or, second, do it by parts: to insure the share Y1 and, immediately after
that, Y2. If, say, H [Y1 +Y2] < H [Y1] +H [Y2] then in the second case the insurer
raises the premium increment from nothing. Such a situation should not be pos-
sible in any consistent model of the insurance market. Thus the price functional
H must be linear (with respect to risks of each insured).

The expected utilities of final capitals of the insurer and j-th insured are
J0[I ] =

def
Eu0(w0 + s 1= (n! Ps – Is(Xs))) and Jj [I ] =

def
Euj(wj – Pj – Xj + Ij (Xj)), j = 1,

…,n. Here Pj = E [FIj(Xj)] is the premium paid by j-th insured to the insurer,
wi, i = 0,…,n, denote initial nonstochastic capitals of the agents. In the sequel,
all the expectations, e.g. the premiums E [FIj (Xj)] and expected utilities, are
assumed to be finite.

It is essential to note that E [FIj (Xj)] = E [Cj Ij (Xj)], where 

Cj = E [F|Xj ] (2)

is the conditional expectation of F with respect to a sigma-algebra s(Xj) gen-
erated by Xj. Thus, to define all the premiums Pj = E [Cj Ij(Xj)] entering the
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functionals Ji, it suffices to define, instead of F, the stochastic variables Cj,
j = 1,…, n. By the construction, each Cj is positive and such that ECj = 1. Since
the conditional expectation is s(Xj)-measurable, it can also be represented as
Cj = cj(Xj) a.s., where cj(x) is some Borel-measurable function. More exactly,
cj (Xj ) is a result of taking expectation of F = ƒ(X1, …, Xn) with respect to
X1,…,Xj – 1, Xj + 1,…,Xn. In the sequel we will call Cj the j-th price density.

Define the notion of equilibrium in the insurance market as follows: Price
densities C = (C1,…,Cn) and policies I = (I1,…,In) constitute an equilibrium
if Ij, j = 1,…, n, solve the problems

max
I

Ji [I ], i = 0,…, n. (3)

The problem of finding an equilibrium is then to determine from the agents’
preferences and distributions Fj(x) of the insureds’ risks: (a) the price functions
cj (x); (b) the policies Ij(x) solving problems (3) in which the premiums depend
on policies as Pj = E [cj (Xj) Ij (Xj)].

After obtaining the price densities Cj = cj (Xj), one may construct the mar-
ket price density as 

.F Ck
k

n

1

=
=

% (4)

Indeed, taking into account (2), independence of all Ck, and the fact that any
priced risk Y = Ij (Xj) depends on variable Xj only, we have that the premium
calculated via ‘‘initial’’ market price density, Pj = E [FY ], coincides with Pj =
E Y EC C

!kk
n

kk j
n

1
$ =

=
% %% %/ /E [CjY ] = E [CjY ].

Remark in conclusion that the only difference between the presented defi-
nition of equilibrium and the equilibrium in the reinsurance market model
(see, e.g., Buhlmann (1984), Aase (1993)) follows the difference in definitions
of an admissible risk exchange: Maxima in (3) are taken over indemnities Ij(Xj)
each depending on j-th risk only and satisfying the constraints 0 # Ij(Xj) # Xj

a.s., j = 1,…, n. In the corresponding (n + 1)-agent Borch’s model, where the
initial risks are (0,X1,…,Xn), all risk exchanges Zi that satisfy market clearing
condition i j0 1= =

Zi
n

i
n

= X! ! are admissible in maximization. The market clear-
ing condition is evidently met also in our setting, where the n + 1 agents only trade
among themselves. Like in Buhlmann (1984), due to linearity of the price func-
tional H [Y ] the price of the wealth after exchange is equal to the price of the
initial wealth (the budget constraints) for all the agents. So problems (3) are
defined over a set of risk exchanges which is narrower than that in the Borch’s
model of a reinsurance market.

3. EQUILIBRIUM CHARACTERIZATION

The next theorem presents necessary and sufficient conditions for determina-
tion of an equilibrium. For convenience, we will use designations A = w0 +
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s 1= (n! Ps – Is(Xs)) and Bj = wj – Pj –Xj + Ij(Xj) for the final capitals of the insurer
and insureds respectively.

Theorem 1. Collections C = (C1,…,Cn) of price densities and I = (I1,…,In) of
policies are an equilibrium if and only if

E [u�0(A) | Xj ] = Cj Eu�0(A) a.s. (5)

u�j (Bj) = Cj Eu�j (Bj) a.s. for j = 1,…, n. (6)

Proof. Denote by I a maximizer in problems (3). Fix any (admissible) indem-
nity rule L and consider the policies Ij (x) +lDj (x), where l ! [0,1] is a para-
meter and Dj (x) = Lj (x) – Ij (x), j = 1,…, n. By optimality of I, the point l = 0
maximizes all the functions Ji(l) = Ji [ I +lD] on the interval [0,1]. Due to con-
cavity of Ji [L], the fulfillment of the inequalities 

J�i (l) |l = 0 # 0 (7)

for any indemnity rule L and for all i = 0,…, n is necessary and sufficient for
optimality in (3). After differentiating each Ji(l), it can be easily seen that (7)
is equivalent to:

