COEFFICIENTS OF FUNCTIONS WITH BOUNDED BOUNDARY ROTATION

M. S. ROBERTSON

For fixed $k \geqq 2$, let V_{k} denote the class of normalized analytic functions

$$
f(z)=z+a_{2} z^{2}+\ldots+a_{n} z^{n}+\ldots
$$

such that $z \in E=\{z ;|z|<1\}$ are regular and have $f^{\prime}(0)=1, f^{\prime}(z) \neq 0$, and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\operatorname{Re}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]\right|_{z=r e^{i \theta}} d \theta \leqq k \pi \tag{1}
\end{equation*}
$$

Let S_{k} be the subclass of V_{k} whose members $f(z)$ are univalent in E. It was pointed out by Paatero (4) that V_{k} coincides with S_{k} whenever $2 \leqq k \leqq 4$. Later Rényi (5) showed that in this case, $f(z) \in S_{k}$ is also convex in one direction in E. In (6) I showed that the Bieberbach conjecture

$$
\left|a_{n}\right| \leqq n, \quad n=2,3, \ldots,
$$

holds for functions convex in one direction. If $f \in V_{k}$ and $n=2,3$, the sharp results

$$
\begin{equation*}
\left|a_{2}\right| \leqq \frac{1}{2} k, \quad\left|a_{3}\right| \leqq \frac{1}{6}\left(k^{2}+2\right), \tag{2}
\end{equation*}
$$

due to Pick (see 3, p. 5) and Lehto (3), respectively, are known. If $f \in S_{k}$, $2 \leqq k \leqq 4$, then, as was shown by Schiffer and Tammi (8),

$$
\begin{equation*}
\left|a_{4}\right| \leqq(1 / 24)\left(k^{3}+8 k\right) \tag{3}
\end{equation*}
$$

Equalities are attained in (2) and (3) for the extremal function

$$
\begin{equation*}
f(z)=\frac{1}{\epsilon k}\left[\left(\frac{1+\epsilon z}{1-\epsilon z}\right)^{\frac{1}{2} k}-1\right], \quad|\epsilon|=1 . \tag{4}
\end{equation*}
$$

Lehto (3) has also shown that if $f(z) \in V_{k}$, then as $k \rightarrow \infty$, we have:

$$
\max _{V_{k}}\left|a_{n}(f)\right| \sim \frac{k^{n-1}}{n!},
$$

where $a_{n}(f)=(1 / n!) f^{(n)}(0)$. W. Kirwan has informed the author orally that he has recently obtained the inequalities

$$
\left|a_{n}\right| \leqq c(k) n^{\frac{1}{2} k-1}, \quad n=2,3, \ldots,
$$

[^0]for $f \in V_{k}$ with $c(k)=e 2^{\frac{1}{2} k-2}$. Here $c(k) \rightarrow \infty$ as $k \rightarrow \infty$. This fact and the extremal function (4) show that
$$
\max _{V_{k}}\left|a_{n}(f)\right|=O\left(n^{\frac{1}{2} k-1}\right) \quad \text { as } n \rightarrow \infty
$$

In this paper we use a quite different method of attack, interesting in itself, from that of Kirwan, obtaining his result with the additional improvement that $c(k) \rightarrow 0$ as $k \rightarrow \infty, f \in V_{k}$. If $f \in S_{k}, 2 \leqq k<\infty$, for each fixed k this method also furnishes a numerical bound, independent of n, for the difference $\left|\left|a_{n+1}\right|-\left|a_{n}\right|\right|, n=1,2,3, \ldots$ That some bound, independent of n, exists follows from the result of Hayman (2), but an estimate for its numerical value for the class S_{k} has not been known except when $2 \leqq k \leqq 4$. In this case, since $f(z) \in S_{k}$ is also convex in one direction, the inequalities

$$
\begin{equation*}
-3+(2 / n) \leqq\left|a_{n}\right|-\left|a_{n-1}\right| \leqq 2-(1 / n), \quad n=2,3, \ldots, \tag{5}
\end{equation*}
$$

obtained earlier (7) apply.
We prove the following theorems.
Theorem 1. Let $f(z) \in V_{k}, 2 \leqq k<\infty$. Let $x \in E$ and

$$
F(z)=\frac{f\left(\frac{x+z}{1+\bar{x} z}\right)-f(x)}{f^{\prime}(x)\left(1-|x|^{2}\right)} .
$$

Then $F(z) \in V_{k}$ and

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{2|z|^{2}}{1-|z|^{2}}\right| \leqq \frac{k|z|}{1-|z|^{2}}
$$

Corollary. If $f(z) \in V_{k}, 2 \leqq k<\infty$, then $f(z)$ maps $|z|<\frac{1}{2}\left(k-\left(k^{2}-4\right)^{\frac{1}{2}}\right)$ onto a convex domain. The estimate is sharp. Moreover, if $f(z)=z+\sum_{2}^{\infty} a_{n} z^{n}$, then $\left|a_{n}\right|<k^{n-1}, n=2,3, \ldots$.

