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Abstract

A new risk measure, the Lambda Value-at-Risk (VaR), was proposed from a theoretical
point of view as a generalization of the ordinary VaR in the literature. Motivated by
the recent developments in risk sharing problems for the VaR and other risk measures,
we study the optimization of risk sharing for the Lambda VaR. Explicit formulas of
the inf-convolution and sum-optimal allocations are obtained with respect to the left
Lambda VaRs, the right Lambda VaRs, or a mixed collection of the left and right Lambda
VaRs. The inf-convolution of Lambda VaRs constrained to comonotonic allocations is
investigated. Explicit formula for worst-case Lambda VaRs under model uncertainty
induced by likelihood ratios is also given.
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1. Introduction

Let (�,F , P) be an atomless probability space, and let L0 be the set of all random vari-
ables defined on (�,F , P). Let X be a convex cone of random variables in L0, and let Lk be
the set of all random variables with finite kth moments, where k > 0. For any X ∈ L0, a pos-
itive (negative) value of X represents a financial loss (profit). A risk measure is a functional
ρ : X → (−∞, +∞]; see [3, 14]. In a risk sharing problem, there are m agents equipped with
respective risk measures ρ1, . . . , ρm. Let X ∈X denote the total risk, which is shared by m
agents. X is splitted into an allocation (X1, . . . , Xm) ∈Am(X) among m agents, where Am(X) is
the set of all possible allocations of X, defined as

Am(X) =
⎧⎨⎩(X1, . . . , Xm) ∈Xm :

m∑
j=1

Xj = X

⎫⎬⎭ .
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2 Z. XIA AND T. HU

The inf-convolution of risk measures ρ1, . . . , ρm is the mapping �n
i=1ρi : X → (−∞, ∞],

defined as

m
�

i=1
ρi(X) = inf

{
m∑

i=1

ρi(Xi) : (X1, . . . , Xm) ∈Am(X)

}
, X ∈X .

An m-tuple (X1, . . . , Xm) ∈Am(X) is optimal (also termed as sum-optimal) of X for
(ρ1, . . . , ρm) if �m

i=1ρi(X) =∑m
i=1ρi(Xi). A sequence of allocations (X1n, . . . , Xmn) ∈Am(X),

n ∈N, is asymptotically optimal if
∑m

i=1ρi(Xin) →�m
i=1ρi(X) as n → ∞. An allocation

(X1, . . . , Xm) ∈Am(X) is Pareto-optimal if for any (Y1, . . . , Ym) ∈Am(X), ρi(Yi) ≤ ρi(Xi)

for all i ∈ [m] implies ρi(Yi) = ρi(Xi) for all i ∈ [m], where [m] = {1, . . . , m}. It is shown
in Proposition 1 of [12] that sum-optimality is equivalent to Pareto-optimality for monetary
risk measures. For non-monetary risk measures, it is easy to see that sum-optimality implies
Pareto-optimality.

Liu et al. [23] investigated conditions under which the inf-convolution possesses the prop-
erty of law invariance. For more on inf-convolution for the case of convex risk measures,
see [1], [4], [13], [19 and [26], among others.

Embrechts et al. [12], Liu et al. [21], and Wang and Wei [27] studied the optimization of risk
sharing for non-convex risk measures, for examples, Value-at-Risk (VaR) and Range-Value-at-
Risk (RVaR). Explicit formulas of the inf-convolution and Pareto-optimal allocations were
obtained with respect to the left VaRs, the right VaRs or a mixed collection of the left and right
VaRs for m ≥ 2. Formal definitions of the left and right VaRs are defined in Subsection 2.1.
More precisely, for m = 2, Embrechts et al. [12] proved that

VaR−
λ1
� VaR−

λ2
(X) = VaR−

λ (X), X ∈ L0, (1.1)

for λ1, λ2 ∈ [0, 1] such that λ = λ1 + λ2 − 1 > 0. Liu et al. [21] considered the case of a mixed
collection of the left and right VaRs, and proved that

VaR+
λ1
� VaR+

λ2
(X) = VaR+

λ (X), X ∈ L0, (1.2)

for λ1, λ2 ∈ [0, 1) such that λ = λ1 + λ2 − 1 ≥ 0, and that

VaR−
λ1
� VaR+

λ2
(X) = VaR+

λ (X), X ∈ L0, (1.3)

for λ1 ∈ [0, 1], λ2 ∈ [0, 1) such that λ = λ1 + λ2 − 1 ≥ 0. More recently, Lauzier et al. [20]
investigated the problem of sharing risk among agents with preferences modeled by a general
class of comonotonic additive and law-based distortion riskmetrics that need not be either
monotone or convex, and solved explicitly Pareto-optimal allocations among agents using
the Gini deviation, the mean-median deviation, or the inter-quantile difference as the relevant
variability measures.

The Lambda Value-at-Risk (VaR) was proposed by Frittelli et al. [15] as a generaliza-
tion of the usual VaR. The formal definitions of the left and right Lambda VaRs are given
in Section 2 (Definition 1). The Lambda VaRs are not monetary risk measures, as can be seen
from Proposition 2. One naturally wonders whether an explicit formula also holds for the inf-
convolution of the Lambda VaR agents. In this paper, we generalize the formulas (1.1)–(1.3)
in several directions within the context of the Lambda VaRs.

The novelty of Lambda VaR is considering a function �, called ‘probability loss function’,
which can change and adjust according to the profits and losses of a risk variable. The Lambda
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Risk Sharing for Lambda VaR 3

VaR can discriminate different risk variables with the same VaR at level λ but with different
tail behavior. The function � can be either increasing or decreasing in [15]. Burzoni et al. [6]
focused on the conditions under which the Lambda VaR is robust, elicitable and consistent
in the sense of [9]. Hitaj et al. [17] applied Lambda VaR in financial risk management as
an alternative to VaR to access capital requirements, and their findings show that Lambda
VaR estimates are able to capture the tail risk and react to market fluctuations significantly
faster than the VaR and expected shortfall. Corbetta and Peri [7] proposed three backtesting
methodologies and assessed the accuracy of Lambda VaR from different points of view. Ince
et al. [18] presented a novel treatment of Lambda VaR on subsets of R

n, and derived risk
contributions of individual assets to the overall portfolio risk, measured via Lambda VaR of
the portfolio composition.

The rest of this paper is organized as follows. In Section 2, we provide the formal defini-
tions of the Lambda VaR, collect some basic properties of the Lambda VaR and derive explicit
formulas for worst-case Lambda VaRs under model uncertainty induced by likelihood ratios.
In Section 3, we introduce the inf-convolution of decreasing functions, and study its detailed
properties. These properties will be used in Sections 4 and 5. In Section 4, we obtain explicit
formulas of the inf-convolution with respect to the left Lambda VaRs, the right Lambda VaRs
and a mixed collection of the left and right Lambda VaRs. Section 5 focuses on the con-
struction of optimal allocations and asymptotically optimal allocations of inf-convolution of
several Lambda VaRs. In Section 6, we consider inf-convolution of Lambda VaRs constrained
to comonotonic allocations. Section 7 contains some concluding remarks. The proofs of some
lemmas and propositions appearing in the previous sections are relegated to Appendices A–D.

2. Properties of Lambda VaRs

2.1. Definitions of Lambda VaRs

Let X ∈ L0 with distribution function FX . The (ordinary) left-VaR of X at confidence level
α ∈ [0, 1] is defined as

VaR−
α (X) = F−1

X (α) = inf{x ∈R : FX(x) ≥ α} = sup{x ∈R : FX(x) < α},
and the (ordinary) right-VaR of X at confidence level α ∈ [0, 1] is defined as

VaR+
α (X) = inf{x ∈R : FX(x) > α} = sup{x ∈R : FX(x) ≤ α}.

Here and henceforth, we use the convention that inf ∅= +∞ and sup ∅= −∞. For the role
of left-quantile (VaR−

α ) and right quantile (VaR+
α ) with α ∈ (0, 1] as risk measures, see the

discussion in [2] and [21, Remark 5].
Next, we recall the definition of Lambda VaRs from Bellini and Peri [5], which are

generalizations of ordinary VaRs.

Definition 1. Let X ∈ L0 with distribution function FX , and let � : R→ [0, 1]. The Lambda
VaRs of X or FX are defined as follows:

VaR−
�(X) = inf{x ∈R : FX(x) ≥ �(x)},

VaR+
�(X) = inf{x ∈R : FX(x) > �(x)},
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4 Z. XIA AND T. HU

and

ṼaR−
�(X) = sup{x ∈R : FX(x) < �(x)},

ṼaR+
�(X) = sup{x ∈R : FX(x) ≤ �(x)}.

VaRκ
�(X) and ṼaRκ

�(X) are also denoted by VaRκ
�(FX) and ṼaRκ

�(FX), where κ ∈ {−, +}.
It is known from [5] that ṼaR−

�(X) = VaR−
�(X) and ṼaR+

�(X) = VaR+
�(X) for X ∈ L0 when

� is decreasing. In this paper, “increasing” and “decreasing” are used in the weak sense. Thus,
Lambda VaRs reduce from four to two. In the sequel, we only consider the left and the right
Lambda VaRs, VaR−

� and VaR+
�.

Instead of a constant confidence level λ in the definition of VaRλ, the function � adds
flexibility in modeling tail behavior of risks. Under this assumption, properties of Lambda
VaRs closely resemble those of the usual VaRs. The financial interpretation of the assumption
of a decreasing � is well illustrated by a simple two-level Lambda VaR [5, Example 2.7].

2.2. Basic properties of Lambda VaRs

We collect some basic properties of Lambda VaRs from [5]. Throughout, let � : R→ [0, 1]
be decreasing to avoid pathological cases, and let M1 denote the set of probability measures
on (R,B(R)). Then

(B1) VaR−
� and VaR+

� are finite if and only if � �≡ 0 and � �≡ 1.

(B2) If �1(x) = �2(x) on their common points of continuity or �1(x) = �2(x) almost surely
with respective to the Lebesgue measure, then VaRκ

�1
= VaRκ

�2
on L0 for κ ∈ {−, +}.

(B3) For κ ∈ {−, +}, VaRκ
� is quasi-concave on M1, that is,

VaRκ
�(αF1 + (1 − α)F2) ≥ min

{
VaRκ

�(F1), VaRκ
�(F2)

}
for any F1, F2 ∈M1 and 0 < α < 1.

(B4) For κ ∈ {−, +}, VaRκ
�(F) has the “convex level set” (CxLS) property. A risk measure

ρ : M1 →R is said to have the CxLS property if for any F1, F2 ∈M1, α ∈ (0, 1) and
γ ∈R, it holds that

ρ(F1) = ρ(F2) = γ ⇒ ρ(αF1 + (1 − α)F2) = γ .

(B5) VaR−
� is weakly lower semi-continuous, i.e. if Fn

d→ F for Fn, F ∈M1, then

lim inf
n→∞ VaR−

�(Fn) ≥ VaR−
�(F) .

VaR+
� is weakly upper semi-continuous, i.e. if Fn

d→ F for Fn, F ∈M1, then

lim sup
n→∞

VaR+
�(Fn) ≤ VaR+

�(F) .