E {[–E [u�0(A) | Xj ] + cj (Xj)Eu�0(A)] Dj(Xj )} # 0,

E {[u�j (Bj) – cj (Xj)Eu�j (Bj)] Dj(Xj )} # 0 

for all j = 1,…, n. This means that policies Ij solve (3) if and only if they maxi-
mize the integrals 

j x xj

0

-

3

qc# ] ]g g8 BLj (x) dFj (x) subject to 0 # Lj (x) # x, (8)

j jx x
0

-

3

r c# ] ]g g8 BLj (x) dFj (x) subject to 0 # Lj (x) # x, (9)

where we denote:

qj(x) = E [u�0(A) | Xj = x] /Eu�0(A) and (10)

rj (x) = E [u�j (Bj) | Xj = x] /Eu�j (Bj), j = 1,…, n. (11)

A characterization of solutions to this kind of optimization problems is given
by a result known as the Neyman-Pearson lemma (see e.g. Lehmann (1959),
and Golubin (2006) for an application to insurance problems). According to
it, an admissible policy Ij(x) is optimal in (8) if and only if Ij (x) = 0 on x :
cj(x) – qj(x) < 0 and Ij (x) = x on x : cj (x) – qj(x) > 0 up to a set in [0,3) of zero
Fj-measure. Applying the Neyman-Pearson lemma to problem (9) also, we have 
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Ij (x) =
j

j

, : <

, : >

x x x x x x

x x x x x x x

for and

for and

0 j j j j

j j j j

# #

$ $

r r

r r

q q

q q

c

c

] ] ] ] ]
] ] ] ] ]
g g g g g
g g g g g* (12)

up to a set of zero Fj-measure. Remark that since E Cj = 1, from (10)-(11) we
get 

j x xj

0

-

3

qc# ] ]g g8 BdFj (x) = 0 = j jx x
0

-

3

r c# ] ]g g8 BdFj (x). (13)

Note also that the definitions (10)-(11) of rj and qj along with definitions of the
capitals Bj and A (in the latter, recall, all Is(Xs), s ! j, are independent of Xj)
allow for representing the functions as qj(x) = sj(–Ij (x)) and rj (x) = vj (–x +
Ij (x)), where sj(·) and vj (·) are some decreasing functions.

Now prove that (12) implies cj(x) / qj(x) and cj(x) / rj(x) almost every-
where with respect to Fj-measure. Suppose at first that as x increases from 0
we have rj(x) # cj(x) # qj(x) and rj(x) < qj(x) (for definiteness, let rj(x) < cj(x) #
qj(x)). Then, by (12), Ij(x) remains equal to 0, while qj(x) = sj(– Ij(x)) is con-
stant and rj(x) = vj(–x + Ij(x)) is increasing. Such a pattern cannot be valid for
all x (with respect to Fj-measure) as (13) would be violated. Note in this con-
nection that (12) excludes situations when cj(x) < min{rj (x), qj(x)} or cj(x) >
max{rj(x), qj(x)} as impossible for optimal Ij. Hence there must be encountered
a set of arguments x where 

rj(x) $ cj(x) $ qj(x) and rj(x) > qj(x). (14)

When x reaches the set, Ij(x) switches from 0 to x. This change of Ij(x) implies
a decrease of rj(x) and an increase of qj(x), which means a contradiction with
attaining (14).

Suppose rj(x) $ cj(x) $ qj(x) and rj(x) > qj(x) as x increases from 0. Simi-
lar to the reasonings above, we find in this case that at first Ij(x) remains equal
to x. After switching Ij(x) to zero when inequalities rj(x) # cj(x) # qj(x) and
rj(x) < qj(x) become valid, there must be a decrease of qj(x) and an increase
of rj(x). This contradicts the latter inequalities.

Following these reasonings, we come to that the only feasible case is cj(x) /
qj(x) and cj(x) / rj(x) up to a set of zero Fj-measure. From the definitions (10)-
(11) of qj(x) and rj(x) we get (5)-(6).

Clearly, if (5)-(6) hold then inequalities (7) are satisfied, converting into
equalities. Hence, I is optimal in (3). ¡

Compare Theorem 1 and a characterization of equilibrium in the Borch’s
model of a reinsurance market (see Buhlmann (1980, 1984)): u�i (wi – Zi ) =
FEu�i (wi – Zi ) a.s., where Zi is the ‘‘after exchange’’ risk of i-th agent in
equilibrium. These optimality equations correspond in our case to n pairs of
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equations (5)-(6) — recall that 2n functions cj(x), Ij(x), j = 1,…, n, are to be
found in our setting. Also, the market price density F in the Borch’s model is
a function F = F (XM) of total initial risk XM = X1 + … + Xn (as well as the
optimal risk exchanges Zi), while in (5)-(6) the j-th price density Cj = cj (Xj)
depends on the j-th insured’s risk Xj only.

Examine a degenerated case of risk-neutral insurer, i.e., u0(x) = x. Since
u�0(x) / 1, from (5) we have Cj = 1 a.s. By (6), Ij(x) = x for all j and, thus, in
equilibrium the only optimal policy is full coverage of the losses, the premiums
E [Cj Ij(Xj)] coincide with the actuarial values EXj.

