PARAMETERS $T_{\text {eff }}$ AND $\log g$ FOR LATE B AND EARLY A TYPE STARS

M. GERBALDI and J. ZOREC
Institut d'Astrophysique de Paris, $98^{6 i s}$, Bd. Arago, 75014 Paris, France

ABSTRACT: We compare the $\log g$ parameters of early A and late B type stars determined from model atmospheres with those issued from models of stellar evolution. There is a systematic deviation between both determinations for $\log \mathrm{g}<3.7$.

PARAMETERS $T_{e f f}$ AND $\log g$ OBTAINED FROM STELLAR BOLOMETRIC FLUX AND ATMOSPHERE MODELS

As there is no measured stellar angular diameters of stars from B5 to early A type studied in this paper, we used an indirect procedure to determine $\mathrm{T}_{\text {eff }}$ based on: a) an iterative, Blackwell and Shallis' (1977) like method described in Zorec and Mercado (1987); b) visible and near-IR ground based flux observations (mainly 13-colour photometry of Johnson and Mitchel (1975)), and far-UV fluxes obtained by TD1 or ANS space observations; c) classical LTE line-blanketed model atmospheres for normal abundances (Kurucz 1979).

The main error on the $\mathrm{T}_{\text {eff }}$ determination is due to uncertainties of the adopted ISM-absorption colour excess $\mathrm{E}(\mathrm{B}-\mathrm{V})$. We have compared the $\mathrm{E}(\mathrm{B}-\mathrm{V})$, derived from the uvby photometry and using the Moon's (1985) code, to that adopted in this paper, determined mainly from the ISM $\lambda 2000$ absorption bump and from the method of neighbouring stars. We saw that the uncertainty on $\mathrm{E}(\mathrm{B}-\mathrm{V})$ is $|\delta \mathrm{E}(\mathrm{B}-\mathrm{V})| \simeq 0.02 \mathrm{mag}$, which implies errors $\delta \mathrm{T}_{\text {eff }} / \mathrm{T}_{\text {eff }}$ ranging unsymmetrically from 5% to 0.7% according to the sign of $\delta \mathrm{E}(\mathrm{B}-\mathrm{V})$.

To give a test of our $\mathrm{T}_{\text {eff }}$ determinations, we compared the parameters obtained by this method for Vega (HD 172167) to those generally admitted for this star. We found $\mathrm{T}_{e f f}=9467 \mathrm{~K}, \log \mathrm{~g}=4.10$, while Kurucz gives $\mathrm{T}_{\text {eff }}=$ 9400 K and $\log \mathrm{g}=3.95$. Vega is considered by some authors as a mild λ Boo type. We give then the values of $\mathrm{T}_{\text {eff }}$ obtained for some other stars belonging to the λ Boo group: HD $31295, \mathrm{~T}_{\text {eff }}=9300 \mathrm{~K}$; HD $1104111, \mathrm{~T}_{\text {eff }}=9260 \mathrm{~K}$; HD $125162, \mathrm{~T}_{e f f}=9215 \mathrm{~K} ; \mathrm{HD} 192640, \mathrm{~T}_{e f f}=8780 \mathrm{~K}$. Comparing these values with those given by Venn and Lambert (1990), we see that ours are about 500 K higher. We remind that the temperature determined by this method, does not sensitively depend on the $\log g$ value chosen to perform the computation. It may however depend on the chemical abundances. Underabundant models lead for $\mathrm{T}_{\text {eff }}<10000 \mathrm{~K}$ to higher values of θ, and so, lower values of $\mathrm{T}_{\text {eff }}$ of 200 to 300 K when \log (metal abundance) ~-1.0.

To derive the $\log g$ parameter, two approaches were used: 1) The first one depends on the Strömgren's $\mathrm{H} \beta$ Balmer line photometric index β taken from the Hauck and Mermilliod's (1990) compilation and its calibration in terms of $\log g$ done by Lester et al. (1986). Let us note that the stars used in this study have $\mathrm{T}_{\text {eff }} \geq 10000 \mathrm{~K}$ for which the β index is still a gravity sensitive parameter;
2) The second determination comes from the Moon and Dvoretsky's (1985) grid and its extension computed by Castelli (1991). The adopted $\log g$ parameter is the mean of both determinations. We have checked that both determinations are almost the same but they present a slight systematic difference. This difference may be probably due to calibration effects in the grids produced by Lester et al. (1984) and those by Moon and Dworetsky (1985), which were already discussed by Castelli (1991).