Some further properties of the Lambda VaRs are presented in the following propositions,
whose proofs are postponed to Appendix A.
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Proposition 1. For any X ∈ L0 and κ ∈ {−, +}, we have

VaRκ
�(λX) ≥ λ VaRκ

�(X), 0 < λ < 1;

VaRκ
�(λX) ≤ λ VaRκ

�(X), λ > 1. (2.1)

Consequently, VaRκ
�(λX) /λ is decreasing in λ ∈ (0, ∞) for any fixed X ∈ L0.

Han et al. [16] in their Remark 3.1 showed that Lambda VaRs are not star-shaped but quasi-
star-shaped. Proposition 1 states that the Lambda VaRs possess a “reverse star-shape” property.

Proposition 2. VaR−
� or VaR+

� is translation invariant on L0 if and only if � is a constant.

Proposition 3. Let κ ∈ {−, +}. If VaRκ
� is positively homogeneous, i.e. VaRκ

�(λX) =
λVaRκ

�(X) for all X ∈ L0 and λ ∈ (0, ∞), then � is constant on intervals (0, ∞) and (−∞, 0),
respectively, that is, there exist 1 ≥ α1 ≥ α2 ≥ α3 ≥ 0 such that

�(x) = α11(−∞,0)(x) + α21{0}(x) + α31(0,∞)(x). (2.2)

Next, we give three lemmas concerning properties of Lambda VaRs, which will be used in
this paper. The first one will be used repeatedly in this paper. The second and the third ones
give alternative representations of the Lambda VaRs in terms of the usual VaRs. Here and in
the sequel, � = 1 − �, and �(x−) and �(x+) denote the left and right limits of function � at
point x, respectively.

Lemma 1. For X ∈ L0 and x ∈R, we have

P(X > x) ≤ �(x+) ⇐⇒ VaR−
�(X) ≤ x, (2.3)

P(X > x) < �(x+) ⇒ VaR+
�(X) ≤ x, (2.4)

P(X ≥ x) > �(x+) ⇒ VaR−
�(X) ≥ x, (2.5)

P(X ≥ x) ≥ �(x−) ⇐⇒ VaR+
�(X) ≥ x. (2.6)

Lemma 2. [16, Proposition 3.1] If �(t) is not constantly 0, that is, �(−∞) > 0, then

VaR−
�(X) = inf

y∈R
{
VaR−

�(y)(X) ∨ y
}
, X ∈ L0.

Lemma 3. If �(t) is not constantly 0, that is, �(−∞) > 0, then

VaR+
�(X) = inf

y∈R
{
VaR+

�(y)(X) ∨ y
}
, X ∈ L0. (2.7)

2.3. Worst-case Lambda VaR under model uncertainty

Let P be the set of all probability measures that are absolutely continuous with respect
to P, where P is a common benchmark for all agents. For any Q ∈P , let VaR−,Q

� and VaR+,Q
�

be the VaR−
� and VaR+

� evaluated under the probability measure Q instead of P. We consider
the worst-case Lambda VaR risk measures

VaR
−,Q
� = supQ∈Q VaR−,Q

� and VaR
+,Q
� = supQ∈Q VaR+,Q

� ,
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6 Z. XIA AND T. HU

where Q is the subset of P , describing model uncertainty. We call Q an uncertainty set of
probability measures. A particular choice of Q is induced by likelihood ratios, which is the
following set of probability measures whose Randon-Nikodym derivatives with respect to P

do not exceed a constant, i.e.

Pβ =
{

Q ∈P :
dQ

dP
≤ 1

β

}
for β ∈ (0, 1] .

Liu et al. [21] considered the special cases VaR−
λ and VaR+

λ with � ≡ λ ∈ (0, 1) under
uncertainty set Pβ , and obtained that

VaR
−,Pβ

λ = VaR−
1−(1−λ)β, VaR

+,Pβ

λ = VaR+
1−(1−λ)β .

Proposition 4. Let � : R→ [0, 1] be decreasing. For β ∈ (0, 1], define �β = 1 − β�. Then

VaR
+,Pβ

� (X) = VaR+
�β

(X), X ∈ L0, (2.8)

Furthermore, if � > 0, then

VaR
−,Pβ

� (X) = VaR−
�β

(X), X ∈ L0. (2.9)

Proof. We give the proof for the left Lambda VaR since the proof for the right Lambda VaR
is similar. First, note that for any given X ∈ L0 and Q ∈Q, we have Q(X > x) ≤ P(X > x)/β for
any x ∈R and, hence,

VaR−
�β

(X) = inf{x : P(X > x) ≤ �β (x)} = inf

{
x :

1

β
P(X > x) ≤ �(x)

}
≥ inf{x : Q(X > x) ≤ �(x)} = VaR−,Q

� (X).

Thus,

VaR
−,Pβ

� (X) ≤ VaR−
�β

(X), X ∈ L0. (2.10)

To prove the reverse inequality of (2.10), we choose a special Q0 ∈Pβ such that dQ0/dP=
(1/β)1{UX>1−β}, where UX ∼ U(0, 1) such that X = F−1

X (UX), a.s. Then

VaR−,Q0
� (X) = inf{x : Q0(X ≤ x) ≥ �(x)}

= inf{x : P(X ≤ x, UX > 1 − β) ≥ β�(x)}
= inf{x : P(1 − β < UX ≤ FX(x)) ≥ β�(x)}
= inf{x : max{FX(x) − 1 + β, 0} ≥ β�(x)}.

Since � > 0, it follows that

VaR−,Q0
� (X) = inf{x : FX(x) ≥ 1 − β�(x)} = VaR−

�β
(X). (2.11)

Therefore, VaR
−,Pβ

� (X) ≥ VaR−
�β

(X) for X ∈ L0. This proves (2.9) for left Lambda VaR.
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Remark 1. Eq. (2.11) cannot be true without the assumption � > 0. A counterexample is as
follows. Let �(x) = 1(−∞,2](x), X ∼ U(0, 4) under probability measure P, and set β = 1/4.
Choose Q0 ∈ Pβ such that dQ0/dP= 41{UX>3/4}, that is, X ∼ U(3, 4) under probability mea-

sure Q0. Then VaR−,Q0
� (X) = 2. However, VaR−

�β
(X) = 3 > VaR−,Q0

� (X). Thus, (2.11) does not
hold in this case.

Further properties of Lambda VaRs under model uncertainty induced by Wasserstein
metrics can be found in Xia [29].

3. Inf-convolution of real functions

In order to study inf-convolution of Lambda VaRs, we introduce the following inf-
convolution of real functions. We restrict ourselves to consider bounded and decreasing
functions.

Definition 2. Let �i : R→R be a bounded and decreasing function for each i ∈ [m]. The inf-

convolution of �1, . . . , �m is denoted by
m�

i=1
�i(y), defined as

m�
i=1

�i(y) := inf
y1,...,ym∈R,

∑m
i=1 yi=y

{
1 −

m∑
i=1

�i(yi)

}
. (3.1)

Throughout, we denote �∗ (y) = m�
i=1

�i(y).

It is easy to see that �∗(y) is also decreasing and that

�∗(y) = m�
i=1

�i(y) = supy1,...,ym∈R,
∑m

i=1 yi=y

m∑
i=1

�i(yi) . (3.2)

That is, �∗ is the sup-convolution of �1, . . . , �m. The next proposition justifies the simple
fact that the inf-convolution of m functions can be seen as the repeated applications of the inf-
convolution of two functions. In the expression �1 � �2 · · · � �m below, the convention is to
perform the operations � from left to right.

Proposition 5. Let �i : R→R be bounded and decreasing for each i ∈ [m]. For any y ∈R, we
have �m

i=1�i(y) = �1 � �2 · · · � �m(y), where �1 � �2(y) = �2
i=1�i(y).

Several further properties of inf-convolution of real functions are listed in the following
propositions, whose proofs are presented in Appendix B. The first proposition, Proposition 6,
will be used repeatedly to prove other results in this paper, which gives the expressions of
�∗ at positive infinity and negative infinity. We denote �(+∞) = limx↑∞�(x) and �(−∞) =
limx↓−∞�(x) for any decreasing function �.

Proposition 6. Let �i : R→R be bounded and decreasing for i ∈ [m]. Then

�∗(−∞) = min
1≤i≤m

(
1 − �i(−∞) −

∑
j �=i

�j(+∞)

)
,

�∗(+∞) = 1 −
m∑

i=1

�i(+∞).
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Proposition 7. Let �i : R→R be bounded, right-continuous and decreasing for i ∈ [m]. For
any y ∈R, �∗(y) has either one of the following properties:

(P1) There exists (y1, . . . , ym) ∈R
m such that

∑m
i=1y = y and �∗(y) =∑m

i=1�i(yi).

(P2) There exists a sequence {( y1n, . . . , ymn)}n∈N such that
m∑

i=1

yin = y and
m∑

i=1

�i(yin) → �∗(y) as n → ∞,

where {(y1n, . . . , ymn)}n∈N does not have a cluster point in R
m. In this case, �∗(y) =

�∗(−∞), and
∑m

i=1 �i(yi) < �∗(y) whenever
∑m

i=1 yi = y.

Furthermore, if �∗(y0) has property (P2), then so does �∗(x) for any x < y0.

The next proposition gives sufficient conditions on {�i} under which �∗ is right-continuous
or continuous.

Proposition 8. (Continuity.) Let �i : R→R be bounded and decreasing for i ∈ [m].

(1) If �i is continuous for some i, then so is �∗.

(2) If all �i are right-continuous, then so is �∗.

Proposition 9 gives a sufficient condition under which Property (P1) holds. The condition is
that the right tail of each �i is a constant. The special case of �∗ being constant is investigated
in Proposition 10.

Proposition 9. Let �i be bounded, right-continuous and decreasing for i ∈ [m]. If, for each i ∈
[m], �i(yi) = �i(+∞) for some yi ∈R, then for any x ∈R, there exists (x1, . . . , xm) ∈R

msuch
that

∑m
i=1 xi = x and �∗(x) =∑m

i=1 �i(xi).

Proposition 10. Let �i be bounded, right-continuous and decreasing for each i ∈ [m].

(1) �∗ is constant if and only if at least one �i is constant.

(2) Let �∗ be a constant function. Then �∗(x) >
∑m

i=1 �i(xi) for any (x1, . . . , xm) ∈R
m

with x =∑m
i=1 xi if and only if there exists �i0 such that �i0 (y) > �i0 (+∞) for any

y ∈R.

In view of property (B2) in Subsection 2.2, we always assume that all �i are right-
continuous in the next sections.