Remark 1. Upon obtaining the equilibrium price functions cj(x) j = 1,…, n, one
can, in view of (4), put the market price density F = j 1= j

n c% (Xj ). Another
and, perhaps, more natural way is to put

F = u�0(A) /Eu�0(A) ,

with the equilibrium indemnities Ij (Xj ) substituted into the final capital A.
Indeed, from (5) it follows E [{u�0(A) /Eu�0(A)}|Xj ] = cj (Xj) a.s. for all j.

4. PARETO OPTIMALITY

Consider a risk exchange in the insurance market in which now the premium
Pj paid by the j-th insured is not defined by the price density and indemnity
function as in the previous sections, but is regarded as an independent variable
chosen jointly with a policy 0 # Ij(x) # x. An insurance contract is identified
with a pair (P,I ), where P = (P1,…,Pn) is a vector of premiums paid by the n
insureds, and I = (I1,…, In) is a vector-function of policies.

Like the notation in section 2, we introduce the insurer’s expected utility (of
his final capital) J0 [P,I ] =

def Eu0(w0 + s 1= (n! Ps – Is(Xs))) and the insured’s expected
utility Jj [P,I ] =

def Euj (wj – Pj – Xj + Ij (Xj )), j = 1,…,n. By definition, a contract
(P, I ) is called Pareto-optimal if there is no other contract (P, I ) such that
Ji [P, I ] $ Ji [P, I ] for i = 0,…,n, and at least one of the inequalities is strict.
That is, under the contract any agent cannot improve his utility without wors-
ening the utility of at least one other agent.

A method for obtaining a Pareto-optimal solution can be found in Ger-
ber (1978) (see also Borch (1960) and Aase (2002)) and consists in maximiza-
tion of a weighted sum of the agents’ utilities: Fix a vector k = (k0,…,kn)
such that k > 0 component-wise and 0 k 1i

n
=! , then maximize the functional

i
i

n

0=

k! Ji [P,I ] over the set of insurance contracts (P, I ).
Show that in our case this procedure generates the set of all Pareto-opti-

mal contracts. As is known (see, e.g., Gerber (1978) and Aase (2002)), if (P, I )
is a Pareto-optimal solution then, due to concavity of all the functionals Ji,
there exists a vector k $ 0, i0 k 1n

=! such that (P, I ) is a maximizer in the
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problem above. Suppose k0 = 0, then there is kj > 0 for some j > 0. Since
Jj [P, I ] = Euj (wj – Pj – Xj + Ij (Xj )), we can choose Pj < Pj that gives a greater
value of the weighted sum of the utilities, which leads to a contradiction with
optimality of (P, I ). Suppose kj = 0 for some j > 0. As k0 > 0 and J0 [P, I ] =
Eu0(w0 + s 1= (n! Ps – Is(Xs))), we can choose a contract with Pj > Pj at which the
weighted sum has a greater value so that we come to a contradiction.

For convenience we set dj = kj /k0 and rewrite the maximization problem
above as

maximize J [P,I ] / J0 [P,I ] + j
j

n

1=

d! Jj [P,I ], (15)

where dj > 0, and maximization is taken over P ! Rn and I = (I1,…,In) : 0 #
Ij(x) # x for j = 1,…, n. As we have shown, the n-parameter family {(Pd, I d)}d>0

of maximizers in (15) consists of all Pareto-optimal contracts.
The problem of finding Pareto optimality conditions via solving (15) was

studied in Golubin (2005). Below we reformulate the relevant theorems from
the paper; it turns out that the theorems’ statements are preserved, while the
assumptions can now be weakened with respect to admitting the insureds’ risks
distributions Fj with arbitrary supports1, not only with interval-shaped supports.
The latter is achieved by employing the Neyman-Pearson lemma, instead of
using the directional derivatives technique only.

The next theorem gives a characterization of the Pareto-optimal contract
(P, I ) = (Pd, Id) (below we will omit the superscript d for convenience) in the
form of necessary and sufficient conditions for optimality in (15). Denote,
respectively, by 

A = w0 + (
s

n

1=

! Ps – Is(Xs)) and Bj = wj – Pj – Xj + Ij (Xj) (16)

the final capitals of the insurer and j-th insured under a contract (P, I ).

Theorem 2. A contract (P, I ) solves (15) – i.e., it is Pareto-optimal – if and only if

E [u�0(A) | Xj ] = dj u�j (Bj) a.s. j = 1,…, n. (17)

Proof. Let (P, I ) be a maximizer in (15). Denote DP = P – P, where P is an
arbitrary vector in Rn, and let D (x) = (D1(x), …, Dn(x)) be a vector-function
with Dj = Ij – Ij, where Ij is an arbitrary policy, j = 1,…, n. For l ! [0,1] define
Pl = P +lDP and Il = I +lD, and consider a function J(l) =

def J [Pl, Il] (see (15)).
Optimality of I means that l = 0 maximizes J (l) on the interval [0,1]. Due to
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concavity of all the functionals Ji, this is equivalent to J�(0) # 0 for any P and
indemnity rule I, or 