Theorem 2. Let $f(z) \in V_{k}, 2 \leqq k<\infty$. Then

$$
\begin{gathered}
\left|a_{n}\right|<\left(k^{2}+k\right)\left(\frac{2 n}{3}\right)^{\frac{1}{2} k-1}, \quad n=2,3, \ldots, \\
\underset{n \rightarrow \infty}{\lim \sup } \frac{\left|a_{n}\right|}{n^{\frac{1}{2} k-1}} \leqq \frac{\left(k^{2}+k\right)}{16} \cdot\left(\frac{4 e}{k+4}\right)^{\frac{1}{2}(k+4)} .
\end{gathered}
$$

Theorem 3. Let $f(z) \in S_{k}, 2 \leqq k<\infty$. Then

$$
\| a_{n+1}\left|-\left|a_{n}\right|\right|<2\left(\frac{1}{3} e\right)^{3}\left(k^{2}+k\right), \quad n=1,2, \ldots .
$$

Proof of Theorem 1. Let $f(z) \in V_{k}, 2 \leqq k<\infty$. Let ρ be a real number in the interval $(0,1)$ and let x be a complex number, $|x|<1$. Let $F_{\rho}(z)$ be defined by the equation

$$
F_{\rho}(z)=\frac{f(\rho \zeta)-f(\rho x)}{\rho f^{\prime}(\rho x)\left(1-|x|^{2}\right)}, \quad \zeta=\frac{x+z}{1+\bar{x} z}
$$

$F_{\rho}(z)$ is regular for $|z| \leqq 1, F_{\rho}^{\prime}(0)=1$ and $F_{\rho}^{\prime}(z) \neq 0$ for $|z| \leqq 1$. A calculation yields:

Let

$$
1+z \frac{F_{\rho}^{\prime \prime}(z)}{F_{\rho}^{\prime}(z)}=\left\{1+\rho \zeta \frac{f^{\prime \prime}(\rho \zeta)}{f^{\prime}(\rho \zeta)}\right\} \frac{\left(1-|x|^{2}\right) z}{(x+z)(1+\bar{x} z)}+\frac{x-\bar{x} z^{2}}{(x+z)(1+\bar{x} z)}
$$

$$
z=e^{i \theta}, \quad \frac{x+e^{i \theta}}{1+\bar{x} e^{i \theta}}=e^{i \phi}, \quad \frac{1-|x|^{2}}{\left|x+e^{i \theta}\right|^{2}} d \theta=d \phi
$$

Then

$$
\begin{gathered}
\operatorname{Re}\left\{1+e^{i \theta} \frac{F_{\rho}^{\prime \prime}\left(e^{i \theta}\right)}{F_{\rho}^{\prime}\left(e^{i \theta}\right)}\right\} d \theta=\operatorname{Re}\left\{1+\rho e^{i \phi} \frac{f^{\prime \prime}\left(\rho e^{i \phi}\right)}{f^{\prime}\left(\rho e^{i \phi}\right)}\right\} d \phi \\
\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+e^{i \theta} \frac{F_{\rho}^{\prime \prime} \rho^{\prime \prime}\left(e^{i \theta}\right)}{F_{\rho}^{\prime}\left(e^{i \theta}\right)}\right\}\right| d \theta=\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+\rho e^{i \phi} \frac{f^{\prime \prime}\left(\rho e^{i \phi}\right)}{f^{\prime}\left(\rho e^{i \phi}\right)}\right\}\right| d \phi \leqq k \pi .
\end{gathered}
$$

Since the integral

$$
\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+r e^{i \theta} \frac{F_{\rho}^{\prime \prime}\left(r e^{i \theta}\right)}{F_{\rho}^{\prime}\left(r e^{i \theta}\right)}\right\}\right| d \theta
$$

is an increasing function of r, it is bounded by $k \pi$ for $0 \leqq r<1$. Let $F(z)=$ $\lim _{\rho \rightarrow 1} F_{\rho}(z)$. It follows that

$$
\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+r e^{i \theta} \frac{F^{\prime \prime}\left(r e^{i \theta}\right)}{F^{\prime}\left(r e^{i \theta}\right)}\right\}\right| d \theta \leqq k \pi, \quad 0 \leqq r<1
$$

therefore $F(z) \in V_{k}$.
The function $F(z)$ has $\left|\frac{1}{2} F^{\prime \prime}(0)\right| \leqq \frac{1}{2} k$ by (2). Hence

