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Characterizing Complete Erd6s Space

Jan J. Dijkstra and Jan van Mill

Abstract. The space now known as complete Erdds space €. was introduced by Paul Erdés in 1940 as
the closed subspace of the Hilbert space ¢? consisting of all vectors such that every coordinate is in the
convergent sequence {0} U {1/n : n € N}. In a solution to a problem posed by Lex G. Oversteegen
we present simple and useful topological characterizations of €.. As an application we determine
the class of factors of €. In another application we determine precisely which of the spaces that can
be constructed in the Banach spaces ¢? according to the ‘Erdés method” are homeomorphic to €.
A novel application states that if I is a Polishable F;-ideal on w, then I with the Polish topology is
homeomorphic to either 7Z, the Cantor set 2¢, 7 x 2%, or €. This last result answers a question that
was asked by Stevo Todor¢evic.

1 Introduction

We present a number of topological characterizations of complete Erdés space €. As
an application we determine the class of factors of €, and we prove that €. has the
curious property that whenever a product [];°, X; is homeomorphic to €, then at
least one but no more than finitely many of the X;’s are homeomorphic to €,. In an-
other application we determine precisely which of the spaces that can be constructed
in the Banach spaces ¢# according to the ‘Erdés method’ [20] are homeomorphic to
€; see Theorem 4.1. A new type of application can be found in §4.4 and states that
if I is a Polishable F,-ideal on w, then I with the Polish topology is homeomorphic
to either Z, the Cantor set 2%, Z x 2%, or €.; see Theorem 4.15. This last result an-
swers a question that was posed to us by S. Todor¢evi¢. We also show by example that
Polishable ideals that are not F, can be either homeomorphic to €. or not homeo-
morphic to €. in the Polish topology, even if that topology is one-dimensional; see
Example 4.20.

Consider the Hilbert space ¢* consisting of the square summable sequences x =
(x0, %1, . .. ) of real numbers. Erdés [20] introduced the closed subspace of £* con-
sisting of all x € ¢? such that every coordinate x; is in the convergent sequence
{0} U{1/n : n € N}. This space is now known as complete Erdés space. Kawa-
mura, Oversteegen, and Tymchatyn [22] represented complete Erdds space as {x €
¢*: x; € R\ Q forall i}. It is known that this space is homeomorphic to Erdés’ orig-
inal model; see Dijkstra [9] and Remark 4.3. It is proved in [22] that complete Erd6s
space is homeomorphic to the end-point set of a Lelek fan as constructed in [25].
We find it convenient to use the latter representation for €.. Since the Lelek fan was
shown to be topologically unique by Charatonik [6] and Bula and Oversteegen [5],
we have that €. is well defined.
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The paper [22] contains a characterization of €.. However, this characterization
is quite technical and it is not topological but metric in nature. In [29, Question 7.1]
Oversteegen asks whether there is a simple characterization of complete Erdds space.
We believe that the following result fits the bill.

Theorem 1.1 (Characterization) A nonempty space E is homeomorphic to €. if and
only if there is a zero-dimensional topology W on E that is coarser than the given topology
on E such that for every x € E and neighbourhood U of x in E there is a neighbourhood
V of x in E with V closed in (E,' W), (V,' W) topologically complete, and V' a nowhere
dense subset of (U, W).

2 Preliminaries

Unless otherwise stated all topological spaces in this paper are assumed to be separa-
ble metric.

Definition 2.1 A subset A of a space X is called a C-set in X if A can be written as an
intersection of clopen subsets of X. A space is called almost zero-dimensional if every
point of the space has a neighbourhood basis consisting of C-sets of the space. If Z is
a set that contains X, then we say that a (separable metric) topology T on Z witnesses
the almost zero-dimensionality of X if dim(Z,7T) < 0, O N X is open in X for each
O € 7, and every point of X has a neighbourhood basis in X consisting of sets that
are closed in (Z,T). We will also say that the space (Z,7) is a witness to the almost
zero-dimensionality of X.

Remark 2.2. Observe that every C-set is closed and that the property is preserved
under finite unions and intersections. The concept of an almost zero-dimensional
space is due to Oversteegen and Tymchatyn [30]. The definition given here is easier
to use than the original one in [30] and was shown to be equivalent in Dijkstra, van
Mill, and Steprans [15]. Note that almost zero-dimensionality is hereditary.

Clearly, a space X is almost zero-dimensional if and only if there is a topology on
X witnessing this fact. Let Z be a witness to the almost zero-dimensionality of some
space X and let O be open in X. Then since X is separable metric, we can write O as a
union of countably many sets that are closed in Z. So every open set of X is F, in the
witness topology.

A function p: X — [—o00, 00] is called upper semi-continuous (USC) if {x € X :
©(x) < t}is open in X for every t € R. ¢ is called lower semi-continuous (LSC) if
—p is USC.

Definition 2.3 Let: X — [0, 00) and define
Gy = {(x,(x)): x € X and p(x) > 0}

and
LY ={(x,t):x € Xand 0 <t < p(x)}

both equipped with the topology inherited from X x R. We say that ¢ is a Lelek
function if X is zero-dimensional, ¢ is USC, and G; is dense in L; .
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Remark 2.4. The following facts can be found in Lelek [25]. Lelek functions with
compact domain C exist and C must be homeomorphic to the Cantor set. If ¢ is
a Lelek function with a compactum C as domain and we identify the set C x {0}
with a point in L, then we obtain a Lelek fan. The end-point set of a Lelek fan GJ is
one-dimensional and topologically complete. As mentioned in the introduction we
will use GJ as our standard model for €.. Since the Lelek fan is unique by [6] and
[5], any Lelek function ¢ with compact domain will do.