4. Inf-convolution of several Lambda VaRs

Theorem 1. Let �i : R→ (0, 1] be decreasing for i ∈ [m], and let �∗ be defined by (3.2). If
�∗(−∞) > 0, then

m
�

i=1
VaR−

�i
(X) ≥ VaR−

�∗ (X), X ∈ L0. (4.1)

The proof of Theorem 1 requires the following lemma, which was pointed out to us by an
anonymous referee.

https://doi.org/10.1017/apr.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.27


Risk Sharing for Lambda VaR 9

Lemma 4. For λi ∈ [0, 1] and (y1, . . . , ym) ∈R
m, we have

inf
(X1,...,Xm)∈Am(X)

{
m∑

i=1

VaR−
λi

(Xi) ∨ yi

}
= m

�
i=1

VaR−
λi

(X) ∨
m∑

i=1

yi, X ∈ L0. (4.2)

Proof of Theorem 1. By Lemma 2, for X ∈ L0, we have

m
�

i=1
VaR−

�i
(X) = inf

(X1,...,Xm)∈Am(X)

m∑
i=1

VaR−
�i

(Xi)

= inf
(X1,...,Xm)∈Am(X)

m∑
i=1

inf
yi∈R

{
VaR−

�i(yi)
(Xi) ∨ yi

}
= inf

(y1,...,ym)∈Rm
inf

(X1,...,Xm)∈Am(X)

{
m∑

i=1

VaR−
�i(yi)

(Xi) ∨ yi

}

= inf
(y1,...,ym)∈Rm

{
m
�

i=1
VaR−

�i(yi)
(X) ∨

m∑
i=1

yi

}
(4.3)

= inf
(y1,...,ym)εRm

{
VaR−

1−∑m
i=1 ∧i(yi)(X)V

m∑
i=1

yi

}
, (4.4)

where (4.3) follows from Lemma 4, and (4.4) follows from the fact

m
�

i=1
VaR−

�i(yi)
(X) = VaR−

1−∑m
i=1 �i(yi)

(X)

by Corollary 2 in [12]. Here, we use the convention that VaR−
1−∑m

i=1 �i(yi)
(X) = VaR−

0 (X) =
−∞ when 1 −∑m

i=1 �i(yi) < 0. Furthermore, by the definition of �∗, we have

inf
(y1,...,ym)∈Rm

{
VaR−

1−∑m
i=1 �i(yi)

(X) ∨
m∑

i=1

yi

}
= inf

y∈R inf
(y1,...,ym)∈Rm,

∑m
i=1 yi=y

{
VaR−

1−∑m
i=1 �i(yi)

(X) ∨ y
}

≥ inf
y∈R

{
VaR−

�∗(y)(X) ∨ y
}

(4.5)

= VaR−
�∗ (X), (4.6)

where (4.5) holds since �∗(y) ≤ 1 −∑m
i=1 �i(yi) for any (y1, . . . , ym) ∈R

m with
∑m

i=1 yi = y,
and (4.6) follows from Lemma 2. �

The equality in (4.1) of Theorem 1 does not hold without further assumptions, as shown by
the following counterexample. We will investigate sufficient conditions on �∗ in Theorems 4
and 5, under which the equality in (4.1) is true.
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Example 1. Let X ∈ L0, with P(X = 0) = P(X = 1) = 1/2, and let �1(x) ≡ 3/4 and

�2(x) = 1

4π

(π

2
− arctan(x)

)
+ 3

4
.

By Proposition 10, it follows that �∗ ≡ 1/2, and �∗ (x + y) > �1(x) + �2(y) for all (x, y) ∈
R

2. Thus, VaR−
�∗(X) = 0. We claim that, for any (X1, X2) ∈A2(X),

VaR−
�1

(X1) + VaR−
�2

(X2) ≥ 1 > VaR−
�∗ (X).

In fact, if this is not true, there exists (Y1, Y2) ∈A2(X) such that y1 + y2 < 1, where y1 =
VaR−

�1
(Y1) and y2 = VaR−

�2
(Y2). By Lemma 1, we have P(X1 > y1) ≤ �1(y1) and P(X2 > y2) ≤

�2(y2). Thus,

1

2
= P(X > y1 + y2) ≤

2∑
i=1

P(Xi > yi) ≤
2∑

i=1

�i(yi) <
1

2
,

which is a contradiction.

Theorem 2. Let �i : R→ (0, 1) be decreasing for i ∈ [m], and let �∗ be defined by (3.2). If
�∗(−∞) > 0, then

m
�

i=1
VaR+

�i
(X) = VaR+

�∗(X), X ∈ L0. (4.7)

The proof of Theorem 2 requires the following lemma, Lemma 5, whose proof is similar to
that of Lemma 4 by using cash invariance of VaR and Theorem 1 in [21].

Lemma 5. Let λi ∈ [0, 1] and κi ∈ {−, +} for i ∈ [m]. For any (y1, . . . , ym) ∈R
m, we have

inf
(X1,...,Xm)∈Am(X)

{
m∑

i=1

VaRκi
λi

(Xi) ∨ yi

}
= m

�
i=1

VaRκi
λi

(X) ∨
m∑

i=1

yi, X ∈ L0. (4.8)

Here, the κi and the λi are chosen to avoid the appearance of VaR−
0 �VaR+

1 in (4.8).

Proof of Theorem 2. The proof is similar to that of Theorem 1. By Lemma 3, for X ∈ L0,
we have

m
�

i=1
VaR+

�i
(X) = inf

(X1,...,Xm)∈Am(X)

m∑
i=1

VaR+
�i

(Xi)

= inf
(X1,...,Xm)∈Am(X)

m∑
i=1

inf
yi∈R

{
VaR+

�i(yi)
(Xi) ∨ yi

}
= inf

(y1,...,ym)∈Rm
inf

(X1,...,Xm)∈Am(X)

{
m∑

i=1

VaR+
�i(yi)

(Xi) ∨ yi

}

= inf
(y1,...,ym)∈Rm

{
m
�

i=1
VaR+

�i(yi)
(X) ∨

m∑
i=1

yi

}
(4.9)

= inf
(y1,...,ym)∈Rm

{
VaR+

1−∑m
i=1 �i(yi)

(X) ∨
m∑

i=1

yi

}
, (4.10)
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where (4.9) follows from Lemma 5, and (4.10) follows from Theorem 1 of [21], which implies
that

m
�

i=1
VaR+

�i(yi)
(X) = VaR+

1−∑m
i=1 �i(yi)

(X), X ∈ L0, (4.11)

since �i(yi) < 1 for i ∈ [m]. Here we use the convention that VaR+
1−∑m

i=1 �i(yi)
(X) = −∞ when

1 −∑m
i=1 �i(yi) < 0. Note that

inf
(y1,...,ym)∈Rm

{
VaR+

1−∑m
i=1 �i(yi)

(X) ∨
m∑

i=1

yi

}
= inf

y∈R inf
(y1,...,ym)∈Rm,

∑m
i=1 yi=y

{
VaR+

1−∑m
i=1 �i(yi)

(X) ∨ y
}

= inf
y∈R

{
VaR+

�∗(y)(X) ∨ y
}

(4.12)

= VaR+
�∗(X), (4.13)

where (4.13) is due to Lemma 3, and (4.12) follows since

inf

{
VaR+

1−∑m
i=1 �i(yi)

(X) : (y1, . . . , ym) ∈R
m,

m∑
i=1

yi = y

}
= VaR+

�∗(y)(X). (4.14)

More detail is given on (4.14) as follows. Denote by LHS the left-hand side of (4.14).
Obviously, LHS ≥ VaR+

�∗(y)(X) since VaR+
λ is increasing in λ and 1 −∑m

i=1 �i(yi) ≥ �∗(y).

On the other hand, note that VaR+
λ is right-continuous in λ. By (3.2), there exists a sequence

{(y1n, . . . , ymn)}n∈N satisfying that y =∑m
k=1 ykn and 1 −∑m

i=1 �i(yin) ↘ �∗(y) as n → ∞.
Thus, the lower bound VaR+

�∗(y)(X) is attainable by LHS. Therefore, (4.14) is true. �

It should be pointed out that (4.14) does not hold for VaR− because VaR− is left-continuous
but not right-continuous in λ. It is the reason the equality in (4.1) cannot be expected without
additional conditions. In Theorem 2, it is required that �i < 1 for all i ∈ [m]. If �i0 ≡ 1 and
�j0 < 1 for some i0, j0 ∈ [m], then �m

i=1VaR+
�i(yi)

(X) = +∞ > VaR+
1−∑m

i=1 �i(yi)
(X) for X ∈ L0,

violating (4.11), and hence (4.7) does not hold.
An explicit formula of the inf-convolution is also obtained in Theorem 3 for the case of a

mixed collection of left and right Lambda VaRs. Its proof can be found in Appendix C.

Theorem 3. Let �i : R→ (0, 1] be decreasing and κi ∈ {−, +} for i ∈ [m], and let �∗ be
defined by (3.2), with �∗(−∞) > 0. If κi = + for at least one i, and �j < 1 whenever κj = +,
then

m
�

i=1
VaRκi

�i
(X) = VaR+

�∗(X), X ∈ L0. (4.15)

As a special consequence of Theorems 1, 2 and 3, we get the following VaR inf-convolution
formulas of ordinary VaRs:

Corollary 1. (1) [12, Corollary 2] For λ1, λ2 ∈ [0, 1] such that λ = λ1 + λ2 − 1 > 0, we
have

VaR−
λ1
�VaR−

λ2
(X) = VaR−

λ (X), X ∈ L0.
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(2) [21, Theorem 1] For λ1, λ2 ∈ [0, 1) such that λ = λ1 + λ2 − 1 ≥ 0, we have

VaR+
λ1
�VaR+

λ2
(X) = VaR+

λ (X), X ∈ L0.

(3) [21, Theorem 1] For λ1 ∈ [0, 1], λ2 ∈ [0, 1) such that λ = λ1 + λ2 − 1 ≥ 0, we have

VaR−
λ1
�VaR+

λ2
(X) = VaR+

λ (X), X ∈ L0.

Theorems 1, 2 and 3 are established under the assumption �∗(−∞) > 0. In the end of this
section, we present other results of inf-convolution of Lambda VaRs under the assumption
�∗(−∞) ≤ 0. All proofs are postponed to Appendix C. The proofs of Propositions 11, 12 and
13 are based on Lemmas 6 and 7.

Proposition 11. Let �i : R→ [0, 1] be decreasing for each i ∈ [m], and let �∗ be defined by
(3.2) with �∗(−∞) ≤ 0.

(1) If �∗(−∞) < 0, then �m
i=1VaR−

�i
(X) = −∞ for X ∈ L0.

(2) If �∗(−∞) = 0, then �m
i=1VaR−

�i
(X) = min{sup L, ess-inf(X)} , where

L :=
{

x ∈R : �∗(x) = 0, � ∃{xi} such that
m∑

i=1

xi = x and
m∑

i=1

�i(xi) = 1

}
.

Proposition 12. Let �i : R→ [0, 1) be decreasing for each i ∈ [m], and let �∗ be defined by
(3.2) with �∗(−∞) ≤ 0.

(1) If �∗(−∞) < 0, then �m
i=1VaR+

�i
(X) = −∞.

(2) If �∗(−∞) = 0, then �m
i=1VaR+

�i
(X) = min{sup T, ess-inf(X)}, where T = {x ∈

R : �∗(x) = 0}.
Proposition 13. Let �i : R→ [0, 1] be decreasing and κi ∈ {−, +} for i ∈ [m], and let �∗ be
defined by (3.2) with �∗(−∞) ≤ 0. Assume that κi = + for at least one i, and �j < 1 whenever
κj = +.

(1) If �∗(−∞) < 0, then �m
i=1VaRκi

�i
(X) = −∞.