D
s

n

1=

! Ps E(u�0(A) – dsu�s(Bs)) – E
s

n

1=

! {[u�0(A) – dsu�s (Bs)] Ds(Xs)] # 0. (18)

Setting Dj(x) / 0 for all j, by (18) we have 

E (u�0(A) – dj u�j (Bj)) = 0 (19)

for j = 1,…, n as (18) holds for any choice of DP. Then fixing any j and setting
Ds(x) / 0 for all s ! j, we obtain that (18) is equivalent to E {(dj u�j (Bj ) –
u�0(A))Dj(Xj )} # 0, j = 1,…, n. In other words, Ij is a solution to the problem 

maximize j

0

3

V# (x) Ij(x) dFj(x) subject to 0 # Ij (x) # x, (20)

where Vj (x) =
def E [dj u�j (Bj) – u�0(A) |Xj = x]. Analogous to the Theorem 1’s proof,

by the Neyman-Pearson lemma we have that a policy Ij solves (20) if and only
if

Ij(x) =
, <

, >

x

x x

if

if

0 0

0

j

j

V

V
]
]
g
g* up to a set of zero Fj-measure.

First examine the case Vj (0) < 0. When x increases from x = 0, the function
V(x) increases under Ij(x) = 0 (see the definition of V(x) along with (16)). By
(19), there must be a point at which Ij(x) switches to x as Vj(x) becomes pos-
itive. However, under this policy Vj(x) is a decreasing function as follows from
concavity of u0(·). Thus, we have a contradiction with the positiveness of Vj(x).

Suppose that Vj(0) > 0. Similar to the arguments above, at first Ij(x) is equal
to x with a decreasing function Vj(x) > 0. Then, after switching Ij(x) to zero when
Vj(x) becomes negative, the function Vj(x) becomes increasing and we come
to a contradiction. Thus, optimality of Ij in (20) (and, hence, in the initial
problem (15)) means Vj(x) / 0 almost everywhere with respect to Fj-measure,
that is, E [u�0(A)|Xj ] – dj u�j (Bj) = 0 a.s. for all j = 1,…, n. ¡

To continue the analysis, recall that the absolute risk aversion function of an

agent is r(x) = u x

u x

�

�
- ]] gg and the reciprocal of it, r(x) =1/r(x), is the risk tolerance

function. Consider (17) under given Xj =x and formally differentiate the equation
with respect to x. Expressing then dj from (17), we get a differential equation 

I�j (x) = r0j(x) / [ r0j(x) + rj(Bj(x))] (21)
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with initial condition Ij(0) = 0, j = 1,…, n, where Bj(x) = wj – Pj – x + Ij(x) is the
final insured’s capital Bj under Xj = x (see (16)) and r0j(x) =

def – E [u�0(A)|Xj = x] /
E [u�0(A) |Xj = x]. The introduced function r0j(x) is the ratio of the two expec-
tations conditioned by Xj = x, but not the expectation of the risk tolerance
r0(A) = – u�0(A)/u�0(A) under Xj = x. The form of r0j(x) is thus generally affected
by the risk distributions Fs, s ! j. In the sequel it will be referred to as a risk
tolerance ratio of the insurer with respect to j-th insured.

Corollary 1. A contract (P, I ) is Pareto-optimal if and only if

E [u�0(A) | Xj = 0] = dj u�j (wj – Pj) for some dj > 0 and (22)

I�j (Xj ) =
j

j

jr r

r

j j

j

0

0

+ BX

X

_ _
_
i i

i
a.s. (23)

with initial conditions Ij(0) = 0, j = 1,…, n.

The proof is given in Appendix.

Remark 2. In order to completely define an indemnity Ij (Xj ), it suffices to
define the function Ij(x) on the support supp Fj of distribution Fj only, not on
the whole interval [0,3). In this connection, the optimality of a solution to
equations (22)-(23) stated in Corollary 1 is understood in the same sense as
in Wyler (1990), where Pareto-optimal exchanges in the Borch’s model were
characterized:

(i) if premiums Pj and functions Ij(x) satisfy (22) and solve (21) on [0,3) (or
at least on [0,Tj ] if Tj =

def sup{suppFj} < 3) then (P, I ) is optimal in (15); (ii) if
(P, I ) is optimal then there are functions Ij(x) satisfying (22) and (21) on [0,3)
(or on [0,Tj ] ) such that Ij(x) / Ij(x) on suppFj, j = 1,…, n. Roughly, this means
that one can solve system of equations (21) on, say, [0,3) without regard to
the shapes of suppFj , j = 1,…, n.

5. EQUILIBRIUM IN TERMS OF RISK AVERSION

Returning to the equilibrium concept, remark that an equilibrium (C,I ) — accord-
ing to the definition — gives the individually rational contract (P,I ), where
the premium vector P = E [CI (X )] component-wise. By individual rationality
we mean that the contract does not lessen the initial utilities, Ji [P,I ] $ Ji [0,0],
i = 0, …, n. Here the agents’s initial utilities before making a contract are:
J0 [0,0] = u0(w0) for the insurer, and Jj [0,0] = Euj (wj – Xj), j = 1,…, n, for the
insureds. Since J0[P,I ] = Eu0(w0 + s 1= (n! Ps – Is(Xs))) $ J0 [0,0] = u0(w0) in equi-
librium, by Jensen’s inequality and monotonicity of u0(x) we have 

j jj jE
j

n

j

n

1 1

$
= =

X XI EIF! !_ _i i8 B
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— the summary premium exceeds the actuarial value of the summary risk taken
by insurer.