The following result links witness topologies with USC functions and was taken
from [14, Lemma 4.11]; see also [2, Corollary 5].

Lemma 2.5 Let X be a space and let Z be zero-dimensional space that contains X as a
subset (but not necessarily as a subspace). Then the following statements are equivalent:

(1) Z is a witness to the almost zero-dimensionality of X.
(2) There exists a USC function p: Z — [0, 00) such that the map h: X — G, defined
by the rule h(x) = (x, ¢(x)) is a homeomorphism.

Definition 2.6 A space is called nowhere zero-dimensional if no point of the space
has a clopen neighbourhood basis. A space X is called cohesive if every point of the
space has a neighbourhood that does not contain nonempty clopen subsets of X.

Every cohesive space is clearly nowhere zero-dimensional, but the converse is not
true even for homogeneous spaces; see Dijkstra [10]. The following observation is
trivial but useful.

Proposition 2.7 A product [[:°, X; is cohesive if and only if some Xy is cohesive.

Lelek [25] proved that €, can be turned into a connected space through the ad-
dition of just one point, which means that €. is cohesive. Also Erdés proved in [20]
that his representations of complete Erds space are cohesive, cf. Remark 4.3.

The following result from [14, Lemma 5.9] gives the connection between cohesion
and Lelek functions.

Lemma 2.8 Let @ be a USC function from a zero-dimensional space X to [0, 00) such
that G{ is cohesive and {x € X: p(x) > 0} is dense in X. Then there exists a Lelek
function x: X — R* such that x < ¢, the natural bijection h from the graph of ¢ to
the graph of x is continuous, and the restriction h|G} : G; — Gy is a homeomorphism.

Definition 2.9 Let p: X — [0, 00] be a function and let X be a subset of a metric
space (Y, d). We define exty ¢: Y — [0, 0] by

(exty @) (y) = 11{1(1)(sup{90(z) 1z € Xwithd(z,y) <e}) foryey,

where we use the convention sup @ = 0.

Note that the metric on Y is mentioned strictly for the sake of convenience and
that the definition of exty ¢ does not depend on the choice of d. It is easily seen that
exty ¢ is always USC and that it extends ¢ whenever ¢ is USC.
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3 Characterization and Stability

The following result includes Theorem 1.1.

Theorem 3.1 For a nonempty space E, the following statements are equivalent.

(1) Eis homeomorphic to €.

(2) Eis cohesive and there is a zero-dimensional topology W on E such that W is coarser
than the given topology and that has the property that every point in E has a neigh-
bourhood basis consisting of sets that are compact with respect to ' W.

(3) There is a zero-dimensional topology W on E that is coarser than the given topology
on E such that for every x € E and neighbourhood U of x in E there is a neighbour-
hood V of x in E with V closed in (E,' W), (V,' W) topologically complete, and V a
nowhere dense subset of (U, W).

(4) There is a topology W on E such that W witnesses the almost zero-dimensionality
of E, every point in E has a neighbourhood that is topologically complete in (E,' W),
and every open subset O of E is first category in (O, W).

(5) E is cohesive, there is a topology W on E such that W witnesses the almost zero-
dimensionality of E, and every point in E has a neighbourhood that is topologically
complete in (E,'W).

Proof (1) = (2). Let € = G{ for some Lelek function ¢ with compact domain K.
€. is known to be cohesive. Let m: K x R — K denote the projection. Let Z be
the graph of ¢ with the topology that is lifted from K, thatis, 7[Z: Z — K is a
homeomorphism. According to Lemma 2.5 the space Z witnesses the almost zero-
dimensionality of G;. If W is the topology that G; inherits from the compact space
Z, then it is clear that W satisfies (2).

(2) = (3). Assume that E satisfies (2) and let U be a neighbourhood of some
point x in E. Since E is cohesive, we may select an open neighbourhood W of x
in E such that W C U and W contains no nonempty clopen subsets of E. Select
a neighbourhood V of x in E such that V. C W and (V, W) is compact. Then V is
closed and topologically complete in (E, W). Suppose that V has a nonempty interior
in (U, W). Since dim(E, W) = 0, we have that V contains a nonempty set C that is
clopen in (U, W). Then C is closed in (V, W) and hence it is closed in (E, W) and
E. On the other hand, C is open in (W, W) and hence open in W and therefore also
in E. Thus we have that V and W contain a nonempty clopen subset C of E. Since
this contradicts the cohesion assumption, we have shown that V' is nowhere dense in
(U, W).

(3) = (4). Assume that E satisfies (3) and note that it suffices to prove that every
open subset of E is first category in itself with respect to W. Let O be an arbitrary
open subset of E. Choose for each x € O a neighbourhood U, of x in O that is
nowhere dense in (O, W). Since E is separable metric, we can find a countable set
A C Owith O = |J{U, : x € A}. We have that (O, W) is first category in itself.

(4) = (5). Assume that E satisfies (4) and note that it suffices to prove that E is
cohesive. Let x € E be arbitrary and select a neighbourhood U of x in E such that
(U, W) is topologically complete. Let C be a clopen subset of E that is contained in
U. By Remark 2.2 we have that E \ C is an F,-set in (E,' W). Thus C is a Gs-subset of
the complete space (U, W) and hence (C, W) is topologically complete. On the other
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hand, we have by assumption that (C, W) is first category in itself thus C = @& by the
Baire Category Theorem. We have shown that E is cohesive.

