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T H E E Q U A T I O N Xk + Yk = Zk IN C O M M U T I N G 
R A T I O N A L M A T R I C E S 

BY 

DAVID E. RUSH 

ABSTRACT. Solutions of Xk + Yk = Z k in invertible pairwise 
commuting rational 2 x 2 matrices are determined for k = 3, 4, 6, 9, 
from the analogous results of A. Aigner for algebraic number fields. 

Since so much profitable effort has been spent in trying to prove Fermat's 
assertion that the equation Xk + Yk =Zk is not solvable in the ring of integers 
for /c>3, it is natural to vary the question by asking for solutions of this 
equation in other rings. Some of these variations are surveyed in [11, Lecture 
XIII]. A relationship between solutions of this equation in rational matrices 
and solutions of the same equation in algebraic number fields has been 
indicated in [5] and [11]. In this note we show that this relationship can be 
tightened enough to give the complete solution of the above equation in 
pairwise commutative invertible rational 2 x 2 matrices for k = 4, 6, 9, and 
some partial results for other exponents. 

In what follows Q will denote the rational numbers and T an indeterminate. 
If P is a square matrix then Q[P] denotes {g(P) | g e Q[T]}. It should be noted 
that the solvability of Xk + Yk = Zk in rational matrices is equivalent to the 
solvability of the same equation in integral matrices since one can always 
multiply through by a common denominator of the entries of the matrices 
involved. 

THEOREM. Let 8 be algebraic over Q of degree n with minimal polynomial f, 
and let P be the companion matrix of f. If a, 0, y e Q(8) are nonzero and 
ak + 0 k = 7k, then there exist polynomials g, h, leQ[T] such that A = g(P), 
B = h(P), and C=l(P) are nonsingular and Ak +Bk = Ck. Conversely, if 
A = g(P), B = h(P), and C=l(P)eQ[P] are nonsingular matrices such that 
Ak +Bk ••= C \ then a = g(ô), (3 = h(8), and y = 1(8) are nonzero elements of 
0(8) satisfying ak + 0k = yk. 

Proof. If a, ft 7 G Q ( Ô ) - { 0 } satisfy a k + |8k = 7k, then a = g(ô), j8 = h(ô), 
7 = 1(8) for some g, h, I e Q[T]. If 8 = 8U 82,. . . , 8n are the conjugates of 8, 
then at = g(8t), pi = h(8i), and yt = 1(8^ are the conjugates respectively of a, |3, 
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7, and these are nonzero. Let D be the nXn diagonal matrix with diagonal 
elements 8l9 82,. . . , 8n. Then Ax = g(D), Bx = h(D) and CT = 1(D) are nonsing-
ular diagonal matrices such that A\ + B\=C\. Let S be an n x n matrix such 
that SDS A = P and let A = SA,S-\ B = SBlS~\ and € = 80^'. Then 
A = g(P), B = h(P), and C = l(P) are nonsingular and A k + Bk = Ck. 

Conversely, if A = g(P), B = h(P), and C = I ( P ) G Q [ P ] are nonsingular 
matrices such that A k + B k = Ck , then let x be an eigenvector of Pcorrespond
ing to the eigenvalue 8. Then g(8) = a, h(8) = (5, and 1(8) = y are nonzero 
eigenvalues of A, B, and C respectively and since (ak + (3k)x = ykx we have 
ak + pk = yk. 

REMARKS. (1) If in the above theorem the solution (a, |3, 7) to Xk + Yk = Z k 

corresponds to the matrix solution (A, B, C), and 17 e Q(8), then r) = r(ô), 
r e O [ T ] , and the solution (17a, rjjg, 177) corresponds to (NA, NB, NC) where 
N = r ( P ) . 

(2) The above theorem can clearly be extended to other equations than 
Xk + Yk - Z k (e.g. the related equation X k + Yk + Z k = 0), as well as other 
fields than Q. 

(3) Since the companion matrix is nonderogatory [6, p. 237], the condition in 
the above theorem that A e Q[P] is equivalent to the condition that AP -= PA 
[10, p. 107]. 

For those exponents k for which Fermat's last theorem holds we have: 

COROLLARY. If meZ is not a square, then the equation Xk + Yk = Zk has a 
nontrivial solution in Q(yJm) if and only if it is solvable in pairwise commutative 
nonsingular 2 x 2 rational matrices A, B, and C at least one of which has an 
eigenvalue in Q(y/m) — Q. 