PARAMETERS $\log \mathrm{g}$ OBTAINED FROM STELLAR EVOLUTION COMPUTATIONS

The $\log \mathrm{g}$ parameter can be derived from the stellar evolution models using the (observed) bolometric luminosity $\mathrm{L} / \mathrm{L}_{\odot}$ and $\mathrm{T}_{\text {eff }}$. The most important errors affecting $\mathrm{L} / \mathrm{L}_{\odot}$ are due to the distance d and $\mathrm{E}(\mathrm{B}-\mathrm{V})$ determinations. For d we used the mean value obtained from ground based trigonometrical parallaxes and the distances reported in the literature derived by several independent methods. Our sample is made of stars having distances smaller than 200 pc and more than 60% of them have $\mathrm{d} \leq 100 \mathrm{pc}$. The mean dispersion of compilated distances for each star is $\sigma(\mathrm{d}) \simeq 25 \%$. We could finally use the relation $\log g=\log g_{\odot}+\log \left(\mathrm{M} / \mathrm{M}_{\odot}\right)-2 \log \left(\mathrm{R} / \mathrm{R}_{\odot}\right)$ where the masses $\mathrm{M} / \mathrm{M}_{\odot}$ were interpolated in the Maeder and Meynet's (1988) evolutionary tracks using our ($\mathrm{L} / \mathrm{L}_{\odot}, \mathrm{T}_{\text {eff }}$) parameters. For each star the $\mathrm{R} / \mathrm{R}_{\odot}$ was calculated combining the angular diameter θ determined at the $\mathrm{T}_{\text {eff }}$ iteration with the adopted stellar distance d .

Figure 1: Comparison of $\log g$ parameters determined from stellar evolution calculations ($\log \mathrm{g}_{\text {evol. }}$) with those obtained from stellar atmospheric parameters (log gatm.).

RESULTS AND DISCUSSION

In Figure 1 we compare both determinations of $\log g$ for the sample of stars studied in this paper. We see that there is a systematic deviation when $\log g<3.7$ which cannot be attributed only to distance uncertainties and to $\log g$ determinations using stellar atmospheric parameters. The vertical error bars are due both to distance $\delta \mathrm{d}$ and absorption $\delta \mathrm{E}(\mathrm{B}-\mathrm{V})$ uncertainties. The horizontal ones, represent the difference to the mean value of $\log g$ obtained by the two determinations issued only from atmospheric parameters.

To account for the systematic deviation $\delta(\log g) \simeq 0.5$ seen in Figure 1 of somewhat evolved stars, we should admit a mass overestimation of a factor 3. Perhaps, difficulties of the stellar structure calculation at the Helium ionization region, could possible produced underluminous models, which should be partially responsible for this result (Maeder, pivate communication).

REFERENCES

Blackwell, D.E., Shallis, M.J.: 1977, M.N.R.A.S., 180, 177
Castelli, F.: 1991, Astr. Ap., 251, 106
Hauck, B., Mermilliod, J.C.: 1990, Astr. Ap. Suppl., 86, 107
Johnson, H.L., Mitchel, R.I.: 1975, Rev. Mexicana Astr. Astrof., 1, 299
Kurucz, R.L.: 1979, Ap. J. Suppl., 40,1
Lester, J.B., Gray, R.O., Kurucz, R.L.: 1986, Ap. J. Suppl., 61, 509
Maeder, A., Meynet, G.: 1988, Astr. Ap. Suppl., 76, 411
Moon, T.T.: 1985, Comm. London Observatory $n^{\circ} 78$
Moon, T.T., Dworetsky, M.M.: 1985, M.N.R.A.S., 217, 305
Venn, K.A, Lambert, D.L.: 1990, Ap. J., 363, 234
Zorec, J., Mercado-Ibañez, R.: 1987, C.R. Acad. Sci. Paris, 305, Serie II, 1279