In connection between Pareto optimality and equilibrium, it is worthwhile
to note that from conditions (5)-(6) in Theorem 1 it follows that (17) in The-
orem 2 is satisfied under a contract (P, I ) equal to the equilibrium contract (P,I )
if we set dj = Eu�0(A) /Eu�j (Bj) for j = 1,…, n, i.e., the equilibrium contract is
necessarily a Pareto optimum.

The next theorem shows how necessary and sufficient conditions for equi-
librium in terms of risk aversion (tolerance) functions are obtained from The-
orem 1 and Pareto optimality conditions in Corollary 1. As before, Bj(x) = wj –
Pj – x + Ij(x) stands for the j-th insured’s final capital under Xj = x.

Theorem 3. Collections C = (C1,…,Cn) and I = (I1,…,In) constitute an equilibrium
in the market if and only if

Cj =
j

j

j

j

. .,
exp

exp

E t B t dt

t B t dt
a s

r

r

j

X

j

X

1

0

1

0

+

+

-

-

0

0

r

r

j

j

#

#
] ]_
] ]_

g gi
g gi

8
8

B
B

' 1 (24)

and policies Ij satisfy 

I �j (x) =
jx B x

x

r

r

j+0

0

rj

j] ]_
]

g gi
g

(25)

with initial conditions Ij (0) = 0 and premiums Pj equal to E[Cj Ij(Xj)], j = 1,…, n.

Proof. 1. Suppose (C,I ) to be an equilibrium. Then, by Theorem 1, (5) and
(6) hold. Hence condition (17) in Theorem 2 is satisfied under Ij = Ij, Pj =
E [Cj Ij(Xj)], and dj = Eu�0(A) /Eu�j (Bj). Then from Corollary 1 we get that the
policies Ij satisfy (25).

To prove (24), for given Xj = x we can write (5) as 

Eu�0(Aj(x)) = cj(x)Eu�0(A), (26)

where Aj (x) is a stochastic-valued function Aj (x) = w0 + H [Ij (Xj )] – Ij (x) +

s s!s j H s s
n

-I X I X! ^ ^h h7 A# -. Formal differentiating (26) with respect to x and

then dividing c�j (x) by cj(x) expressed from (26) give 

c�j (x) /cj(x) = – I �j (x)Eu�0(Aj(x)) /Eu�0(Aj(x)). (27)

Inserting the expression for I �j (x) given by (23), we obtain a differential equation

c�j (x) /cj(x) = 1/ [r0j(x) + rj(Bj(x))].
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Taking into account the norming condition j0

3
c# (x)dFj (x) = 1, a unique solu-

tion to this equation is 

cj(x) =
j

j

j
.

exp

exp

E t B t dt

t B t dt

r

r

j

X

j

x

1

0

1

0

+

+

-

-

0

0

r

r

j

j

#

#
] ]_

] ]_
g gi

g gi
8

8
B

B
' 1 (28)

In the same way as in the Corollary 1’s proof, it is shown that the equilibrium
density function cj(x) we start from coincides with cj(x) up to a set of zero
Fj-measure. Hence, expression (24) for Cj = cj(Xj) is valid.

2. Let (25) hold with Pj = E [Cj Ij(Xj)], and Cj is given by (24), j = 1,…, n.
Define a function cj(x) by the right-hand side of (28). As was shown in the first
part of the proof, cj(x) satisfies equation (27) and, hence, coincides with Eu�0(Aj(x))
up to a multiplier. This along with the norming condition Ecj(Xj) = 1 yields 

cj(x) = Eu�0(Aj(x)) / Eu�0(A). (29)

On the other hand, defining dj by equations E [u�0(A)|Xj = 0] = dj u�j (wj – Pj), we
have from (25) and Corollary 1 that the policies Ij and premiums Pj constitute
a Pareto-optimal contract. Then Theorem 2 gives 

Eu�0(Aj(x)) = dj u�j (Bj(x)), whence dj = Eu�0(A) /Eu�j (Bj). (30)

Coupling (29) and (30), we have E [u�0(A)|Xj ] = Cj E u�0(A) and u�j (Bj ) = Cj

Eu�j (Bj) a.s. for j = 1,…, n. According to Theorem 1, it means that (C,I ) is an
equilibrium. ¡

Theorem 3 states in particular that the policies in equilibrium (if exists)
solve equations (25) (see also Remark 2) and, hence, they satisfy 0 < I�j (x) < 1.
Since Ij(0) = 0, any Ij is a coinsurance policy with no deductible. This is, of
course, a direct consequence of the coinsurance form of Pareto-optimal policies
as given by (23) in Corollary 1.