Proof. If a, 8, yeQ(y/m)-{0} satisfy ak + 0k = 7k, then the proof of the 
above theorem gives nonsingular A, B, CeQ[P] with A k + Bk = Ck where 

TO ml 
P = is the companion matrix of f = X2 — m, and a, |3, 7 are eigenvalues 

of A, B, and C respectively. 
Conversely, if A, B, and C are nonsingular, pairwise commutative, rational 

2 x 2 matrices such that Ak +Bk = Ck, and say A has an eigenvalue ae 
Q(yJm) — Q. Then Q(a) = Q(\/m) and A is nonderogatory. Thus B = h (A) and 
C=l(A) for some h, leQ[T] [10, p. 107]. Then as in the above theorem 
g(a) = 0 and 1(a) = y are eigenvalues of B and C respectively and ak + (3k = 

yk. 
Examples: In our examples the emphasis will be on the 2 x 2 case. For if one 

has solutions to the equation Xk + Yk = Zk in "small" matrices, then one can 
always get solutions in bigger matrices by putting copies of the given solutions 
down the main diagonals. Also, it is easier to find solutions to X k + Yk = Zk in 
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algebraic number fields of degree n when n > fc, as in the following example: 
(1) Applying the theorem to the simple example lk + lk = (V2)k yields the 

example Ik + Ik =Pk where P is the companion matrix of f = Xk~2. 
For the remaining examples A, B, and C will denote pairwise commutative, 

nonsingular, rational 2 x 2 matrices. 
(2) If 6 or 9 divides fc, then Ak+Bk+Ck since the equations X 6 + Y6 = Ze> 

and X 9 + Y9 = Z 9 have only trivial solutions in quadratic number fields [2]. 
(3) If A4 + B4=C4 then by the above corollary we have a4 + (34 = y4 for 

some eigenvalues of A, B and C respectively, and we may assume a £ Q, the 
other cases being similar. Again by the corollary we get that |3, 7 G 0 ( a ) and by 
[1] or [11, p. 278], there exists TJ e Q(a) = Q(V-7) such that (rja, TJ|3, 7/7) = 
(± ( l+V-7) , ± ( 1 - 7 - 7 ) , ±2) (with arbitrary signs). Then, letting TJ = g(a), 
g G Q[T] and D = g(A) we get 

An analogous result holds for the equation X 4 + Y4 + Z 4 = 0 [using 8, p. 267]. 
(4) The exponent 3 case is especially interesting because of the complexity 

of the question of solvability of the Fermât cubic in quadratic number fields. 
The results on this question are mostly due to A. Aigner and are summarized 
in [11, pp. 279-286]. For instance it holds that any non-trivial solution of the 
Fermât cubic in Q(^m) is equivalent to (that is a Q(^/m) multiple of) one of 
the form (a + W m ) 3 + (a - W m ) 3 = c3, a, b, c E Q, and if one such solution 
exists in Q(y/m) there are infinitely many non-equivalent ones. Further, 
although the solvability of the Fermât cubic in Q(^Jm) is known for many 
integers ra, the complete set of those m for which this equation is solvable has 
not been determined. The above corollary yields for nonzero rationals a, b, c, 
that (a + by/m)3 + (a- by/m)3 = c3 if and only if 

[~c OP 

LO c\ 

and this gives all solutions if we identify solutions which are similar or multiples 
by a matrix D which is rational and commutes with A, B, and C. Some specific 
examples are (m, a, b, c) = ( -2, 2, 1, -2 ) , ( -2, -4374, 1935, 3078), (85, 1, 1, 8), 
and many other examples can be obtained from [11, pp. 280-289] and the 
references given there. 

- l - V - 3 
(5) The primitive 3rd root of unity £ = has minimal polynomial 

X 2 + X + 1. Thus U2)k + t = ( - D k whenever (fc, 6) = 1, and so we get 

0 I P r - 1 - 1 P [ - 1 OP 

- 1 - I J + L 1 oJ L 0 - I J • 

[ a bml3 r a 

b a J + l - & 
-bm 

a 
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whenever (k, 6) = 1. This was observed in [5], which along with [11, Lecture 
XIII] was the motivation for this note. 

The above cases appear to be the only exponents k for which the solvability 
of Xk 4- Yk = Zk in pairwise commutative nonsingular 2 x 2 rational matrices is 
known. Of course solutions in non-commutative matrices are more readily 
found. For example, it was pointed out in [9] that for k odd 

G -!R! îr-c ;r-
Although many more examples are known for these exponents [3], [11, p. 277], 
the solvability of Xk + Yk = Zk in nonsingular 2 x 2 rational matrices does not 
seem to be known for any other exponent fc>6. 
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