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{2|z|^{2}}{1-|z|^{2}}\right|=\frac{|z|}{1-|z|^{2}}\left|F^{\prime \prime}(0)\right| \leqq \frac{k|z|}{1-|z|^{2}} \tag{6}
\end{equation*}
$$

From (6) we obtain

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \geqq \frac{1-k|z|+|z|^{2}}{1-|z|^{2}} \geqq 0 \quad \text { for }|z| \leqq R=\frac{k-\left(k^{2}-4\right)^{\frac{1}{2}}}{2}
$$

with equality holding for the extremal function (4). We conclude that if $f(z) \in V_{k}$, then $f(z)$ maps $|z| \leqq R$ onto a convex domain. When $k=4, f(z)$ is schlicht in E, and R reduces to the well-known radius of convexity $2-\sqrt{ } 3$.

Since $f(R Z) / R=\sum_{1}^{\infty} a_{n} R^{n-1} z^{n}$ is convex for $|z|<1$, we have $\left|a_{n}\right| R^{n-1} \leqq 1$ which implies that $\left|a_{n}\right| \leqq\left(\frac{1}{2}\left(k+\left(k^{2}-4\right)^{\frac{1}{2}}\right)\right)^{n-1}<k^{n-1}, n=2,3, \ldots$. This completes the proof of Theorem 1 and the Corollary.

Proofs of Theorems 2 and 3 . Let $f(z) \in V_{k}$. We may assume for convenience that $f(z)$ is regular on $|z|=1$ since otherwise we could consider the function $f(\rho z) / \rho, 0<\rho<1$, and let $\rho \rightarrow 1$ at the end of the proof. Since $f^{\prime}(z) \neq 0$ in E, we may write, when $\zeta=e^{i \phi}$,

$$
1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re}\left[1+\zeta \frac{f^{\prime \prime}(\zeta)}{f^{\prime}(\zeta)}\right] \frac{\zeta+z}{\zeta-z} d \phi
$$

For $z=0$ we have

$$
1=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re}\left[1+\frac{\zeta f^{\prime \prime}(\zeta)}{f^{\prime}(\zeta)}\right] d \phi
$$

Hence

$$
\begin{equation*}
\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{1}{\pi} \int_{0}^{2 \pi} \operatorname{Re}\left[1+\frac{\zeta f^{\prime \prime}(\zeta)}{f^{\prime}(\zeta)}\right] \frac{d \phi}{\zeta-z} \tag{7}
\end{equation*}
$$

A differentiation of (7) yields

$$
\begin{equation*}
\frac{f^{\prime \prime \prime}(z)}{f^{\prime}(z)}=\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}+\frac{1}{\pi} \int_{0}^{2 \pi} \operatorname{Re}\left[1+\frac{\zeta f^{\prime \prime}(\zeta)}{f^{\prime}(\zeta)}\right] \frac{d \phi}{(\zeta-z)^{2}} \tag{8}
\end{equation*}
$$

Put $z=r e^{i \theta}$ in (8) and integrate with respect to θ. Then

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{f^{\prime \prime \prime}(z)}{f^{\prime}(z)}\right| d \theta \leqq & \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|^{2} d \theta \\
& \quad+\frac{1}{\pi} \int_{0}^{2 \pi}\left|\operatorname{Re}\left[1+\zeta^{f^{\prime}(\zeta)}\right]\right| \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{|\zeta-z|^{2}} d \phi \\
= & \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|^{2} d \theta \\
& \quad+\frac{1}{1-r^{2}} \cdot \frac{1}{\pi} \int_{0}^{2 \pi}\left|\operatorname{Re}\left[1+\frac{\zeta^{\prime \prime}(\zeta)}{f^{\prime}(\zeta)}\right]\right| d \phi \\
\leqq & \sum_{n=0}^{\infty}\left|d_{n}\right|^{2} r^{2 n}+\frac{k}{1-r^{2}},
\end{aligned}
$$