(2) If �∗(−∞) = 0, then �m
i=1VaRκi

�i
(X) = min{sup T, ess-inf(X)}, where T = {x ∈

R : �∗(x) = 0}.
Lemma 6. Let �i : R→ [0, 1] be decreasing for each i ∈ [m], and let X ∈ L0.

(1) If X ≥ x0, a.s., with �∗(x0) = 0, and if there does exist (x1, . . . , xm) ∈R
m such that∑m

i=1 xi = x0 and
∑m

i=1 �i(xi) = 1, then �m
i=1VaR−

�i
(X) ≥ x0.

(2) If �∗(−∞) ≤ 0, then �m
i=1VaR−

�i
(X) ≤ ess-inf(X).

Lemma 7. Let �i : R→ [0, 1) be decreasing for i ∈ [m], and let X ∈ L0.

(1) If X ≥ x0 ∈R, a.s., and �∗(x0) = 0, then �m
i=1VaR+

�i
(X) ≥ x0.

(2) If �∗(−∞) ≤ 0, then �m
i=1VaR+

�i
(X) ≤ ess-inf(X).
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5. Optimal risk sharing for Lambda VaRs

From the proof of Theorem 1 and Example 1, it is known that whether �∗ satisfies property
(P1) in Proposition 7 plays an important role in establishing the equality of (4.1). In this section,
we consider the case �∗(−∞) > 0, and study optimal allocations of inf-convolution for several
Lambda VaRs according to whether �∗ satisfies (P1) or (P2) in Proposition 7.

5.1. Left Lambda VaRs

Theorem 4. Let �i : R→ (0, 1] be decreasing for i ∈ [m] with �∗(−∞) > 0. For any X ∈ L0,
denote x0 = VaR−

�∗ (X). If there exists (x1, . . . , xm) ∈R
msuch that

∑m
i=1 xi = x0 and �∗(x0) =∑m

i=1 �i(xi), then

m
�

i=1
VaR−

�i
(X) = VaR−

�∗(X) (5.1)

Moreover, there exists an optimal allocation (X1, . . . , Xm) ∈Am(X) satisfying xi = VaR−
�i

(Xi)
for i ∈ [m].

Proof. Note that x0 = VaR−
�∗(X) ∈R since �∗(−∞) > 0. First, assume that �∗(x0) = 0. By

the definition of �∗, �i ≡ 1 for all i ∈ [m] and, hence, �∗ ≡ 1. In view of Theorem 1, we
conclude that (5.1) holds and (X, 0, . . . , 0) is an optimal allocation of X.

Next, consider the case �∗(x0) < 1. We will construct an optimal allocation of X directly.
Note that {X < x0}, {X = x0} and {X > x0} constitute a partition of �. Construct an alloca-
tion X∈Am(X) as follows: On the set {X < x0}, define Xk = xk for k ∈ [m − 1] and Xm = X −∑m−1

i=1 xi. On the set {X = x0}, define Xj = xj for j ∈ [m]. On the set {X > x0}, let {C1, . . . , Cm}
be a partition of {X > x0}, satisfying that

P(Cj) = P(X > x0) · �j(xj)∑m
i=1 �i(xi)

, j ∈ [m].

Then, define Xj = X − x0 + xj on Cj and Xj = xj on {X > x}\Cj for j ∈ [m]. Therefore, X ∈
Am(X) has the following representation:

Xk = xk + (X − x0) 1Ck , k ∈ [m − 1],

Xm = X −
m−1∑
i=1

Xi = xm + (X − x0) 1Cm + (X − x0) 1{X≤x0}. (5.2)

By Lemma 1 and Proposition 8, x0 = VaR−
�∗ (X) implies that P(X > x0) ≤ �∗(x0). Also, by

construction, it follows that

P(Xj > xj) = P(Cj) = �j(xj) · P(X > x0)

�∗(x0)
≤ �j(xj), j ∈ [m], (5.3)

implying VaR−
�j

(Xj) ≤ xj. Thus,
∑m

i=1 VaR−
�i

(Xi) ≤ x0 = VaR−
�∗(X). By Theorem 1, we con-

clude that (5.1) holds and X is an optimal allocation of X.

Theorem 4 states that Property (P1) in Proposition 7 is a sufficient condition for (5.1). In
Theorem 5, we show that, under Property (P2) in Proposition 7, VaR−

�∗ (X) = VaR+
�∗ (X) is a

necessary and sufficient condition for (5.1) to hold. We will consider the inf-convolution of
left Lambda VaRs in Theorem 10 when VaR−

�∗ (X) < VaR+
�∗(X).
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Theorem 5. Let �i : R→ (0, 1] be decreasing for i ∈ [m] with �∗(−∞) > 0. For any
X ∈ L0, denote x0 = VaR−

�∗(X). It there does not exist (x1, . . . , xm) ∈R
m such that

∑m
i=1 xi =

x0 and �∗(x0) =∑m
i=1 �i(xi), then (5.1) holds if and only if VaR−

�∗ (X) = VaR+
�∗ (X).

Furthermore, under the condition VaR−
�∗(X) = VaR+

�∗(X), if P(X > x0) < �∗(x0), an optimal
allocation of X exists; if P(X > x0) = �∗(x0), no optimal allocation of X exists, while there
exists a sequence of asymptotically optimal allocations.

Proof. Necessity: We prove it by contradiction. Assume on the contrary that VaR−
�∗ (X) <

VaR+
�∗ (X). Under this assumption, from (5.1) it follows that there exists (y1, . . . , ym) ∈R

m

satisfying
∑m

i=1 yi = y < VaR+
�∗(X), where yj = VaR−

�j
(Xj) for j ∈ [m]. Note that

{
X ≥ VaR+

�∗(X)
}⊂

{
X >

m∑
i=1

yi

}
⊂

m⋃
i=1

{Xi > yi}.

By Lemma 1, we have P(Xj > yj) ≤ �j(yj) for j ∈ [m]. Hence we obtain that

P
(
X ≥ VaR+

�∗ (X)
)≤

m∑
i=1

P(Xi > yi) ≤
m∑

i=1

�i(yi). (5.4)

By Proposition 7, we have �∗(y) = �∗(x0) = �∗(−∞) and
∑m

i=1 �i(yi) < �∗(x0). On
the other hand, note that P(X > x0) ≥ �∗(x0) (Otherwise, if P(X > x0) < �∗(x0), then
VaR+

�∗ (X) ≤ x0, a contradiction.) Therefore,

P
(
X ≥ VaR+

�∗(X)
)= P

(
X > VaR−

�∗ (X)
)= P(X > x0) ≥ �∗(x0) >

m∑
i=1

�i(yi),

which contradicts (5.4). This proves the necessity.
Sufficiency: Suppose that VaR−

�∗(X) = VaR+
�∗ (X). First, we consider the case P(X > x0) <

�∗(x0). In this case, there exists (x1, . . . , xm) ∈R
m such that

∑m
i=1 xi = x0 and

∑m
i=1 �i(xi) ∈(

P(X > x0), �∗(x0)
)
. Let X ∈Am(X) be as defined by (5.2). Then, P(Xj > xj) = P(Cj) < �j(xj)

for j ∈ [m], implying VaR+
�j

(Xj) ≤ xj for j ∈ [m]. Thus,

m
�

i=1
VaR−

�i
(X) ≤

m∑
i=1

VaR−
�i

(Xi) ≤
m∑

i=1

xi = VaR−
�∗ (X).

This, together with Theorem 1, implies our desired statement (5.1). Moreover, VaR−
�j

(Xj) = xj

for k ∈ [m], and X is an optimal allocation of X.
Next, consider the case P(X > x0) = �∗(x0). In this case we show that no optimal allocation

exists, but that there exists a sequence of allocation (X1n, . . . , Xmn) ∈Am(X), n ∈N, such that∑m
i=1 VaR−

�i
(Xi,n) → x0.

Assume on the contrary that there exists an optimal allocation of X, say, X = (X1, . . . , Xm).
Denote xj := VaR−

�j
(Xj) for j ∈ [m]. Then we have

∑m
i=1 xi = x0 and

�∗(x0) = P(X > x0) ≤
m∑

i=1

P(Xi > xi) ≤
m∑

i=1

�i(xi). (5.5)
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However, by Proposition 7,
∑m

i=1 �i(xi) < �∗(x0), which contradicts (5.5). Therefore, no
optimal allocation exists. In order to find a sequence of admissible allocations of X approaching
the lower bound of the inf-convolution, we consider the following two cases.

Case 1: Suppose that P(X > x0 + ε) < P(X > x0) for any ε > 0. Denote δn = P(X > x0 +
1/n). There exists a sequence {(x1n, . . . , xmn)}n∈N such that

∑m
i=1 xin = x0 and

∑m
i=1 �i(xin) ∈(

δn, �∗(x0)
)
. In an atomless probability space, let {C1n, . . . , Cmn} be a partition of

{X > x0 + 1/n}, satisfying

P(Cjn) = δn
�j(xjn)∑m

i=1 �i(xin)
, j ∈ [m].

Define

Xk,n = xkn + 1

nm
+
(

X − x0 − 1

n

)
1Ckn , k ∈ [m − 1], (5.6)

and Xmn = X −∑m−1
i=1 Xin. Then,

P

(
Xjn > xjn + 1

mn

)
= P(Cjn) = δn · �j(xjn)∑m

i=1 �i(xin)
< �j(xjn),

implying VaR−
�j

(Xjn) ≤ xjn + 1/ (mn). Thus,

m∑
i=1

VaR−
�i

(Xin) ≤
m∑

i=1

xin + 1

n
= x0 + 1

n
. (5.7)

Case 2: Suppose that P(X > x0 + ε0) = P(X > x0) for some ε0 > 0. In this case, from P(X >

x0) = �∗(x0), it follows that �∗(x0) > �∗(x0 + ε) for any ε > 0. By Proposition 7, there exists
a sequence {(x1n, . . . , xmn)}n∈N such that

∑m
i=1 xin = x0 + 1/n and

∑m
i=1 �i(xin) = �∗(x0 +

1/n). Then,

�1

(
x1n − 1

n

)
+

m∑
i=2

�i(xin) ≤ �∗(x0).

In an atomless probability space, let (C1n, . . . , Cmn) be a partition of the set {X > x0},
satisfying

P(C1n) = �1(x1n) − 1

2

[ m∑
i=1

�i(xin) − �∗(x0)

]
= �1(x1n) − 1

2

[
�∗
(

x0 + 1

n

)
− �∗(x0)

]
,

and

P(Ckn) = (
�∗(x0) − P(C1,n)

) �k(xkn)∑m
i=2 �i(xin)

, k = 2, . . . , m.

It is easy to see that P(C1n) +∑m
i=2 �i(xin) > �∗(x0), which implies that

P(C1n) ∈
(

�1

(
x1n − 1

n

)
, �1(x1n)

)
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and P(Ckn) < �k(xkn) for k ∈ [m]. Construct a sequence of admissible allocations
(X1n, . . . , Xmn) ∈Am(X) as follows:

X1n = x1n − 1

n
+ (X − x0) 1C1n ,

Xjn = xjn + (X − x0) 1Cjn , j = 2, . . . , m − 1, (5.8)

Xmn = X −
m−1∑
i=1

Xin.