(5) = (1). Assume that E is some space that satisfies condition (5). Let Z denote
E equipped with the witness topology W. Let K be a zero-dimensional compacti-
fication of Z. Let B be a countable collection of closed and topologically complete
subsets of Z such that for each x € E and each neighbourhood U of x in E there is a
B € B that is a neighbourhood of x in E that is contained in U. We define

Y =K\ {B\B:B e B},

where B stands for the closure in K. Note that Y is a Gs-subset of K that contains Z
and that Y is a witness to the almost zero-dimensionality of E. With Lemma 2.5 we
can find a USC function ¢: Y — [0, 1] such that E is homeomorphic to G . Since
E is cohesive, we can find a Lelek function x: Y — [0, 1] using Lemma 2.8 such
that G is homeomorphic to Gj. Let X = extx x and note that G} is dense in L}
by [14, Lemma 4.8.b] and hence X is a Lelek function just as . Because the domain

of X is compact we have €. = Gg‘. Note that K \ Y is o-compact and G?K\Y is a

first category set in Gg‘ because its complement is Gy. According to [22, Theorem 6]
we have that Gf)( is homeomorphic to Gé‘; see also [16, Theorem 26]. We now have
€. =Gy =Gy =~ Gj = E. [

If X is a nonempty space, then Y is called an X-factor if there is a space Z such that
Y X Z is homeomorphic to X.

Theorem 3.2 (Stability) For a nonempty space E the following statements are equiv-
alent:

(1) E x €. is homeomorphic to €.

(2) Eisan C-factor.

(3) E is homeomorphic to a retract of C..

(4) E admits an imbedding as a C-set in €.

(5) E admits a closed imbedding into €..

(6) E is homeomorphic to G where ¢ is some USC function with a complete zero-
dimensional domain.

(7) E is almost zero-dimensional as witnessed by a topology W such that every point of
E has a neighbourhood that is complete in (E, W).

Proof The implications (1) = (2) = (3) and (4) = (5) are trivial, and we have
(3) & (4) by [14, Theorem 4.18].

(5) = (6). Assume that E is a closed subset of G; for some Lelek function ¢ with
compact domain K. Let 7: K X R — K denote the projection. Let Y be the graph
of ¢ as a subspace of K x IR and let Z be the graph of ¢ with the topology that is
lifted from K, that is, 7[Z: Z — K is a homeomorphism. Applying Lemma 2.5 to
the function 1 + ¢ we find that the space Z witnesses the almost zero-dimensionality
of Y. Since G(f is open in Y, we have that Gg \ E is also open in Y, and hence by
Remark 2.2 this set is an F,-set in Z. Thus we have that X = K\ 7(G} \ E) is a Gs-set

in K and topologically complete. Note that G 'X'— E, which proves this case.
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(6) = (7) This implication follows by the same argument as in the proof of the
case (1) = (2) for Theorem 3.1 (just replace “compact” by “complete”).

(7) = (1) Assume (7) and let Z = (E,'W). By Proposition 2.7 we have that
E x €. is cohesive. Let Z/ = (€., W’) be a witness to €, that satisfies property (5)
of Theorem 3.1. Then, trivially, the topology on Z x Z’ is a witness to the almost
zero-dimensionality of E x €, that also satisfies that property. Apply Theorem 3.1 to
findE x €. ~ C.. [ |

Remark 3.3. In particular, we have that every nonempty and zero-dimensional com-
plete space is an € -factor. This result follows also from [22]. It is also shown in
[22] that every nonempty open subset of €. is homeomorphic to €.. Note that this
result also follows immediately from Theorem 1.1. The paper [15] features a non-
homogeneous dense Gs-subset G of €. such that G x €. ~ G.

The example G was presented in [15] to give a negative answer to the question in
[22] whether every cohesive dense Gs-subset of €. is homeomorphic to €; see also
[14, Proposition 5.4]. In connection to this question we have the following positive
result.

Proposition 3.4 Let'W be a witness topology on €. such that every point of €. has a
neighbourhood that is complete in (€., W). If X is a dense subset of €. that is a Gs-set
in (€., W), then X is homeomorphic to €.

Proof By the same argument used for the implication (2) = (3) in the proof of
Theorem 3.1 we have that W satisfies the requirements as formulated in Theorem 1.1.
We show that the restriction of W to X also satisfies Theorem 1.1 whence X ~ €.
Let x € X and let U be an open set in € that contains x. Note that X N U is dense
in U and hence dense in (U, W) because W is weaker. Let V' be a neighbourhood
of x in €. such that V is closed in (€., W), (V,' W) is complete, and V is a nowhere
dense subset of (U, W). Then X NV is closed in (X, W), and X NV is a Gs-subset of
(V,' W) thus complete in the topology W. Since X N U is dense, we have that X NV
is nowhere dense in (XN U, W). [ |

If we combine Theorem 3.2 with Theorem 3.1, we find:

Theorem 3.5 A nonempty space is homeomorphic to €. if and only if it is cohesive
and it satisfies one of the seven equivalent conditions of Theorem 3.2.

Corollary 3.6 A nonempty space is homeomorphic to €. if and only if it is homeo-
morphic to Gy where ¢ is some Lelek function with a complete domain.

Proof Let ¢ be a Lelek function with a complete domain. Proposition 4.4 in [14]
shows that G is cohesive. Now use Theorem 3.5. [ |

Lemma 3.7 A closed subset of €. is cohesive if and only if it is nowhere zero-dimen-
sional.

Proof Let E be a nowhere zero-dimensional closed subset of €.. Let x € E be arbi-
trary. According to Dijkstra, van Mill, and Steprans [15, Theorem 3.1] there exists
a neighbourhood U of x in €. such that the empty set is the only closed nowhere
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zero-dimensional subspace of U. Let C be a clopen subset of E such that C C ENU.
Then C is just as E nowhere zero-dimensional and closed in U. Thus C is empty, and
we have shown that E is cohesive. ]

With Lemma 3.7, we can improve upon Theorem 3.5 as follows.