The market price density for the reinsurance market model (see Buhlmann
(1984)) is a function of total risk XM

F = / / /x dx E x dxr r1 1
00

MM XX

## ] ]g g
R

T

S
S
S

V

X

W
W
W

with the “total risk tolerance”

r(x) = i ri! (wi – Zi(x)) involving the risk tolerance functions ri of all the agents.
In distinction to it, expression (24) for the j-th agent’s price density reflects, in
general, the presence of the other n – 1 insureds in the market by dependence
of the risk tolerance ratio r0 j(x) = –E [u�0(A) |Xj = x] /E [u�0(A)|Xj = x] on dis-
tributions of Xs for all s ! j. Note that in the case n = 1 (one insured only) this
dependence disappears, and relations (24)-(25) becomes the same as equilibrium
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characterization in the Borch’s model. For example, (25) converts into the dif-
ferential equation presented in Aase (2002)

I�(x) = r1(w1 – P – x + I (x)) /{r0(w0 + P – I (x)) + r1(w1 – P – x + I (x))}.

Example 1. Consider the problem of finding an equilibrium in the case of
exponential utility functions of the agents, ui(x) = ci

–1(1 – exp(–ci x)), i = 0,…,n.
Without loss of generality we can assume the initial capitals wi = 0, because in
this case wi can be excluded from both sides of optimality equations (5)-(6).

We start with determining the Pareto-optimal contracts (P, I ). As shown in
Golubin (2005), equation (23) gives, as r0j(x) / ci

–1 and rj(x) / cj
–1, that 

Ij (x) =
j

,c xj

0 + c
c

j = 1,…, n,

are the only Pareto-optimal indemnity rule. Equation (22) results in

1-

j
j s / ,ln lnd c a a c1

j j s s
s

n

0
1

= - - + + +
=

c a dP d ! ^ h> H* 4 (31)

where we introduce d as defined by d –1 = c0
–1 + … cn

–1, and a = s 1=
as

n! with
as = ln{Eexp[Xsc0cs /(c0 + cs)]} <3 by assumption. Thus the set of Pareto-opti-
mal contracts {(Pd, Id)}d>0 consists of a single indemnity rule I and a range of pre-
mium vectors P = Pd defined in (31). Summing Pj gives the summary premium

j
1- .lnc

d c a
!

j
j

n

j

n

j s
s j

n

01 1

= - +
= =

P d! ! !
J

L
KK

N

P
OO (32)

From (31) it is seen that the premium Pj depends on the distributions of the
insureds losses Xs through the quantities as. This dependence has a curious
form: a coefficient at aj in (31) is cj

–1[–1 + (c0
–1 + cj

–1)d ] < 0, while for all s ! j
the coefficients at as are positive. It looks like a ‘‘premium paradox’’ — if the
j-th insured’s risk is worsened by adding a positive constant, X�j = Xj + b, then
the Pareto-optimal premium he pays decreases as a�j > aj. The summary pre-
mium (see (32)) becomes greater, which is explained by increases in premiums
Ps of all other insureds as follows from (31) if we consider the expressions for
Ps. An explanation of the effect seems the following. If the risk Xj is worsened
(i.e. increased with probability one), a “fair arbitrator” should worsen (i.e.
decrease) the insured’s weight dj so that to make the j-th insured pay more.

The equilibrium notion singles out a contract from the set of Pareto optima,
playing in some sense the role of the “fair arbitrator”. Expression (24) gives
the j-th price density 

Cj = exp[Xj c0cj / (c0 + cj)] / E exp[Xj c0cj / (c0 + cj)], (33)
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from (25) we have the policy Ij(x) = xcj /(c0 + cj), j = 1,…, n. According to The-
orem 3, the pair (C,I ) is an equilibrium. The premium paid by j-th insured is 

Pj = E [Cj Ij ] = E [exp(c0Ij)Ij ] /E [exp(c0Ij)],

where we denote Ij = Ij(Xj). Prices given by expressions of this kind are often
related to the Esscher principle in actuarial mathematics. Buhlmann (1980) used
the Esscher principle in pricing a risk newcoming into a reinsurance market.
A discussion of some its properties can be found in Goovaerts et al. (1984).
Particularly, the price value increases vs an increase in the coefficient c0 and,
hence, always dominates the actuarial value EIj.

Returning to the “premium paradox”, it is seen from (33) that for the wors-
ened risk X�j = Xj + b we have that Cj does not change and then the new pre-
mium P�j = E [Cj Ij (X�j )] quite naturally becomes greater than Pj.

Finally, we can also determine the market price density by use of (4) which
yields 

j j j j jj j/ / / .exp expc c c c E c c c cF C
j

n n n

1
0 0

1
0 0

1

= = + +
=

X X% ! !_ _i i> >H H

If the insureds have identical risk aversion parameters, c1 = … = cn, the market
price density can be rewritten as 

M

M

c
c

c
c

,
exp

exp

E
F

c
c

c
c

0

0

0

0

=
+

+

1

1

1

1

X

X

9
9

C
C

where jM .
j

n

1

=
=

X X!