Note that P(X1n > x1n − 1/n) = P(C1n) < �1(x1n) and P(Xkn > xkn) = P(Ckn) < �k(xkn) for
k ≥ 2. Hence, VaR−

�i
(Xin) ≤ xin for i ∈ [m]. Therefore,

m∑
i=1

VaR−
�i

(Xin) ≤
m∑

i=1

xin = x0 + 1

n
. (5.9)

In view of Theorem 1, we conclude our desired statement from (5.7) and (5.9).

Corollary 2 in Embrechts et al. [12] is a special case of Theorem 4 with �i ≡ λi for i ∈ [m]
satisfying �∗ ≡∑m

i=1 λi − m + 1 > 0. Also, Proposition 9 gives a sufficient condition on the
�i under which property (P1) of Proposition 7 holds. An immediate consequence of Theorem 4
is the following corollary.

Corollary 2. Let �i : R→ (0, 1) be decreasing for i ∈ [m], with �∗(−∞) > 0. If for any

j ∈ [m] there exists xj ∈R such that �j
(
xj
)= �j(+∞), then

m
�

i=1
VaR−

�i
(X) = VaR−

�∗ (X), for

which an optimal allocation exists.

5.2. Right Lambda VaRs

Theorem 6. Let �i : R→ (0, 1) be decreasing for i ∈ [m], with �∗(−∞) > 0. For any
X ∈ L0, denote x0 := VaR+

�∗(X). If there exists (x1, . . . , xm) ∈R
m such that

∑m
i=1 xi = x0 and

�∗(x0) =∑m
i=1 �i(xi), then

m
�

i=1
VaR+

�i
(X) = VaR+

�∗ (X). (5.10)

Furthermore,

(1) If P(X > x0) < �∗(x0), then an optimal allocation exists.

(2) If P(X > x0) = �∗(x0), and P(X > x0 + ε) < P(X > x0) for any ε > 0, then an optimal
allocation exists.

(3) Suppose that P(X > x0) = �∗(x0) and P(X > x0 + ε0) = P(X > x0) for some ε0 > 0 and
that �∗(x0 + ε) < �∗(x0) for any ε > 0.

• If �j
(
xj + ε

)
< �j

(
xj
)

for any ε > 0 and j ∈ [m], then an optimal allocation exists.

• If, for any (y1, . . . , ym) ∈R
m satisfying

∑m
i=1 yi = x0 and

∑m
i=1 �i(yi) = �∗(x0),

there always exists some τ0 > 0 such that �k(yk) = �k(yk + τ0) for some k ∈ [m],
then no optimal allocation exists.
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Moreover, if an optimal allocation exists, then there exists (X1, . . . , Xm) ∈Am(X) such that
VaR+

�i
(Xi) = xi for i ∈ [m]. If no optimal allocation exists, then there exists a sequence of

allocations (X1n, . . . , Xmn) ∈Am(X) such that VaR+
�j

(Xjn) → xj as n → ∞ for j ∈ [m], and∑m
i=1 VaR+

�i
(Xin) → x0.

Theorem 7. Let �i : R→ (0, 1) be decreasing for i ∈ [m], with �∗(−∞) > 0. For any X ∈ L0,
denote x0 := VaR+

�∗(X). If there does not exist (x1, . . . , xm) ∈R
m such that

∑m
i=1 xi = x0 and

�∗(x0) =∑m
i=1 �i(xi), then (5.10) holds. Furthermore,

(1) If P(X > x0) < �∗(x0), an optimal allocation exists.

(2) If P(X > x0) = �∗(x0), no optimal allocation exists, while there exists a sequence of
asymptotically optimal allocations.

In Theorems 6 and 7, the range of the �i cannot be weakened from (0, 1) to be (0, 1] as
shown by the following counterexample.

Example 2. Let �1(x) = 1{x<2} + (4/5) ∗1{x≥2} and �2(x) = (4/5) ∗1{x<0} + (1/2) ∗1{x≥0}.
From (3.2), it follows that �∗(x) = (1/2) ∗1{x<2} + (3/10) ∗1{x≥2}. Let X be a (0, 1)-uniformly
distributed random variable. Then VaR+

�∗(X) = x0 = 1/2, P(X > x0) = �∗(x0), and �∗ (1/2) =
�1(1/2) + �2(0). If Theorem 6 holds, then there exist (X1, X2) ∈A2(X) and VaR+

�1
(X1) =

1/2. However, from the definition of VaR+
�1

, it follows that VaR+
�1

(Y) ≥ 2 for any random

variable Y ∈ L0. This is a contradiction. Thus, Theorem 6 does not hold in this case.

5.3. Mixed Lambda VaRs

Theorem 8. Let �i : R→ (0, 1] be decreasing for i ∈ [m], with �∗(−∞) > 0, and let κi ∈
{−, +} for i ∈ [m] such that K := {

j : κj = +, j ∈ [m]
} �=∅. Assume that �j < 1 for j ∈ K. For

any X ∈ L0, denote x0 = VaR+
�∗(X). If there exists (x1, . . . , xm) ∈R

m such that
∑m

i=1 xi = x0

and �∗(x0) =∑m
i=1 �i(xi), then

m
�

i=1
VaRκi

�i
(X) = VaR+

�∗ (X). (5.11)

Furthermore,

(1) If P(X > x0) < �∗(x0), then an optimal allocation exists.

(2) If P(X > x0) = �∗(x0), and P(X > x0 + ε) < P(X > x0) for any ε > 0, then an optimal
allocation exists.

(3) Suppose that P(X > x0) = �∗(x0) and P(X > x0 + ε0) = P(X > x0) for some ε0 > 0, and
that �∗(x0 + ε) < �∗(x0) for any ε > 0.

• If �j
(
xj + ε

)
< �j

(
xj
)

for any ε > 0 and j ∈ K, then an optimal allocation exists.

• If, for any (y1, . . . , ym) ∈R
m satisfying

∑m
i=1 yi = x0 and

∑m
i=1 �i(yi) = �∗(x0),

there always exists some τ0 > 0 such that �k(yk) = �k(yk + τ0) for some k ∈ [m],
then no optimal allocation exists.

Moreover, if an optimal allocation exists, then there exists (X1, . . . , Xm) ∈Am(X) such that
VaRκi

�i
(Xi) = xi for i ∈ [m]. If no optimal allocation exists, then there exists a sequence of
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allocations (X1n, . . . , Xmn) ∈Am(X) such that VaR
κj
�j

(Xjn) → xj as n → ∞ for j ∈ [m] and∑m
i=1 VaRκi

�i
(Xin) → x0 as n → ∞.

Theorem 9. Let the �i be the same as those in Theorem 8. For any X ∈ L0, denote x0 =
VaR+

�∗ (X). If there does not exist (x1, . . . , xm) ∈R
m such that

∑m
i=1 xi = x0 and �∗(x0) =∑m

i=1 �i(xi), then (5.11) holds. Furthermore,

(1) If P(X > x0) < �∗(x0), an optimal allocation exists.

(2) If P(X > x0) = �∗(x0), no optimal allocation exists, while there exists a sequence of
asymptotically optimal allocations.

In Theorem 5, we establish (5.1) under the assumption VaR−
�∗(X) = VaR+

�∗(X) and (P2)
in Proposition 7. How about the explicit formula of �m

i=1VaR−
�i

(X) under the assumption

VaR−
�∗ (X) < VaR+

�∗ (X) and (P2)? By a similar argument to that in the proof of Theorems 7, we
have the next result.

Theorem 10. Let �i : R→ (0, 1] be decreasing for i ∈ [m] with �∗(−∞) > 0. For any X ∈
L0, denote x0 = VaR−

�∗ (X). Assume that there does not exist (x1, . . . , xm) ∈R
m such that∑m

i=1 xi = x0 and �∗(x0) =∑m
i=1 �i(xi). If VaR−

�∗(X) < VaR+
�∗(X), then

m
�

i=1
VaR−

�i
(X) = VaR+

�∗ (X). (5.12)

Furthermore,

(1) If P(X > x0) < �∗(x0), an optimal allocation exists.

(2) If P(X > x0) = �∗(x0), no optimal allocation exists, while there exists a sequence of
asymptotically optimal allocations.

6. Comonotonic inf-convolution of Lambda VaRs

In this section, we consider inf-convolution of Lambda VaRs constrained to comono-
tonic allocations, that is, allocations are constrained to be comonotonic. Comonotonicity, an
extremal form of positive dependence, was introduced and has been widely used in eco-
nomics, financial mathematics and actuarial science over the last two decades. The formal
definition and its characterization can be found in Dhaene et al. [10, 11]. Random variables
X1, . . . , Xm are said to be comonotonic if there exist a random variable Z and increasing
functions g1, . . . , gm such that Xi = gi(Z) almost surely for i ∈ [m]. Comonotonicity of more
than two random variables is equivalent to pair-wise comonotonicity. In the sequel, when
X1, . . . , Xm are comonotonic, we denote by Xi//

∑m
k=1 Xk for i ∈ [m].

It is well-known that ordinary VaRs possess comonotonic additivity on L0, that is, the VaR
of a sum of comonotonic random variables is simply the sum of the VaRs of the marginal
distributions [10, Theorem 5]. However, this property is not true for Lambda VaRs. In the
next proposition, we prove that Lambda VaRs possess comonotonic subadditivity on L0+. The
property of comonotonic subadditivity was first proposed by Song and Yan [24] and further
investigated by Song and Yan [25].
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Proposition 14. Let � : R+ → [0, 1] be decreasing, and let X1 and X2 be nonnegative
comonotonic random variables. Then

VaR−
� (X1 + X2) ≤ VaR−

� (X1) + VaR−
�(X2) (6.1)

and

VaR+
� (X1 + X2) ≤ VaR+

� (X1) + VaR+
�(X2). (6.2)

Proof. Denote by x = VaRκ
�(X1 + X2) for κ ∈ {−, +} and set X = X1 + X2. Without loss of

generality, assume that 0 < x < ∞. First note that x > ess-sup(X) occurs only for VaR+
� and

x = sup{t : �(t) = 1} > ess-sup(X). Thus, VaR+
�(Xi) = x for i = 1, 2 and, hence, VaR+

� (X1) +
VaR+

�(X2) = 2x > x = VaR+
� (X1 + X2) . That is, (6.2) holds when x > ess-sup(X).

Next, assume that x ≤ ess-sup(X). Then there exists λ ∈ [�(x+) , �(x−)] and α ∈
[0, 1] such that VaRα

λ(X1 + X2) = x, where VaRα
λ = (1 − α) VaR−

λ + αVaR+
λ . Since X1 and

X2 are comonotonic, it follows that VaRα
λ(X1 + X2) = VaRα

λ(X1) + VaRα
λ(X2). Denote by

x1 = VaRα
λ(X1) and x2 = VaRα

λ(X2). Now consider two cases.

Case 1. Consider the right Lambda VaR, and assume that xi < x for i = 1, 2 (other-
wise, (6.2) is trivial). Then, for any ε > 0, P(X1 ≤ x1 − ε) ≤ λ ≤ �(x−) ≤ �(x1 − ε), implying
VaR+

� (X1) ≥ x1 − ε. Since ε is arbitrary, we have VaR+
� (X1) ≥ x1. Similarly, VaR+

�(X2) ≥ x2.
So we get (6.2) when xi < x for i = 1, 2.