Theorem 3.8 A nonempty space is homeomorphic to €. if and only if it is nowhere
zero-dimensional and it satisfies one of the seven equivalent conditions of Theorem 3.2.

Remark 3.9. If X is a nonempty space, then Fact(X) stands for the class of X-factors
and Stab(X) is the subclass of Fact(X) that consists of the spaces Y such that Y x X =
X. If Fact(X) = Stab(X), then clearly X ~ X x X (and hence X =~ X" for n € N). If
X~ X“andY € Fact(X), thenforsome Z, Y X X * VY X XY & Y xY¥ x Z¥ =
Y¥ x Z% = X. Thus we have

X~X = Fact(X)=Stab(X) = X=~X>

Since Dijkstra, van Mill, and Steprans [15] proved that €. % €Y, complete Erd6s
space is one of the examples that shows that the first implication cannot be reversed.
Unlike simpler examples such as Z, Q), and 2* x Q), we have that €. and € belong
to the same Borel class. Interestingly, Stab(€¥) consists of all nonempty complete
almost zero-dimensional spaces; see Dijkstra [11]. According to Trnkova [34] there
is a space T such that T 5 T2 yet T ~ T°. Then T € Fact(T?) \ Stab(T?), so also the
second implication cannot be reversed.

The following results show that the property Fact(€.) = Stab(€,) is valid in a
very strong way.

Theorem 3.10 If [];,, Xi is homeomorphic to €, then {i € w : X; ~ €.} is finite
and nonempty.

Proof Let Hiew X; =~ € thus every X; is an € -factor. By Proposition 2.7 we have
that some X is cohesive. Consequently, X; =~ €. by Theorem 3.5. Now assume
that infinitely many X;’s are homeomorphic to €.. Then by Theorem 3.2 we have
€. ~ Hiew X; ~ € in contradiction to [15, Corollary 3.2]. [ |

Corollary 3.11 The product of two spaces is homeomorphic to €. if and only if one
space is homeomorphic to €. and the other space is an € -factor.

Example 3.12 Let X, = €, and let X; for i € N be the union of €, with an isolated
point. Then every X; is an €.-factor but only X, is homeomorphic to €.. If X =
Hi@ X; ~ €, then X contains €% as a closed subspace and hence by Theorem 3.2

we would have that ¢ ~ € x €. ~ €, in contradiction to [15, Corollary 3.2]. Thus
X is not homeomorphic to €. making the natural converse of Theorem 3.10 invalid.

4 Representations of €.

It follows from work of Mayer [26] and Aarts and Oversteegen [1] that €. is homeo-
morphic to the end-point sets of Julia sets of certain exponential maps. In this section
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we discuss several other types of representations of €.. We will use our characteri-
zation theorems to improve upon known results concerning representations of €. as
Erdés type sets in £7, end-point sets of R-trees, and line-free groups in Banach spaces.
We also present a novel application concerning Polishable ideals on w.

4.1 Erd6s Type Spaces in ¢?

We now discuss the class of representations of €, that is responsible for the name
“complete Erd6s space” Let p > 0 and consider the (quasi-)Banach space ¢P.
This space consists of all sequences x = (xg,x1,...) of real numbers such that
> [xi|? < oo. The topology on ¢” is generated by the (quasi-)norm |[|x|| =
O i |P)1/P, Now let Ey, Ej, . . . be a fixed sequence of subsets of R and let

E={xeP:x, €E,foreveryn € w}

be a corresponding subspace of some fixed ¢?. If we choose p = 2 and E, = Q) for
every n, then € is called Erdds space €; see Erd6s [20]. We characterized € in [12] and
[14].

The following result generalizes Dijkstra [9, Theorem 3 and Corollary 4].

Theorem 4.1

(a) The space € is an € -factor if and only if € # & and every E,, is a zero-dimensional
Gs-set in R.

(b) The space € is homeomorphic to €. if and only if dimE > 0 and every E, is a
zero-dimensional Gg-set in R.

Proof According to Dijkstra [9] dim € # 0 if and only if € is cohesive, thus it suffices
to prove part (a).

Let € be an € -factor and thus € is totally disconnected and complete. Since & #
), every E, is clearly imbeddable as a closed subset of €. Thus, just as €, every E,
is totally disconnected and hence zero-dimensional as a subset of R. Moreover, E,, is
topologically complete and thus a Gs-set in R.

For the if” part consider the (weaker) topology W that € inherits from the zero-
dimensional and topologically complete product space [,° E,. Noting that for ev-
ery x € & the closed ball {y € & : ||y — x|| < e} is also a closed subset of [ [~ E,,
we have that condition (7) of Theorem 3.2 is satisfied. [ |

Dijkstra [9] contains useful criteria for the property dim & > 0 and also the fol-
lowing easily verified sufficient condition. Recall that if Ay, Aj, ... is a sequence of

subsets of a space X, then limsup,_, A, = (—, Uo, Ak

Lemma 4.2 If 0 is a cluster point of limsup,_,  E,, then every nonempty clopen
subset of € is unbounded (and hence dim € # 0).

Remark 4.3. Tt is clear from Theorem 4.1 and Lemma 4.2 that

{x € *:x; ¢ Q foreach i € w}
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is homeomorphic to €, a fact that was first established by Kawamura, Oversteegen,
and Tymchatyn [22]. It is also clear that both

{x € ?:1/x; € Nforeachi € w}

and its closure in £? are homeomorphic to €.. Both spaces were introduced and
shown to be one-dimensional by Erdés in [20].

