A self-reciprocal function

By Brij Mohan.

(Received 24th April, 1939. Read 5th May, 1939.)

1. The object of this note is to discover a new function which is its own reciprocal in the Hankel Transform of order zero.

I will make use of the following theorem of Hardy and Titchmarsh ${ }^{1}$:-

A necessary and sufficient condition that a function $f(x)$ should be its own J_{v} transform is that it should be of the form

$$
\begin{equation*}
f(x)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} 2^{\frac{1}{d} s} \Gamma\left(\frac{1}{4}+\frac{1}{2} \nu+\frac{1}{2} s\right) \psi(s) x^{-8} d s, \tag{1.1}
\end{equation*}
$$

where $0<c<1$, and

$$
\begin{equation*}
\psi(s)=\psi(1-s) \tag{1.2}
\end{equation*}
$$

2. I start with the pair of Mellin Transforms ${ }^{2}$

$$
I_{n}(x) K_{n}(x), \frac{\Gamma\left(\frac{1}{2} s\right) \Gamma\left(\frac{1}{2} s+n\right) \Gamma\left(\frac{1}{2}-\frac{1}{2} s\right)}{4 \pi^{\frac{1}{2}} \Gamma\left(1+n-\frac{1}{2} s\right)}, \quad\left(0<\sigma<n+\frac{3}{2}\right),
$$

where $I_{n}(x)$ and $K_{n}(x)$ are the usual Bessel Functions with imaginary argument.

This gives rise to the integral formula

$$
\begin{aligned}
& I_{n}(x) K_{n}(x)=\frac{1}{2 \pi i} \cdot \frac{1}{4 \pi^{\frac{1}{2}}} \int_{k-i \infty}^{k+i \infty} \Gamma\left(\frac{1}{2} s\right) \Gamma\left(\frac{1}{2} s+n\right) \Gamma\left(\frac{1}{2}-\frac{1}{2} s\right) \\
& \Gamma\left(1+n-\frac{1}{2} s\right)
\end{aligned} x^{-s} d s
$$

on using the Duplication Formula for Gamma Functions.
Hence

$$
I_{n}(x) K_{n}(x)=\frac{1}{2 \pi i} \int_{2 k-i \infty}^{2 k+i \infty} \frac{\Gamma\left(\frac{1}{2} u\right) \Gamma\left(\frac{1}{4} u+n\right) \Gamma\left(\frac{1}{2}-\frac{1}{4} u\right)}{\Gamma\left(\frac{1}{2}+\frac{1}{4} u\right) \Gamma\left(1+n-\frac{1}{4} u\right)} \frac{x^{-\frac{1}{2} u}}{2^{\frac{1}{n} u+2}} d u,
$$

[^0]so that
\[

$$
\begin{aligned}
x^{\frac{1}{2}} I_{n}\left(\frac{1}{4} x^{2}\right) & K_{n}\left(\frac{1}{4} x^{2}\right) \\
& =\frac{1}{2 \pi i} \int_{2 k-i \infty}^{2 k+i \infty} \frac{I^{\prime}\left(\frac{1}{2} u\right) \Gamma\left(n+\frac{1}{4} u\right) \Gamma\left(\frac{1}{2}-\frac{1}{4} u\right)}{\Gamma\left(\frac{1}{2}+\frac{1}{4} u\right) \Gamma\left(1+n-\frac{1}{4} u\right)} 2^{\frac{1}{4} u-2} x^{\frac{1}{4}-u} d u \\
& =\frac{1}{2 \pi i} \int_{2 k-\frac{1}{2}-i \infty}^{2 k-\frac{1}{2}+i \infty} 2^{\frac{18}{k-i}-\frac{\Gamma\left(\frac{1}{2} s+\frac{1}{4}\right) \Gamma\left(n+\frac{1}{8}+\frac{1}{4} s\right) \Gamma\left(\frac{3}{8}-\frac{1}{4} s\right)}{\Gamma\left(\frac{5}{8}+\frac{1}{4} s\right) \Gamma\left(\frac{7}{8}+n-\frac{1}{4} s\right)} x^{-s} d s .}
\end{aligned}
$$
\]

Putting $n=0$, we get

$$
\begin{equation*}
x^{\frac{1}{4}} I_{0}\left(\frac{1}{4} x^{2}\right) K_{0}\left(\frac{1}{4} x^{2}\right)=\frac{1}{2 \pi i} \int_{2 k-\frac{1}{2}-i \infty}^{2 k-\frac{1}{2}+i \infty} 2^{\frac{1}{2} s} \Gamma\left(\frac{1}{4}+\frac{1}{2} s\right) \psi_{1}(s) x^{-s} d s, \tag{2.1}
\end{equation*}
$$

where

$$
\psi_{1}(s)=\frac{\Gamma\left(\frac{3}{8}-\frac{1}{4} s\right) \Gamma\left(\frac{1}{8}+\frac{1}{4} s\right)}{\Gamma\left(\frac{7}{8}-\frac{1}{4} s\right) \Gamma\left(\frac{5}{8}+\frac{1}{4} s\right)} 2^{-\frac{1}{2}}
$$

As $\psi_{1}(s)$ satisfies (1.2) it follows that the integral in (2.1) is of the same form as (1.1) with

$$
\psi(s)=\psi_{1}(s)
$$

and $\frac{1}{4}<k<\frac{3}{4}$.
It follows that the function on the left-hand side of (2.1) is its own J_{0} transform. That is, it satisfies the integral equation

$$
x^{\frac{1}{2}} I_{0}\left(\frac{1}{4} x^{2}\right) K_{0}\left(\frac{1}{4} x^{2}\right)=\int_{0}^{\infty}(x y)^{\frac{1}{2}} J_{0}(x y) y^{\frac{1}{2}} I_{0}\left(\frac{1}{4} y^{2}\right) K_{0}\left(\frac{1}{4} y^{2}\right) d y
$$

Benares Hindu University, lndia.

[^0]: ${ }^{1}$ E. C. Titchmarsh: The Theury of the Fourier Integral (Oxford, 1937), §(9.1.9.).
 ${ }^{2}$ Ibid., §(7.10.8.).