Case 2. Consider the left Lambda VaR, and assume that xi < x for i = 1, 2.

(i) If �(x−) > λ, then P(X1 ≤ x1 − ε) ≤ λ < �(x−) ≤ �(x1 − ε) for any ε > 0, implying
VaR−

� (X1) ≥ x1 − ε and, hence, VaR−
� (X1) ≥ x1. Similarly, we have VaR−

�(X2) ≥ x2.
Therefore, we conclude (6.1) when �(x−) > λ.

(ii) If �(x−) = λ and �(x − ε) > �(x−) for any ε > 0, then P(X1 ≤ x1 − ε) ≤ λ ≤ �(x−) <

�(x1 − ε), implying VaR−
� (X1) ≥ x1. Similarly, we have VaR−

�(X2) ≥ x2. We also obtain
(6.1) in subcase (ii).

(iii) If �(x−) = λ and �(x − ε0) = �(x−) for some ε0 > 0, it follows from the defini-
tion of VaR−

� that P(X1 + X2 ≤ x − ε) < λ for any ε > 0. This implies α = 0, i.e.
x = VaR−

λ (X1 + X2) = x1 + x2. Also, since P(X1 ≤ x1 − ε) < λ ≤ �(x1 − ε), we have
VaR−

� (X1) ≥ x1. Similarly, VaR−
�(X2) ≥ x2. Again, we conclude (6.1) in subcase (iii).

This completes the proof of the proposition. �
Remark 2. Proposition 14 cannot be true without the assumption X ∈ L0+. Counterexamples
are as follows.

(1) Let �(x) = (1/2) · 1(−∞,a)(x), and X = Y ∼ U(a − 1, a + 1) with a < 0. Then
VaR−

� (X + Y) = VaR−
�(X) = VaR−

�(Y) = a. So we get that VaR−
� (X + Y) >

VaR−
�(X) + VaR−

�(Y), violating (6.1).

(2) Let �(x) = 1(−∞,c)(x), and X = Y ∼ U(a, b) with a < b < c < 0. Then VaR+
�(X) =

VaR+
�(Y) = c, and VaR+

� (X + Y) = c. So we get that VaR+
� (X + Y) > VaR+

�(X) +
VaR+

�(Y), violating (6.2).

In view of Remark 2, we restrict ourselves to considering nonnegative random variables
in L0+. For X ∈ L0+, we define the set of comonotonic allocations as

A
c+
m (X) = {

(X1, . . . , Xm) ∈A
+
m(X) : Xi ∈ L0+, Xi//X, i ∈ [m]

}
.
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The constrained (comonotonic) inf-convolution of risk measures ρ1, . . . , ρm is
defined as

m
�

i=1
ρi(X) = inf

{
m∑

i=1

ρi(Xi) : (X1, . . . , Xm) ∈A
c+
m (X)

}
.

An m-tuple (X1, . . . , Xm) ∈A
c+
m is said to be an optimal constrained allocation of X for

(ρ1, . . . , ρm) if
∑m

i=1 ρi(Xi) =�m
i=1ρi(X).

Theorem 11. Let �i : R+ → [0, 1] be decreasing for i ∈ [m], and set � = min1≤i≤m�i, with
m ≥ 2. Then

m
�

i=1
VaR−

�i
(X) = VaR−

�(X), X ∈ L0+. (6.3)

If, in addition, �i < 1 for each i, then

m
�

i=1
VaR+

�i
(X) = VaR+

�(X), X ∈ L0+. (6.4)

Proof. First, consider the case of the left Lambda VaR . Choose any X ∈A
c+
m (X). Since

� ≤ �i for each i, and VaR−
� is increasing in �, it follows that VaR−

�i
(Xi) ≥ VaR−

�(Xi) for each

i. Then
∑m

i=1 VaR−
�i

(Xi) ≥∑m
i=1 VaR−

�(Xi) ≥ VaR−
�(X), where the second inequality follows

from Proposition 14. Thus, we have

m
�

i=1
VaR−

�i
(X) ≥ VaR−

�(X). (6.5)

To prove the reverse inequality of (6.5), we set k = argmin1≤i≤mVaR−
�i

(X), that is, inf{x ∈
R+ : FX(x) ≥ �k(x)} ≤ inf{x ∈R+ : FX(x) ≥ �i(x)} for i �= k. Then

VaR−
�k

(X) = inf{x ∈R+ : FX(x) ≥ �k(x)}
= inf{x ∈R+ : FX(x) ≥ �j(x) for some j ∈ [m]}
= inf

{
x ∈R+ : FX(x) ≥ min

1≤j≤m
�j(x)

}
= VaR−

�(X).

Now choose Xk = X and Xi = 0 for all i �= k. Obviously, VaR−
�i

(Xi) = 0 for i ≥ 2. So we

have
∑m

i=1 VaR−
�i

(Xi) = VaR−
�k

(X) = VaR−
�(X), implying that

m
�

i=1
VaR−

�i
(X) ≤ VaR−

�(X). This

proves (6.3).
The proof of the right Lambda VaR is similar by observing that �i < 1 implies

VaR+
�i

(0) = 0.

Remark 3. One may wonder whether VaR−
�1

� (VaR+
�2

(X) = VaR+
�(X) for X ∈ L0+, with

� = min{�1, �2}. However, this is not true, as shown by the following counterexample.
Let X1 = X2 ∼ B(1, 1/2), X = X1 + X2, and define �1 = �2 ≡ 1/2. Then VaR+

1/2(X) = 2,

VaR−
1/2 (X1) = 0, and VaR+

1/2(X2) = 1. Therefore, VaR−
�1

� VaR+
�2

(X) < VaR+
�(X).

For optimal comonotonic allocations, see Jouini et al. [19] for law-determined convex risk
measures, and Cui et al. [8] for general distortion risk measures in the context of designing
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optimal reinsurance contracts. Embrechts et al. [12] obtained explicit formulas for comono-
tonic inf-convolutions under distortion risk measures including RVaR and ES. Wang and Zitikis
[28] provided analytical solutions to inf-convolution for VaRs under the weak comonotonic-
ity constraints on the dependence structure of admissible allocations. Weak comonotonicity
ranges from strong comonotonicity to no dependence structure. Liu et al. [21] considered
comonotonic inf-convolution of tail risk measures.

The next proposition gives a connection between comonotonic inf-convolution and uncon-
stricted inf-convolution of Lambda VaRs.

Proposition 15. Let �i : R+ → (0, 1] be decreasing for each i ∈ [m].

(1) At least m − 1 of the �i are equal to 1 if and only if

m
�

i=1
VaR−

�i
(X) = m

�
i=1

VaR−
�i

(X) for all X ∈ L0+. (6.6)

(2) If �i ≡ 1 for some i ∈ [m], then

m
�

i=1
VaR+

�i
(X) = m

�
i=1

VaR+
�i

(X) for all X ∈ L0+. (6.7)

Proof. (1) The necessity is trivial. For the sufficiency, by Theorem 11, Eq. (6.6)
holds if and only if VaR−

�∗ (X) = VaR−
min{�1,...,�m}(X) for all X ∈ L0+ or, equivalently,

�∗ = min1≤i≤m�i almost everywhere with respect to the Lebesgue measure. So we have
�∗(+∞) =∑m

i=1 �i(+∞) = max1≤i≤m �i(+∞), implying that at least m − 1 of the �i are
equal to 1.

(2) The proof follows immediately since both sides of (6.7) are infinity when �i ≡ 1 for
some i.

7. Concluding remarks

This paper is based on a PhD thesis [29]. In this paper, we give a thorough discussion
of a risk sharing problem, in which there are m agents equipped with respective risk mea-
sures VaRκ1

�1
, VaRκ2

�2
, . . . , VaRκm

�m
, where κi ∈ {−, +} and �i : R→ [0, 1] is decreasing and

right-continuous for each i. We obtain the explicit formulas of inf-convolution and optimal
allocations of a random variable in L0 under different assumptions.

During the revision of this paper, we note that Liu [22] also studied the risk sharing problem
among multiple agents using VaR−

�1
, . . . , VaR−

�m
as their preferences when the �i are all

decreasing and right-continuous, or increasing and left-continuous. However, when the �i are
all decreasing and right-continuous, the explicit formulas of inf-convolution with respect to
left Lambda VaRs and the construction of optimal allocations in two papers are different. Our
approach is based on the inf-convolution of decreasing functions, introduced and investigated
in Section 3. Moreover, Liu [22] investigated the inf-convolution of two risk measures: (i)
VaR−

� and one law-invariant monotone risk measure without cash-additivity; (ii) ṼaR−
� and

one risk measure that is consistent with the second-order stochastic dominance. In Cases (i)
and (ii), no assumption on monotonicity of � is imposed.
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Appendix A. Proofs of results in Section 2

Proof of Proposition 1. It suffices to prove (2.1) since the other inequality is equivalent to
(2.1). For λ ∈ (0, 1), we have

VaR+
� (λX) = inf

{
t : FX

( t

λ

)
> �(t)

}
= λinf{x : FX(x) > �(λx)}

≥ λinf{x : FX(x) > �(x)} = λVaR+
�(X),

where the inequality follows since � is decreasing. The proof for VaR−
� is similar and, hence,

omitted. �
Proof of Proposition 2. We prove only the necessity. Assume on the contrary that �

is not a constant. Then there exist x1 < x2 such that �(x1) > �(x2). Now choose x0 < x1,
and let X ∈ L0 with distribution function FX such that FX(x0) = [�(x1) + �(x2)] /2. Since
FX is right-continuous at point x0, there exists ε > 0 such that x0 + ε < x1 and F(x0 + ε) <

�(x1) ≤ �(x0 + ε), which implies VaRκ
�(X) ≥ x0 + ε > x0, where κ ∈ {−, +}. Note that P(X +

x2 − x0 ≤ x2) = FX(x0) > �(x2). Thus, VaRκ
�(X + x2 − x0) ≤ x2. Moreover, by the assump-

tion of translation invariance of VaRκ
�, we have VaRκ

�(X) ≤ x0. This contradicts with
VaRκ

�(X) > x0. �
Proof of Proposition 3. The proof consists of the following three steps:

(1) Suppose that there exist 0 < x1 < x2 such that �(x1) > �(x2). Choose 0 < x0 < x1, and
let X ∈ L0, with distribution function FX satisfying FX(x0) = [�(x1) + �(x2)] /2. From
the proof of Proposition 2, it follows that VaR�(X) > x0, where κ ∈ {−, +}. On the
other hand, P((x2/x0)X ≤ x2) = P(X ≤ x0) > �(x2), which implies VaRκ

�((x2/x0)X) ≤
x2. Moreover, by positive homogeneity of VaRκ

�, we obtain that (x2/x0) VaRκ
�(X) ≤ x2

and, hence, VaRκ
�(X) ≤ x0, a contradiction. This means that � is constant on (0, ∞).