Remark 4.4. If we put E; = 277 for i € w then the corresponding space € is home-
omorphic to € for each p > 0. Consider now the Banach space ¢ which consists of
all convergent sequences of real numbers with the supremum norm. We proved in
[13] that the space {x € ¢ : x; € 27'Z for eachi € w} is one-dimensional but not
homeomorphic to €..

4.2 End-Point Sets of R-Trees

In [22] Kawamura, Oversteegen, and Tymchatyn sketch a proof that the end-point
set of the separable universal R-tree as constructed in [27] is homeomorphic to €..
We present with Theorem 4.5 a generalization of that result as an application of The-
orem 1.1.

An arc is a space that is homeomorphic to the interval [0, 1], and an open arc is
homeomorphic to (0, 1). An R-tree (T, p) is a metric space that is arcwise connected
such that every arc in T is isometric to an interval in R (such a p is called a convex
metric). Mayer and Oversteegen [28] proved that, topologically, the R-trees are pre-
cisely the spaces that are uniquely arcwise connected and locally arcwise connected.

Let X be a uniquely arcwise connected space. If x, y € X with x # y, then [x, y]
denotes the unique arc in X that has x and y as end-points, and [x, x] denotes the
singleton {x}. We shall also use (x, y) = [x, y] \ {x, y}. We define the set of interior
points of X by iX = [J{(x, y) : x, y € X}. The set of end-points of X is eX = X \ iX.

Theorem 4.5 Let (T, p) be a nonempty R-tree and let € > 0 be such that every open
arc A in T with diam A < € has a compact closure in T and such that for each x € T
every component C of T\ {x} has the property diam C > . If ¢T is dense in T then ¢T
is homeomorphic to €.

Proof Forx € Tand § > 0 let Bs(x) denote the closed ball {y € T : p(x, y) < ¢}.
According to [14, Lemmas 3.1 and 3.2] the collection

8§ = {C: Cisacomponent of T\ {x} for some x € iT}

is a subbasis for a separable metric topology W on T, called the weak topol-
ogy, that is weaker than the p-topology such that every Bs;(x) is W-closed and
the restriction of W to €T is zero-dimensional. Observe that if x € €T, y €
T\ {x}, and aj,a,,... is a sequence in (x,y) that converges to x then {C :
C is the component of x in some T\ {a;}} is a neighbourhood basis for x in (T, W).
Let x € ¢T and let § > 0 be such that 26 < €. Define V = ¢T N Bs(x) and note that
V is W-closed in ¢T. Let y € V and let C be a basic W-neighbourhood of y in T,
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that is, C is the component of y in T \ {a} for some a € iT. Since diam C > ¢ > 20,
thereisaz € C \ Bs(x). Selectab € [y, z] C C such that 6 < p(x,b) < 20. Since ¢T
is dense, we may approximate b by a b’ € ¢TI’ NC N (Bys(x) \ Bs(x)). This proves that
V is nowhere dense in €T N Bys(x) with respect to the weak topology.

Note that if D is a countable dense subset of iT, then il = ( J, ,,[a, b] and hence
iT is o-compact in both topologies. Let F,F,,... be a sequence of compacta in
(T, W) such that Uzl F; = il. Fori € Ndefinel; = {C € § : CNF, = &}
and note that U; is an open cover of eI in (T, W). Let d be a metric for the weak
topology on ¢T such that for each i € N there is a v > 0 with the property that the
collection of all open ~y-balls with respect to d refines U;. To apply Theorem 1.1 it
now suffices to show that d is complete on V. Let x1, X, . .. be a d-Cauchy sequence
in V. Let a be a fixed point in il N Bs(x) and note that for each i € N, ﬂ;’il [a, x;]
has the form [a, ¢;] for some ¢; € T. Since p is convex, we have that every [q, ¢;]
is contained in Bs(x). Let A = Ufzol[a, ¢;] and note that diam A < 2§ < &. Since
[a,c;] C [a,ci41] for each i € N, we have that the closure of A has the form [a, c] for
some ¢ € Bs(x). Note that lim;_,, ¢; = ¢ in both topologies. Let i € N and note
that there isan N € N and a C € U; such that x, € C for each n > N. Then there
isa b € iT such that C is a component of T\ {b} and C = C U {b} C T\ F;. Note
that for every n > N, ¢, € CU {b} thusc € CU {b} C T\ F;. We may conclude
that ¢ € Bs(x) \ U?:ol F; = V. If some ¢; equals ¢, then for each k > i, ¢ € [a, x¢]
thus ¢ = x; because ¢ € ¢I. So we may assume that ¢ # ¢; for every i € N. Let
U; be the component of T \ {¢;} that contains ¢ and recall that the U;’s form a W-
neighbourhood basis at c. Let i € N and selecta ¢; € (¢;,c) C U;. Note that x; € U;
for each k > j, thus we may conclude that lim;_,~, x; = ¢ in the weak topology. H

Remark 4.6. There are many R-trees with €, as end-point set that do not satisfy the
premises of Theorem 4.5. For instance, the constructions in [30, Theorem 2] and
[14, Lemma 3.5] show that every almost zero-dimensional space can be represented
as a closed end-point set of an R-tree.

Note that the proof of Theorem 4.5 allows us to weaken the premise that for some
€ > 0 every open arc with diam < ¢ is relatively compact to the topological condi-
tion:

(x) Each x € ¢T has a neighbourhood U in T such that every open arc in U is

relatively compact in T.

By the same argument we have:

Proposition 4.7 If I is an R-tree that satisfies condition (x), then ¢ is an € -factor
orel = @.