Compare the insurer’s situation (his indemnity and premium received) with
that in the Borch’s model of reinsurance market where treaties among insureds
are allowed. In both cases the initial risk portfolio of the (n + 1) agents is
(0,X1,…,Xn) with independent components. In our notation, the equilibrium
risk exchange in the reinsurance market described, e.g., in Aase (2002) results
in the i-th agent’s risk ci

–1dXM and the premium (i.e. the side payment he pays)
E [exp(dXM)(Xi – ci

–1dXM)] /E exp(dXM), i = 0,…,n. Thus the insurer, i.e., the agent
having number i = 0 takes indemnity Y = c0

–1dXM and receives the payment S =
E [c0

–1dXM exp(dXM)] /E exp(dXM) = E [Y exp(c0Y)] /E exp(c0Y).
In our setting, the insurer’s indemnity 

j

j
j > YY c c

c

j

n

01

= +
=

X! a.s.

The latter inequality follows from that cj /(c0 + cj) = c0
–1/ (cj

–1 + c0
–1) > c0

–1/ 1-
icn

0
! .

The summary premium the insurer gets is S = E [FY ] = E [Y exp(c0Y )] /E exp(c0Y ).
To compare S and S, we express them in the forms
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S = c0
–1 E

n

1
! [dXj exp(dXj)] /E exp(dXj) and

S = c0
–1 E

n

1
! [mjXj exp(mjXj)] /E exp(mjXj),

where mj = c0cj (c0 + cj)
–1 > d. According to the above-mentioned monotonicity

property of the Esscher principle, E [Xj exp(dXj)] /E exp(dXj) < E[Xj exp(mjXj)] /
E exp(mjXj) for each j as d < mj and, hence, S < S. We can conclude that in the
reinsurance model, where insureds can exchange their risks among themselves,
the insurer is more discrete in the sense that in equilibrium he takes a less
indemnity (with probability one), receiving a less premium.

6. EXISTENCE OF EQUILIBRIUM

In Example 1 we have found in an explicit form the only pair (C, I ) that satisfies
Theorem 3 and, thus, is a unique equilibrium. For a general case it is desirable
to have a set of conditions that guarantee the existence of an equilibrium.
The problem of equilibrium existence in the reinsurance market model was
studied by Buhlmann (1984) and Aase (1993). In the latter paper, based on results
in Mas-Colell (1986), a set of relatively weak sufficient conditions for the exis-
tence was obtained. Buhlmann investigated the same problem in the case of
bounded risks by using a parametrization of Pareto-optimal risk exchanges
through their initial receipts (or, in other words, side payments).

In this section we focus on finite-dimensional case, supposing in addition to
the assumptions in section 2 that each risk Xj is a discrete stochastic variable
with the finite set of possible values xj = (xj1,…, xjSj

). An indemnity function
Ij(x) is identified with a vector Ij ! RSj satisfying 0 # Ij # xj component-wise.
The premium Pj = E [Cj Ij(Xj)] is thus a scalar product with respect to the prob-
abilistic measure,

Pj = <cj , Ij> = kj,
k 1

j

=

S

c! Ijk P{Xj = xjk},

where the vector cj = (cj1,…, cjSj
) corresponds to j-th price density function

cj(x) and satisfies the inequality cj $ 0 and the norming condition <cj ,1> = 1.
In order to establish the equilibrium existence, we employ Theorem 1 and

prove in our case the solvability of equations (5)-(6) that can be written as

rj [C, I, Xj ] – Cj = 0 a.s. (34)

Cj – qj [C, I, Xj ] = 0 a.s. (35)

where, following the notation of Theorem 1, rj [C, I, x] = E [u�j (Bj ) |Xj = x] /
Eu�j (Bj) and qj [C, I, x] = E [u�0(A) |Xj = x] /Eu�0(A), A and Bj stand for the final
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capitals of the insurer and insureds respectively, j = 1,…, n. The next lemma
allows for reducing the question on solvability of (34)-(35) (with respect to
(C,I )) to solvability of definite inequalities.

Lemma 1. Let an admissible (C*, I*) be such that

E{[rj [C*, I*, Xj ] – Cj
* ] [Cj – Cj

* ]} # 0 (36)

E{[Cj
* – qj [C*, I*, Xj ]] [Ij(Xj) – I*

j (Xj)]} # 0 (37)

for any admissible Cj and Ij(Xj), j = 1,…, n. Then (C*, I*) solves (34)-(35).

The proof is given in Appendix.

Now we prove the existence of a solution (C*, I*) to (36)-(37). For this purpose
we represent the inequalities in the form of a finite-dimensional variational
inequality problem (see Harker and Pang (1990) for a review of this kind of
problems). Since in the considered finite-dimensional case the expectations can
be rewritten as the scalar products with the use of the above-introduced vec-
tors cj ! RSj and Ij ! RSj, (36)-(37) take the form

<gj (c*, I*), cj – cj
*> # 0 (38)

< fj (c*, I*), Ij – Ij
*> # 0 (39)

for j = 1,…, n, where the Sj-dimensional vector-functions gj and fj correspond
to the functions in the left-hand sides of (36) and (37) respectively. The set of
admissible (c, I ) is

M = K ≈ L =
def {c ! jRS

j

n

1=

% : cj $ 0, <cj,1> = 1, j = 1,…, n}

≈ {I ! jRS

j

n

1=

% : 0 # Ij # xj, j = 1,…, n}.