(2) Suppose that there exist x1 < x2 < 0 such that �(x1) > �(x2). Choose x0 ∈ (x2, 0),
and let X ∈ L0 with distribution function FX satisfying FX(x0) = [�(x1) + �(x2)] /2.
Obviously, we have VaRκ

�(X) ≤ x0 by the definition of Lambda VaRs. Since FX is right-
continuous at point x0, there exists ε > 0 such that x0 + ε < 0 and P

( x1
x0+ε

X ≤ x1
)=

P(X ≤ x0 + ε) < �(x1), which implies VaRκ
�

( x1
x0+ε

X
)= x1

x0+ε
VaRκ

�(X) ≥ x1. Thus,
VaRκ

�(X) ≥ x0 + ε, leading to a contradiction. Therefore, � is also constant on (−∞, 0).

(3) From the previous discussions, it follows that � has the representation (2.2) with 1 ≥
α1 ≥ α2 ≥ α3 ≥ 0. If � is of the form (2.2), it can be checked that for any X ∈ L0,

VaRκ
�(X) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, FX(0) ∈ (α3, α1) ,

max
{
0, VaRκ

α3
(X)
}

, FX(0) ≤ α3 < α1,

min
{
0, VaRκ

α1
(X)
}

, FX(0) ≥ α1 > α3,

VaRκ
α1

(X), α1 = α3.

Thus, VaRκ
� is positive homogeneous on L0.

This completes the proof of the proposition. �
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Proof of Lemma 1. We prove only (2.3) and (2.6); the proofs of (2.4) and (2.5) are similar.
Necessity of (2.3): If P(X > x) ≤ �(x+), then P(X ≤ x) ≥ �(x+), which implies P(X ≤ x +

ε) ≥ �(x + ε) for any ε > 0 since �(t) is decreasing in t. Thus, VaR−
�(X) ≤ x + ε. Setting ε →

0, we get VaR−
�(X) ≤ x.

Sufficiency of (2.3): If VaR−
�(X) ≤ x, then P(X ≤ x + ε) ≥ �(x + ε) for any ε > 0. Setting

ε → 0, it follows that P(X ≤ x) ≥ �(x+).
Necessity of (2.6): If P(X ≥ x) ≥ �(x−), then P(X < x) ≤ �(x−). Thus, P(X ≤ x − ε) ≤

�(x − ε) for any ε > 0, which implies VaR+
�(X) ≥ x − ε. Setting ε → 0 yields VaR+

�(X) ≥ x.
Sufficiency of (2.6): If VaR+

�(X) ≥ x, then P(X ≤ x − ε) ≤ �(x − ε) for any ε > 0. Setting
ε → 0, it follows that P(X < x)) ≤ �(x−), that is, P(X ≥ x) ≥ �(x−). �

Proof of Lemma 3. The proof is similar to that of Proposition 3.1 in Han et al. [16]. If
� ≡ 1, then both sides of (2.7) are infinite and, thus, (2.7) holds trivially. Next, we consider the
case � �≡ 1. Since P(X ≤ x) > λ for x ∈R and λ ∈ [0, 1) implies VaR+

λ (X) ≤ x, it follows that

VaR+
�(X) = inf{x ∈R : P(X ≤ x) > �(x)} ≥ inf{x ∈R : VaR+

�(x)(X) ≤ x}
≥ inf{VaR+

�(x)(X) ∨ x : VaR+
�(x)(X) ≤ x} ≥ inf

x∈R

{
VaR+

�(x)(X) ∨ x
}

.

To prove (2.7), it suffices to prove that for any x ∈R,

VaR+
�(X) ≤ VaR+

�(x)(X) ∨ x. (A.1)

It is trivial for x ≥ VaR+
�(X). If x < VaR+

�(X), then P(X ≤ x) ≤ �(x). Thus, for any a ∈(
x, VaR+

�(X)
)
, we have P(X ≤ a) ≤ �(a) ≤ �(x) since �(t) is decreasing, which implies

VaR+
�(x)(X) ≥ a. Therefore, (A.1) follows since a is chosen arbitrarily. This completes the proof

of the lemma. �

Appendix B. Proofs of results in Section 3

Proof of Proposition 5. It suffices to prove that �3
i=1�i = (�1 � �2) � �3. Denote

�12 = �1 � �2. First, for any given y ∈R, in view of (3.2), there exists a sequence

{(y1n, y2n, y3n)}n∈N such that
∑3

i=1 yin = y and �1(y1n) + �2(y2n) + �3(y3n) → �3
i=1�i(y) as

n → ∞. Also, it follows from (3.2) that

�1(y1n) + �2(y2n) + �3(y3n) ≤ �12(y1n + y2n) + �3(y3n) ≤ �12 � �3(y).

Letting n → ∞ yields that

�3
i=1�i(y) ≤ �12 � �3(y). (B.1)

Next, we prove that the reverse inequality of (B.1) also holds. For fixed y ∈R, there exists
a sequence {(zn, z3n)}n∈N such that zn + z3n = y and �12(zn) + �3(z3n) → �12 � �3(y) as
n → ∞. Also, for each n, there exists a sequence {(z1,nj, z2,nj)}j∈N such that z1,nj + z2,nj = zn

and �1
(
z1,nj

)+ �2
(
z2,nj

)→ �12(zn) as j → ∞. Note that

�1
(
z1,nj

)+ �2
(
z2,nj

)+ �3
(
z3,n

)≤ �3
i=1�i(y).

First letting j → ∞ and then n → ∞, we have �12 � �3(y) ≤ �3
i=1�i(y). Combining with

(B.1), we conclude �3
i=1�i = (�1 � �2) � �3. �
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Proof of Proposition 6. (1) For any sequence {(y1n, . . . , ymn)}n∈N such that∑m
i=1 yin = yn and yn → −∞ as n → ∞, there exist a subsequence {nk} and some i ∈ [m] such

that yi,nk → −∞ as k → ∞. Setting k → ∞ in the following inequality

�i(yi,nk ) +
∑
j �=i

�j(yj,nk ) ≤ �i(yi,nk ) +
∑
j �=i

�j(+∞),

we have

�∗(−∞) ≤ max
1≤i≤m

(
�i(−∞) +

∑
j �=i

�j(+∞)

)
. (B.2)

On the other hand, to prove the reverse inequality of (B.2), assume without loss of generality
that

max
1≤i≤m

(
�i(−∞) +

∑
j �=i

�j(+∞)

)
= �1(−∞) +

m∑
j=2

�j(+∞).

Choose (x1n, . . . , xmn) = (−nm, n, . . . , n). Then �∗(−n) ≥ �1(−nm) +∑m
j=2 �j(n). Thus,

the reverse inequality of (B.2) follows by setting n → +∞.
(2) For any (y1, . . . , ym) ∈R

m, we have
∑m

i=1 �i(+∞) ≥∑m
i=1 �i(yi), implying that

�∗(y) ≤∑m
i=1 �i(+∞). Thus, �∗(+∞) ≤∑m

i=1 �i(+∞). On the other hand, choosing y1 =
· · · = ym = y/m, we get that �∗(+∞) ≥∑m

i=1 �i(+∞) by setting y → ∞. The desired result
follows. �

To prove Propositions 7 and 8, we need the following lemma.

Lemma 8. For m = 2 and any y ∈R, �∗(y) has one of the following representations:

(1) there exists (x1, x2) ∈R
2 such that x1 + x2 = y and �∗(y) = �1(x1−) + �2(x2+);

(2) there exists (x1, x2) ∈R
2 such that x1 + x2 = y and �∗(y) = �1(x1+) + �2(x2−);

(3) there exists (x1, x2) ∈R
2 such that x1 + x2 = y and �∗(y) = �1(x1) + �2(x2);

(4) �∗(y) = (
�1(+∞) + �2(−∞)

)∨ (�1(−∞) + �2(+∞)
)= �∗(−∞).

Furthermore, �∗(y) has one of the former three representations when �∗(y) < �∗(−∞).
Additionally, if both �1 and �2 are right-continuous, then only Case (3) occurs.

Proof. For given y ∈R, there exists a sequence {(y1n, y2n)}n∈N such that y1n + y2n = y and
�1(y1n) + �2(y2n) → �∗(y) as n → ∞. Two cases arise: First, if {(y1n, y2n)}n∈N has a con-
verging subsequence with finite limiting point, that is, there exists {nj} such that y1nj → x1 and
y2,nj → x2 as j → ∞. This leads to �∗(y) = �1(x1−) + �2(x2+) or �1(x1+) + �2(x2−) or
�1(x1) + �2 (x2). If �1 and �2 are right-continuous, then �∗(y) = �1(x1) + �2 (x2).

Second, if {(y1n, y2n)}n∈N does not have a cluster point, then there exists {nj} such that
y1,nj → +∞ (−∞) and y2,nj → −∞ (+∞) as j → ∞. This leads to Case (4). This proves the
lemma. �

Proof of Proposition 7. If �∗ does not satisfy (P1), then there exists a sequence
{(y1n, . . . , ymn)}n∈N such that

∑m
i=1 yin = y and

∑m
i=1 �i(yin) → �∗(y) as n → ∞. Moreover,

{yin}n∈N does not have a cluster point in for some i. Without loss of generality, assume that
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y1,nj → −∞ as j → ∞. Note that �i (yin) ≤ �i(+∞) for i ≥ 2. This implies that �∗(y) ≤
�1(−∞) +∑m

i=2 �j(+∞). On the other hand, by Proposition 6, we have

�∗(y) ≥ �∗(−∞) = max
1≤i≤m

(
�i(−∞) +

∑
j �=i

�j(+∞)

)
.

Therefore, �∗(y) = �∗(−∞).
Now suppose that �∗ (y0) has Property (P2). Assume on the contrary that there exists x0 <

y0 and �∗(x0) satisfies (P1), that is, there exists (y1, . . . , ym) ∈R
m such that

∑m
i=1 yi = x0 and

�∗(x0) =∑m
i=1 �i(yi). Then

�∗(y0) ≥ �1(y1 + y0 − x0) +
m∑

i=2

�i(yi) ≥ �∗(x0).

However, �∗ (y0) = �∗(x0) = �∗(−∞). So we get �∗(y0) = �1(y1 + y0 − x0) +∑m
i=2 �i(yi). This means that �∗ (y0) does not satisfy (P2), which is a contradiction.

The desired result follows. �
Proof of Proposition 8. We give the proof only for m = 2 since, in view of Proposition 5,

the proof of the general case m ≥ 3 follows by induction.
(1) For m = 2, assume without loss of generality that �1 is continuous. By Lemma 6, for

any x ∈R, either one of the following two cases holds for �(x):

Case 1.1. There exists (x1, x2) ∈R
2 such that x1 + x2 = x and �∗(x) = �1(x1) + �2(x2+).

Case 1.2. �∗(x) = (
�1(+∞) + �2(−∞)

)∨ (�1(−∞) + �2(+∞)
)= �∗(−∞).

If �∗ is not continuous, there exists some x0 ∈R such that �∗(x0) > �∗(x0+) or �∗(x0) <

�∗(x0−).
First, we prove that �∗ is right-continuous by contradiction. Assume on the contrary that

there exists some x0 ∈R such that �∗(x0) > �∗(x0+). Choose {xn}n∈N such that xn → x0+. By
Lemma 6, �∗(xn) < �∗(−∞) and Case 1.1 applies, i.e. there exists a sequence {(x1n, x2n)}n∈N
such that x1n + x2n = xn and �1 (x1n) + �2 (x2n+) = �∗(xn). If {x1n}n∈N has a cluster point,
there exists {nk} such that x1,nk → y1 and x2,nk → y2 as k → ∞, where y1 + y2 = x0. Thus,

�∗(x0+) = lim
k→∞ �1

(
x1,nk

)+ �2
(
x2,nk+

)= �1 (y1) + �2(y2+).