4.3 Line-Free Groups in Banach Spaces

Let (X, | - |) be a normed vector space and let (X*, | - |) denote its dual. In this subsec-
tion we do not assume a priori that a vector space is separable. If ¢ > 0, then B; de-
notes the closed ball {x € X : |x| < e}. Let F = {/y, fi, - . . } be a countable subset of
X* and define the linear continuous map Tr: X — R¥ by Tr(x) = (fo(x), fi(x),...)
for x € X. Assume that F is total, that is, that T is an injection. The F-topology on
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X is obtained by pulling back the product topology of the Fréchet space R”. We say
that a subset of A is relatively complete in X with respect to the F-topology if there is
an A’ such that A C A’ C X and Tr(A’) is closed in R¥. This is equivalent to say-
ing that for any or all invariant metrics d on X that generate the F-topology we have
that every Cauchy sequence that is contained in A converges in X with respect to d.
Define G = T 1(7#) and note that G is a line-free group in X that is closed in the
F-topology. Dobrowolski and Grabowski [17] have shown that every weakly closed
line-free subgroup of a separable X can be represented as Gr for some total sequence
in the dual.

Dobrowolski, Grabowski, and Kawamura present the following statement as [18,
Main Theorem].

Claim 4.8 Let (X,|-|) be a Banach space and let F be a total sequence of functionals
from the dual X*. Assume that the norm bounded subsets of Gr are relatively complete
in the F-topology. If Gr is separable, then Gy is either discrete or homeomorphic to €..

Remark 4.9. Unfortunately, the proof given in [18] does not fully support Claim 4.8.
The problem is that at the beginning of the proof it is asserted that the total sequence

F admits a Kadec norm. A Kadec norm || - || for F is a norm on X that is equivalent
to | - | with the property that whenever a sequence x, X, . .. converges to a point x
in X in the F-topology and lim;_,« ||x;|| = ||x||, then lim; . ||xi — x|| = 0. The

sequence F is called norming if there is an equivalent norm on X that is LSC with
respect to the F-topology or, equivalently, there is a bounded neighbourhood U of
0 in X that is closed in the F-topology. Every Kadec norm for F is LSC with respect
to the F-topology; see [4, p. 176]. In fact, F admits a Kadec norm if and only if F
is norming; see Davis and Johnson [7]. It is known that a separable Banach space X
admits a non-norming total sequence of functionals if and only if dim(X** /X) = oc;
see Davis and Lindenstrauss [8]. In view of these considerations the word “total” in
Claim 4.8 should be replaced by “norming”. Observe that the important Corollaries
1 and 2 in [18] still follow from the corrected version of Claim 4.8 and hence the
negative fall-out from our observation should be limited. We do not know whether
Claim 4.8 is valid.

The same problem also affects Theorem 3.1 and Proposition 3.2 in Ancel, Do-

browolski, and Grabowski [3]. Thus also in these results “norming” needs to be sub-
stituted for merely “total”. Again we do not know whether Theorem 3.1 and Propo-
sition 3.2 in [3] are valid as written.
Remark 4.10. We observe that if a bounded subset A of X is relatively complete in the
F-topology then A is relatively compact in the F-topology. Thus the use of the word
“complete” in Claim 4.8 (and “closed” in Theorem 4.11) suggests a level of generality
that is not actually present.

Let A C A’ C X be such that A C By for some M € N and Tr(A’) is closed
in R¥. We may assume that A’ is the closure of A in the F-topology. Note that
Tr(A) is contained in the compactum C = [[,.,[=M]|fi|, M|f;|] and that C therefore
contains Tr(A’) which is the closure of Tr(A). We have that Tr(A’) is compact which
means that A’ is compact in the F-topology.

The following generalization of the corrected Claim 4.8 follows in a straightfor-
ward manner from Theorem 1.1.
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Theorem 4.11 Let (X, |- |) be a normed vector space and let F be a total sequence of
functionals from the dual X*. Let U be a bounded neighbourhood of 0 in Gp such that
Tr(U) is closed in RY. If Gr is separable, then Gr is either discrete or homeomorphic
to €.

With Remark 4.10 we see that the condition that Tz(U) is closed in RY is equiv-
alent to requiring that U be compact (or complete) with respect to the F-topology
on X.

There exists a total sequence of functionals F on the separable Banach space ¢ such
that Gr is one-dimensional but not homeomorphic to €; see Remark 4.4 and [13].

Proof Let X, F, and U be as in the premise and assume that Gr is separable and non-
discrete. For Theorem 1.1 we let W be the restriction of the F-topology to Gr. Note
that W is zero-dimensional and coarser than the norm topology because dim 7% = 0
and Tr is continuous. Let n € N be such that Bi/yNGp C U C B,. Since both the
norm-topology and W are compatible with the group structure, it suffices to verify
the conditions of Theorem 1.1 for the point x = 0. Let m € N and consider B ,,.
Define V. = GgN ﬁU. Note that V' C B, /,,, and that Tp(V) = 7N WIHTF(U) thus
V with the F-topology is homeomorphic to a closed subset of R and topologically
complete. Since VDO Gg N Wln(GF N Bi/y) = Gr N By/ymp, we have that V' is a
neighbourhood of 0 in Gr.

Now let y € V and k € w be arbitrary and consider the basic W-neighbourhood
C={z€ Gr: fi(z) = fi(y) for 0 < i < k} of y. Since Gp is non-discrete, there is an
awith y+a € Cand 0 < |a] < 1/2m. Since V is bounded, we may choose [ to be the
least element of w such that y+la ¢ V. Since y € V, we have y+(I—1)a € V C By 5,
thus y+la € (GrNB,)\V. Note that y+la € C because fi(a) = fi(y+a)—fi(y) =0
for every i < k thus we have shown that V' is nowhere dense in GrN B, /,,, with respect
to the F-topology. ]

4.4 Polishable Ideals on w

We now turn to an application of Theorem 1.1 to ideals on w, and we thank S. Todor-
¢evi¢ for bringing these spaces to our attention; see [33] for background informa-
tion. The following definitions and Theorems 4.12, 4.13, and 4.14 are taken from
Solecki [31,32] where the reader can find more details and references.