where

$$
\begin{gather*}
\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\sum_{0}^{\infty} d_{n} z^{n}=\frac{1}{\pi} \int_{0}^{2 \pi}\left[\operatorname{Re}\left\{1+\frac{\zeta f^{\prime \prime}(\zeta)}{f^{\prime}(\zeta)}\right\}\right]\left(\sum_{0}^{\infty} \frac{z^{n}}{\zeta^{n+1}}\right) d \phi, \\
d_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} \operatorname{Re}\left[1+\frac{\zeta f^{\prime \prime}(\zeta)}{f^{\prime}(\zeta)}\right] \frac{d \phi}{\zeta^{n+1}} \\
\left|d_{n}\right| \leqq \frac{1}{\pi} \int_{0}^{2 \pi}\left|\operatorname{Re}\left[1+\frac{\zeta f^{\prime \prime}(\zeta)}{f^{\prime}(\zeta)}\right]\right| d \phi \leqq k, \tag{9}\\
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{f^{\prime \prime \prime}(z)}{f^{\prime}(z)}\right| d \theta \leqq \sum_{0}^{\infty}\left|d_{n}\right|^{2} r^{2 n}+\frac{k}{1-r^{2}} \leqq \frac{\left(k^{2}+k\right)}{1-r^{2}}
\end{gather*}
$$

For $f(z)=z+\sum_{2}^{\infty} a_{n} z^{n} \in V_{k}$ we have

$$
\begin{align*}
n(n-1)(n-2)\left|a_{n}\right| & \leqq \frac{1}{2 \pi r^{n-3}} \int_{0}^{2 \pi}\left|f^{\prime \prime \prime}\left(r e^{i \theta}\right)\right| d \theta \tag{10}\\
& =\frac{1}{2 \pi r^{n-3}} \int_{0}^{2 \pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right|\left|\frac{f^{\prime \prime \prime}\left(r e^{i \theta}\right)}{f^{\prime}\left(r e^{i \theta}\right)}\right| d \theta
\end{align*}
$$

An integration of the inequality (6) yields the known inequalities (see 3)

$$
\begin{equation*}
\frac{(1-r)^{\frac{1}{2} k-1}}{(1+r)^{\frac{12}{k+1}}} \leqq\left|f^{\prime}\left(r e^{i \theta}\right)\right| \leqq \frac{(1+r)^{\frac{1}{2} k-1}}{(1-r)^{\frac{1}{k} k+1}} \tag{11}
\end{equation*}
$$

For $z=r e^{i \theta}$, (10) and (11) yield:

$$
\begin{align*}
n(n-1)(n-2)\left|a_{n}\right| & \leqq \frac{(1+r)^{\frac{1}{2} k-1}}{(1-r)^{\frac{1}{k} k+1}} \cdot \frac{1}{2 \pi r^{n-3}} \int_{0}^{2 \pi}\left|\frac{f^{\prime \prime \prime}(z)}{f^{\prime}(z)}\right| d \theta \tag{12}\\
& \leqq \frac{(1+r)^{\frac{1}{k} k-1}}{(1-r)^{\frac{1}{k+1}}} \cdot \frac{1}{r^{n-3}} \cdot \frac{\left(k^{2}+k\right)}{1-r^{2}} \\
& =\frac{\left(k^{2}+k\right)(1+r)^{\frac{1}{2} k-2}}{r^{n-3}} \cdot(1-r)^{-\frac{1}{2} k-2}
\end{align*}
$$

Let $r=1-3 / n, n>3$, in (12). Then

$$
\left|a_{n}\right| \leqq \frac{\left(k^{2}+k\right)}{27} e^{3}\left(2-\frac{3}{n}\right)^{\frac{1}{2} k-2} \cdot \frac{n^{2}}{(n-1)(n-2)}\left(\frac{n}{3}\right)^{\frac{1}{2} k-1}<\left(k^{2}+k\right)\left(\frac{2 n}{3}\right)^{\frac{1}{2} k-1}
$$

The inequalities (2) show that the inequalities

$$
\left|a_{n}\right|<\left(k^{2}+k\right)\left(\frac{2 n}{3}\right)^{\frac{1}{2} k-1}, \quad n>3
$$

also hold when $n=2$ or 3 .
If in (12) we take $r=1-(k+4) / 2 n, n>\frac{1}{2}(k+4)$, we deduce similarly that

$$
\begin{gather*}
\left|a_{n}\right| \leqq\left(k^{2}+k\right)\left(\frac{e}{k+4}\right)^{2}\left(\frac{4 e}{k+4}\right)^{\frac{1}{2} k}\left(1+O\left(\frac{1}{n}\right)\right) n^{\frac{1}{2} k-1} \\
\limsup _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{n^{\frac{1}{k} k-1}} \leqq\left(\frac{k^{2}+k}{16}\right)\left(\frac{4 e}{k+4}\right)^{\frac{1}{2}(k+4)} \tag{13}\\
\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \sup _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{n^{\frac{1}{3} k-1}}=0
\end{gather*}
$$