The fact that M is the full Cartesian product of the individual sets {cj} and
{Ij} makes the system (38)-(39) of 2n inequalities equivalent to the summary
inequality 

<
j

n

1=

! gj (c*, I*), cj – cj
* > + <

j

n

1=

! fj (c*, I*), Ij – Ij
* > # 0 for all (c,I ) ! M.

The latter is related to the variational inequality problems and, by Theorem 3.1
in Harker and Pang (1990, p. 170), this inequality has a solution (c*, I*) since
all the functions gj(c,I ) and fj(c,I ) are continuous on the compact convex
set M. Thus, according to Lemma 1, the system (34)-(35) is solvable and, by
Theorem 1, an equilibrium exists in the insurance market model.
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Remark 3. Concerning a generalization of the equilibrium existence theorem
to the infinite-dimensional case, the following directions seem worth attention:
Under an assumption of boundedness of insureds’ risks, Xj # C a.s., one might
try to use weak compactness of a set of bounded stochastic variables instead
of the compactness property assumed in the above-mentioned theorem on
solvability of variational inequality in Harker and Pang (1990, p. 170). Another
way is to adjust the L2-theory technique used in Aase (1993) to the case of the
insurance market model.
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APPENDIX

The proof of Corollary 1.

The way of the proof we use partially follows the reasonings in Wyler (1990,
pp. 25-27). Assume, without loss of generality (see Remark 2), that the domains
of all r0 j(x) and rj(Bj(x)) in (23) are [0,3).

(i) Let P and I(x) satisfy (22) and solve (21) on [0,3). Define differentiable func-
tions on [0,3): gj(x) = Eu�0(Aj(x)) – dj u�j (Bj(x)), where Aj(x) =

def w0 + Pj – Ij(x) +

s s s!s j
n

-P I X! ^` hj and Bj(x) =
def wj – Pj – x + Ij(x), j = 1,…, n. The derivative of

gj(x) is g�j (x) = –Eu�0(Aj(x)) I�j (x) – dj u �j (Bj(x)) [ I�j (x) – 1]. Inserting the expression
for I�j (x) given by (21), we obtain 

g�j(x) = gj(x) / [ r0j(x) + rj(Bj(x))] and, hence,

gj(x) = Cj exp j .t B t dtr r, j j

x

0
1

0

+
-#

J

L

K
KK ] ]_ N

P

O
OOg gi8 B

From (22) we get gj(0) = 0, therefore Cj = 0 and gj(x) / 0 for all x ! [0,3) and
j = 1,…, n. Because condition (17) in Theorem 2 evidently holds, (P, I ) is opti-
mal in (15).

(ii) Let (P, I ) be a solution to (15). Choose any j and fix P and Is for s ! j.
Considering (21) as an equation on [0,3), by a standard theorem on differen-
tial equations we have that (21) has a unique solution Ij(x). As was shown in
part (i), Ij(x) solves equation (17) on [0,3):

Eu�0(Aj(x)) = dj u�j (Bj (x)). (40)
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The only solution of this equation (see the definitions of Aj(x) and Bj (x) pre-
sented above) can be written as Ij(x) = fj

–1(wj – Pj – x), where fj
–1 is the inverse

of the function

fj (z) = (u�j )–1
j s js / .E u w z zd

!
s

s j

n

0 0 - + + - -� P P XI!
J

L
KK

J

L

K
K ^` N

P
OO

N

P

O
Ohj

Note that fj
–1 exists because u�0(·) and u �j (·) are decreasing functions. On the

other hand, the optimality of (P, I ) means, by Theorem 2, that Ij(x) solves (40)
for x ! supp Fj. Uniqueness of the solution to (40) gives Ij(x) / Ij(x) on supp Fj.
Repeating these arguments for each j = 1,…, n completes the proof. ¡

The proof of Lemma 1.

(i) Let (36) be satisfied, which means that cj
*(x) is a maximizer in the problem 

j

max j
c

0

3

G# (x)cj(x)dFj(x),

where we denote Gj(x) = rj [C*, I*, x] – cj
*(x). Then all positive values of cj

*(x)
correspond to the set A* of arguments x at which Gj(x) attains its maximum
on supp Fj .

Suppose the contrary to the lemma’s statement: Gj(x) # 0 on suppFj . By con-
struction, j

0

3
G# (x)dFj(x) = 0 hence Gj(x) must change the sign and, in partic-

ular, its maximal value attained on A* is positive. However, rj [C*, I*, x] > 0 for
all x and cj

*(x) = 0 for all x " A* so that Gj(x) = rj [C*, I*, x] – cj
*(x) > 0 every-

where with respect to Fj-measure. The obtained contradiction proves the
required result: Gj(x) = 0 for all x ! supp Fj .

(ii) Let (37) be satisfied, that is, Ij
* maximizes the integral 

(
0

3

# cj
*(x) – qj [C*, I*, x])Ij(x)dFj (x) subject to 0 # Ij (x) # x.

This problem coincides up to the notation with problem (8) considered in The-
orem 1. Then, repeating the arguments in the Theorem 1’s proof and observing
that rj [C*, I*, x] / cj

*(x) on supp Fj , we get equality (35). ¡
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