Let D = {x, : n € w} be a countable infinite set that is enumerated such that
xn # xx if n # k. Consider the power set P(D) with the symmetric difference A
group structure. We equip P(D) with the standard Cantor set topology that comes
with identification with 2P. An ideal I on D is a subset of P(D) such that I contains
the finite sets B € I whenever B C A € I,and AU B € I whenever A,B € I. A
function p: P(D) — [0, 0o] is a submeasure on D if (&) = 0, p(X) < (X UY) <
©oX) + oY) for any X,Y C D, and 0 < p({x}) < oo for any x € D. With a
submeasure ¢ we associate two ideals on D:

Exh(p) = {A C D: limy—oo ¢({x, € A: n>m}) = 0},
Fin(p) = {A C D: ¢(A) < oo}.
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Observe that Exh(p) C Fin(yp). If ¢ is a measure rather than just a submeasure and
¢ is LSC as a function from 2% to [0, co], then Exh(yp) = Fin((p). An ideal is clearly a
subgroup of 2P. An ideal I is Polishable if there exists a Polish group topology 7 on I
such that the family of Borel sets with respect to 7 is equal to the family of Borel sets of
I with respect to the topology inherited from 2. This class of ideals was first studied
by Kechris and Louveau [24]. If such a Polish topology exists, then it is unique; see
[23, Theorem 9.10].

Theorem 4.12 If p is an LSC submeasure on w, then
d(A,B) = p(AAB) forA,B C w

restricts to an invariant, complete, separable metric on Exh(yp).

Observe that the topology on I = Exh(y) generated by d is stronger than the
subspace topology that I inherits from 2¥. So for ideals of the form Exh(y) this
describes in an explicit way a Polish topology on I that witnesses that I is Polishable.
Note that in general the d-topology on Fin(y) may be nonseparable. The following
results provide useful context; see also van Engelen [19].

Theorem 4.13 If I is a Polishable ideal on w, then it is homeomorphic to Q, 2%,
Q x 2% orQ~.

Theorem 4.14 Let I be an ideal on w. Then the following statements hold (where ¢
stands for an LSC submeasure on w):

(1) Iis Polishable if and only if I = Exh(y) for some finite .
(2) Iis F, in 2% if and only if I = Fin(yp) for some .
(3) Iis Polishable and F, if and only if I = Exh(y) = Fin(y) for some .

As an application of Theorem 1.1 we have:

Theorem 4.15 Let I be a Polishable F,-ideal on w and let ¢ be an LSC submeasure
with I = Exh(yp) = Fin(y). If T denotes the Polish topology on I that is generated by o,
then the following statements are equivalent.

(1) (I, 7) is homeomorphic to €.

(2) dim(I, ) > 0.

(3) (I, 1) is not o-compact.

(4) (I, ) is not locally compact.

(5) (I, 7) is not homeomorphicto 7, 2%, or 7. x 2.

(6) Thereisno B C w withI = {A C w : AN Bis finite}.

(7) Foreverye > 0wehave {n € w: p({n}) <e} ¢ L

(8) Thereisa B € 2\ I withlim,_, ¢({n} N B) = 0.

Proof The implications (1) = (2), (3) = (4), and (4) = (5) are obvious. For
(2) = (3), note that 7 is stronger than the zero-dimensional topology thus (I, 7) is
totally disconnected. Consequently, o-compactness implies zero-dimensionality.

(5) = (6). Let Bbe such that I = {A C w : AN Bis finite}. Then the sets
{FUA : A € C}, where F is a finite subset of B and C is a clopen subset of the
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compactum 2“\B, form a basis for a separable metric topology 7/ on I that is locally
compact and hence Polish. Noting that the basis sets are closed in 2 and that 7/ is
compatible with the group structure on I we have 7 = 7’. Observe that (I, 7) ~ 2¢
if Bis finite, (I, 7) & Z if w \ Bis finite, and (I, 7) ~ Z X 2* otherwise.

(6) = (7). Assume that there is an ¢ > 0 with

B={kcw:p{k}) <e}el

If A\ Bis finite, then A\ B € I thus A € I. IfA € I, then A € Exh(y) and p(A\n) < e
for some n € w. Consequently, A\ n C Band A \ B is finite. We have shown that
I={ACw:AN(w)\ B)is finite}.

(7) = (8). Assume (7) and let k € w. If we define Ay = {n € w : p({n}) <27}
then by assumption ¢(Ax) = oo. Since ¢ is LSC, we can find an m; € w such
that p(Ax N my) > k. Define B = (J;2, Ax N my and note that p(B) = oo thus
B¢ 1 Ifk € w, let My = max{my, ..., m;} and note that for each n > M; we have
o({n} N B) < 27k Condition (8) is verified.

(8) = (1). Assume condition (8) so there is a B with ¢(B) = oo and
lim,,—, o @({n} N B) = 0. We shall use Theorem 1.1 where W is the topology that I
inherits from 2“. Let U be some 7-neighbourhood of an X € I. Since both topologies
are compatible with the group structure, it suffices to consider the case that X = @.
Let £ > 0 be such that {A : p(A) < 2¢} C U. Notethat V. = {A: p(A) < ¢e}isa
subset of U that is closed in the compactum 2% because ¢ is LSC. Thus V is certainly
closed and complete with respect to W.