This completes the proof of Theorem 2.
We turn next to the proof of Theorem 3. Let $f(z) \in S_{k}, 2 \leqq k<\infty$. Let z_{1} be a point on $|z|=r$, where $\max _{|z|=r}|f(z)|=\left|f\left(z_{1}\right)\right|$. Since $f(z)$ is schlicht in E, we have the inequality of Golusin (1), namely

$$
\begin{equation*}
\left|\left(z-z_{1}\right) f^{\prime}(z)\right| \leqq \frac{2|z|}{(1-|z|)^{2}} \tag{14}
\end{equation*}
$$

Furthermore we have

$$
\left(z-z_{1}\right) f^{\prime \prime \prime}(z)=-6 a_{3} z_{1}-\sum_{n=3}^{\infty}\left[n\left(n^{2}-1\right) a_{n+1} z_{1}-n(n-1)(n-2) a_{n}\right] z^{n-2}
$$

From (9) and (14) we have

$$
\begin{aligned}
n(n-1) \mid(n+1) a_{n+1} z_{1} & \left.-(n-2) a_{n}\left|\leqq \frac{1}{2 \pi r^{n-2}} \int_{0}^{2 \pi}\right|\left(z-z_{1}\right) f^{\prime}(z)| | \frac{f^{\prime \prime \prime}(z)}{f^{\prime}(z)} \right\rvert\, d \theta \\
& \leqq \frac{1}{r^{n-2}} \cdot \frac{2 r}{(1-r)^{2}} \cdot \frac{\left(k^{2}+k\right)}{1-r^{2}}=\frac{2\left(k^{2}+k\right)}{r^{n-3}(1+r)} \cdot(1-r)^{-3} .
\end{aligned}
$$

We pick $\left|z_{1}\right|=r=(n-2) /(n+1), n>2$. Then

$$
\begin{gathered}
n(n-1)(n-2)\left|\left|a_{n+1}\right|-\left|a_{n}\right|\right| \leqq n(n-1)\left|(n+1) a_{n+1} z_{1}-(n-2) a_{n}\right| \\
\leqq \frac{2\left(k^{2}+k\right)}{\left(\frac{2 n-1}{n+1}\right)} \cdot\left(1+\frac{3}{n-2}\right)^{\frac{1}{3}(n-2) \cdot 3} \cdot\left(\frac{n-2}{n+1}\right)\left(\frac{n+1}{3}\right)^{3} \\
\quad<\frac{2}{27}\left(k^{2}+k\right) e^{3}\left(\frac{n-2}{2 n-1}\right)(n+1)^{3}, \\
\left|\left|a_{n+1}\right|-\left|a_{n}\right|\right| \leqq 2\left(k^{2}+k\right)\left(\frac{e}{3}\right)^{3} \frac{(n+1)^{3}}{n(n-1)(2 n-1)}<2\left(\frac{e}{3}\right)^{3}\left(k^{2}+k\right)
\end{gathered}
$$

for $n>6$. The inequalities of Theorem 3 are obviously satisfied for $n \geqq 1$ whenever $2 \leqq k \leqq 4$ because of the inequalities (5). If $k>4$, then $2\left(\frac{1}{3} e\right)^{3}\left(k^{2}+k\right)>29.7$. For the range $1 \leqq n \leqq 6$, the inequalities of Theorem 3 are still valid since $\left|a_{n}\right|<e n, n=2,3, \ldots$, whenever $f(z) \in S_{k}$. This completes the proof of Theorem 3 .

References

1. G. M. Golusin, On distortion theorems and coefficients of univalent functions, Mat. Sb. 19 (1946), 183-202.
2. W. K. Hayman, On successive coefficients of univalent functions, J. London Math. Soc. 38 (1963), 228-243.
3. O. Lehto, On the distortion of conformal mappings with bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. A1 Math. Phys. 124 (1952), 14pp.
4. V. Paatero, Über die konforme Abbildung von Gebieten deren Ränder von beschrankter Drehung sind, Ann. Acad. Sci. Fenn. Ser. A (33) 9 (1931), 77pp.
5. A. Rényi, On the coefficients of schlicht functions, Publ. Math. Debrecen 1 (1949), 18-23.
6. M. S. Robertson, Analytic functions starlike in one direction, Amer. J. Math. 58 (1936), 465-472.
7. __ A generalization of the Bieberbach coefficient problem for univalent functions, Michigan Math. J. 13 (1966), 185-192.
8. M. Schiffer and O. Tammi, On the fourth coefficient of univalent functions with bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. A1 396 (1967), 26pp.

University of Delaware,
Newark, Delaware

[^0]: Received August 14, 1968. The author acknowledges support for this paper from the National Science Foundation (Contract NSF-GP-7439).