It remains to show that V is nowhere dense in (U, W). Let m be such that o({n} N
B) <eforalln > m. Let W, = {A’ Cw: A’ Nn=ANn} forn > mbe a basic
neighbourhood of some A € V in 2. Define for each k > #,

Ar=ANn)UBN(k\n)

and note that A, € W,, NI for every k > nand A, C A. Since lim;_,., BN (k\ n) =
B\ nin 2¥ and ¢ is LSC, we have

lim inf o(A¢) > liminf (B 0 (k\ m) = (B \ n) = o(B) — (BN ) = oo.

Let I be the first index with ¢(A;) > €. Since p(A,) < p(A) < e,wehavel >n>m
and
(A < p(A-1) +9({I =1} NB) < 2e.

Thus A; € W, N (U \ V) and we have that V is nowhere dense in (U, W). [ |

Remark 4.16. The equivalence (4) < (6) is already contained in Solecki [31,32].

Remark 4.17. Let ¢ be an LSC submeasure on w and let 7 be the topology that is
generated on Fin(y) by the metric d(A, B) = @(AAB). By the same argument used
for the implication (8) = (1) in Theorem 4.15 we find that every point in Fin(y)
has a 7-neighbourhood basis consisting of sets that are closed in 2¢. This implies
that (Exh(yp), 7) is almost zero-dimensional. Also, if it is given that (Fin(¢p), 7) is
separable, then the space is almost zero-dimensional with a compactum as witness.
Consequently, by Theorem 3.2 we have that 7 is Polish and hence Fin(¢) is Polishable
(and of course F,).
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Example 4.18 We first consider a simple example of an ideal that is homeomorphic
to €.. Define the following LSC measure on w:

1
=2
neA

Since 77 is a measure, we have Exh(n) = Fin(n), and we call this ideal the harmonic
ideal Ingrm. Note that Ingm ~ Q x 2. Since Y>>, 1 = oo, condition (8) of Theo-
rem 4.15 is satisfled and we have that Ij,,rm with its Polish topology is homeomorphic
to €.. Alternatively, we can consider the following imbedding of Iy, in the Banach

space £:
(a(A)), = {1/(”+ 1), ifn€A;

0, ifnew)A.

Then n(AAB) = ||a(A) — «a(B)|| and « is a homeomorphism between Iy, with
its Polish topology and the closed Erdés type subset a(Inam) of £!. In Dijkstra [9]
(Iharm) is shown to be homeomorphic to €. and is called harmonic Erdés space.

Remark 4.19. Consider a ¢ as in Theorem 4.15. Define a USC function ¢: 2% —
[0,1] by ®(A) = 1/(1 + ©(A)), and note that with the same method as employed
in the proof of the implication (8) = (1) in Theorem 4.15 one can show that
is a Lelek function thus € = Gj. Clearly, G is homeomorphic to the graph G
of ¢[I with the product topology from 2¢ x R. Then h(A) = (A, ¢(A)) defines a
continuous bijection between I with the Polish topology and G, which is a copy of
€.. The question arises why we use Theorem 1.1 to prove Theorem 4.15 rather than
directly linking I with €. The reason is that h is in general not a homeomorphism.
Let us consider a simple example. Using Example 4.18, define for each A C w,

_ ) n(4), if0 ¢ A;
) = {max{Z,n(A)}, if0 € A.

It is easily verified that ¢ is also an LSC submeasure with Exh(y) = Fin(¢) = Iharm
and that 1 and ¢ generate the same Polish topology 7 on Iham. Consider now the
open neighbourhood V. = {A : n({0}AA) < 1} of {0} in (Iharm,7) and hence
dim V = 1. Note that [V is constant, thus (V') carries the zero-dimensional topol-
ogy that V inherits from 2. We have that h is not a homeomorphism.

Example 4.20 We look at the case that I is Polishable but not F,.
Consider first the following LSC submeasure on w x w:

P1(A) = max{27": (n,m) € A},
where A C w X w and max @ = 0. Note that

I, = Exh(y1) = {A Cw xw: AN ({n} x w) is finite for n € w}

https://doi.org/10.4153/CJM-2009-006-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2009-006-6

Characterizing Complete Erdds Space 139

and that I, is homeomorphic to Q*. It is easily seen that I; with the Polish topology
generated by ¢, is homeomorphic to 7 ~ R\ Q.
Secondly, we consider the ideal:

AN
IEU:{ACLU! lim MZO}

n— 00 n

This ideal is the most important of the Erdés—Ulam density ideals, see Farah [21]. It
is well known that this ideal is equal to Exh(v)), where

AN[2"—1,2"1 -2
$(4) = sup A0 o I
ncw

for A C w. Note that ¥(Igy) C Q, thus Iy is zero-dimensional in the Polish topol-
ogy. Since this topology is clearly not locally compact, we have that Izy is homeo-
morphic to R \ Q) in the Polish topology.

Define an ideal , onwU(w X w) by, = {AUB: A € Ihum and B € I, }. Then we
have that I, is homeomorphic to In,m X I; = Q. The Polish topology is generated
by w2(A U B) = n(A) + ¢1(B) for A C wand B C w x w. We have that I, with its
Polish topology, is homeomorphic to €. x (R\ Q) = €..

Finally, consider the LSC submeasure 3 on w X w that is given by

p3(A) =Y min{27¥ n({n: (k,n) € A})}.

k=0

Then we have
L =Exh(ps) ={ACwxw:{n:(kn) €A} € Ihym fork € w}.

Note that I is homeomorphic to (In,m)¥ ~ Q¥ and that Iz with the Polish topol-
ogy is homeomorphic to €. It was proved by Dijkstra, van Mill, and Steprans [15]
that €2 is not homeomorphic to €, so we have found a new topological type for
Polishable ideals.
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