By (3.2), it follows that �1 (y1) + �2(y2+) ≤ �∗(x0). This contradicts with �∗(x0) >

�∗(x0+). If {x1n}n∈N does not have a cluster point, then there exists {nk} such that x1,nk →
+∞ (−∞) and x2,nk → −∞ (+∞) as k → ∞. Thus,

�∗(x0+) = lim
j→∞ �1

(
x1,nj

)+ �2
(
x2,nj+

)
= (

�1(+∞) + �2(−∞)
)∨ (�1(−∞) + �2(+∞)

)= �∗(−∞),

implying that �∗(x0) = �∗(x0+) by the monotonicity of �∗. This leads to a contradiction and
proves right-continuity of �∗.

Next, we prove that �∗ is left-continuous, also by contradiction. Assume that there exists
x0 ∈R such that �∗(x0−) > �∗(x0). Denote ε = �∗(x0−) − �∗(x0). By Lemma 6, there
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exists (x1, x2) ∈R
2 satisfying that x1 + x2 = x0 and �1(x1) + �2(x2+) = �∗(x0). Since �1

is continuous, it follows that �1(x) > �1(x1) − ε/2 for x ∈ (x1 − δ, x1), where δ > 0 is small
enough. Then

�∗
(

x0 − δ

2

)
≥ �1

(
x1 − δ

2

)
+ �2(x2+)

> �1(x1) − ε

2
+ �2(x2+) = �∗(x0) − ε

2
,

which implies that ε = �∗(x0) − �∗(x0−) > ε/2 > �∗(x0) − �∗ (x0 − δ/2). This contradicts
with �∗(x0−) ≤ �∗ (x0 − δ/2) and proves Part (1).

(2) Assume on the contrary that �∗ is not right-continuous, i.e. �∗(x0) > �∗(x0+) for some
x0 ∈R. Choose xn → x0+. By Lemma 6 and the right-continuity of �1 and �2, it follows that
�∗(xn) < �∗(−∞) and that there exists (x1n, x2n) ∈R

2 such that x1n + x2n = xn and �1 (x1n) +
�2 (x2n) = �∗(xn).

If {x1n}n∈N has a cluster point, then there exists {nk} such that x1,nk → y1 and x2,nk → y2 as
k → ∞, where y1 + y2 = x0. Now, two cases arise.

Case 2.1 Suppose that x1,nk → y1+ and x2,nk → y2+ as k → ∞. In this case,

�∗(x0+) = lim
k→∞ �1

(
x1,nk

)+ �2
(
x2,nk

)
= �1 (y1+) + �2(y2+) = �1 (y1) + �2 (y2) ,

where the last equality follows from the right-continuity of �1 and �2. Moreover, from the def-
inition of �∗, we have �1 (y1) + �2 (y2) ≤ �∗(x0). Thus, �∗(x0+) ≤ �∗(x0). This contradicts
with �∗(x0) > �∗(x0+).

Case 2.2 Suppose that x1,nk → y1+ and x2,nk → y2− as k → ∞. In this case,

�∗(x0+) = lim
k→∞ �1

(
x1,nk

)+ �2
(
x2,nk

)
= �1 (y1+) + �2 (y2−) = �1 (y1) + �2 (y2−) ,

and �1 (y1) + �2 (y2−) ≤ �1 (y1) + �2 (y2) ≤ �∗(x0). Thus, �∗(x0+) ≤ �∗(x0). This is also
a contradiction.

If {x1n}n∈N does not have a cluster point, a similar argument to that of Part (1) yields the
desired result. �

Proof of Proposition 9. If �∗(x) < �∗(−∞), the desired result follows from Proposition 7.
Now assume that �∗(x) = �∗(−∞). Note that for any k ∈ [m],

�∗(x) ≥ �k

(
x −

∑
i �=k

yi

)
+

m∑
i �=k

�i(yi) ≥ �k(−∞) +
∑
i �=k

�i(+∞). (B.3)

By Proposition 6, it follows from (B.3) that there exists some k0 such that
�k0

(
x −∑

i �=k0
yi
)= �k0 (−∞), and the equality in (B.3) holds for k = k0. Therefore, �∗(x) =∑m

i=1 �i(xi) holds by choosing xk0 = x −∑
i �=k0

yi and xi = yi for i �= k0 with
∑m

i=1 xi = x. �
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Proof of Proposition 10. (1) Necessity. Since �∗ is constant, �∗(−∞) = �∗(+∞). By
Proposition 6, there exists k0 ∈ [m] such that

�∗(−∞) = 1 − �k0 (−∞) −
∑
j �=k0

�j(+∞), �∗(+∞) = 1 −
m∑

i=1

�i(+∞),

implying that �k0 (−∞) = �k0 (+∞), i.e. �k0 is constant.
Sufficiency. Suppose that �i0 ≡ c. By Proposition 6, we have �∗(+∞) = 1 − a +∑
j �=i0 �j(+∞). Also, �∗(−∞) ≥ 1 − a +∑

j �=i0 �j(+∞) = �∗(+∞). Therefore, �∗(x) ≡
1 − a +∑

j �=i0 �j(+∞) for all x ∈R.
(2) Since �∗ is constant, by part (1) there exists k0 such that �k0 is constant. Without loss

of generality, assume k0 = 1.
Sufficiency. Suppose that �i0 (y) > �i0 (+∞) for some i0 and all y ∈R. Then, for any

(x1, . . . , xm) ∈R
m with x =∑m

i=1 xi,
∑m

i=1 �i(xi) <
∑m

i=1 �i(+∞) = �∗(∞). Thus, �∗(x) =
�∗(+∞) >

∑m
i=1 �i(xi).

Necessity. Assume on the contrary that for all �i, there exists xi ∈R such that �i (xi) =
�i(+∞). Since �1 is constant, it follows that for any x ∈R,

�1

(
x −

m∑
i=2

xi

)
+

m∑
i=2

�i(xi) =
m∑

i=1

�i(+∞) = �∗(+∞) = �∗(x).

This contradicts with the assumption that �∗(x) >
∑m

i=1 �i(yi) with y1 = x −∑m
i=2 xi and yk =

xk for k ≥ 2. This proves the desired result. �

Appendix C. Proofs of results in Section 4

Proof of Lemma 4. If λi0 = 0 for some i0 ∈ [m], then VaR−
λi

(Y) = −∞ for Y ∈ L0. Thus,
the right-hand side (RHS) of (4.2) is

∑m
i=1 yi. Note that the left-hand side (LHS) of (4.2)

is larger than or equal to
∑m

i=1 yi and that the lower bound can be attained by choosing
Xi0 = X −∑

j �=i0 yj and Xj = yj for j �= i0. Thus, (4.2) holds for this special case. So we assume
that λi ∈ (0, 1] for i ∈ [m].

If �m
i=1VaR−

λi
(X) ≤∑m

i=1 yi, by cash invariance of VaR and Corollary 2 in [12], there exists

optimal allocation (X1, . . . , Xm) ∈Am for �m
i=1VaR−

λi
(X) such that VaR−

λi
(Xi) ≤ yi for i ∈ [m].

Thus,
∑m

i=1 VaR−
λi

(Xi) ∨ yi =∑m
i=1 yi, attaining the lower bound of LHS. So, (4.2) holds for

this case.
If �m

i=1VaR−
λi

(X) >
∑m

i=1 yi, also by cash invariance of VaR and Corollary 2 in [12], there

exists optimal allocation (X1, . . . , Xm) ∈Am for �m
i=1VaR−

λi
(X) such that VaR−

λi
(Xi) > yi for

i ∈ [m]. Thus, we have

m∑
i=1

VaR−
λi

(Xi) ∨ yi =
m∑

i=1

VaR−
λi

(Xi) = m
�

i=1
VaR−

λi
(X),

implying that

LHS ≤ m
�

i=1
VaR−

λi
(X). (C.1)
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Next, we show that the reverse inequality of (C.1) is also true. To this end, for any other
allocation (Y1, . . . , Ym) ∈Am(X), denote K = {k : VaR−

λk
(Yk) < yi, k ∈ [m]}. Then,

m∑
i=1

VaR−
λi

(Yi) ∨ yi =
∑
i∈K

yi +
∑

i∈[m]\K

VaR−
λi

(Yi)

≥
∑
i∈K

yi +
m
�

i=1
VaR−

λi
(X) −

∑
i∈K

VaR−
λi

(Yi) ≥ m
�

i=1
VaR−

λi
(X),

where the first inequality follows from the fact that
∑m

i=1 VaR−
λi

(Yi) ≥�m
i=1VaR−

λi
(X). Thus,

the reverse inequality of (C.1) holds. This completes the proof. �
Proof of Theorem 3. The proof is similar to those of Theorems 1 and 2. By Lemmas 2, 3

and 5, we have

m
�

i=1
VaRκi

�i
(X) = inf

(X1,...,Xm)∈Am(X)

m∑
i=1

VaRκi
�i

(Xi)

= inf
(X1,...,Xm)∈Am(X)

m∑
i=1

inf
yi∈R

{
VaRκi

�i(yi)
(Xi) ∨ yi

}
= inf

y1,...,ym∈R inf
(X1,...,Xm)∈Am(X)

{
m∑

i=1

VaRκi
�i(yi)

(Xi) ∨ yi

}

= inf
y1,...,ym∈R

{
m
�

i=1
VaRκi

�i(yi)
(X) ∨

m∑
i=1

yi

}

= inf
y1,...,ym∈R

{
VaR+

1−∑m
i=1 �i(yi)

(X) ∨
m∑

i=1

yi

}
(C.2)

= VaR+
�∗(X),

where (C.2) follows from from Theorem 1 of [21]. The rest of the proof is the same as that of
Theorem 2 and, hence, omitted. �

Proof of Theorem 11. (1) Suppose that �∗(−∞) < 0. Then, for any x < ess-inf(X), there
exists (x1, . . . , xm) ∈R

m such that
∑m

i=1 xi = x and
∑m

i=1 �i(xi) > 1. Let {A1, . . . , Am} be a
partition of �, satisfying

P(Ai) = �i(xi)∑m
j=1 �j(xj)

, i ∈ [m].

Define Xj = (X − x)1Aj + xj for j ∈ [m − 1], and Xm = X −∑m−1
j=1 Xj. Then P(Xi > xi) ≤

P(Ai) < �i(xi), implying VaR+
�i

(Xi) ≤ xi for i ∈ [m]. Thus,
∑m

i=1 VaR−
�i

(Xi) ≤∑m
i=1 xi = x.

This proves part (1) by letting x ↘ −∞.
(2) First, consider the case L =∅. For any x < ess-inf(X), we have �∗(x) > 1 or �∗(x) = 1.

If �∗(x) = 1, then x �∈ L and, hence, there exists (x1, . . . , xm) ∈R
m such that

∑m
i=1 xi = x and
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∑m
i=1 �i(xi) = 1. Therefore, we can always choose (x1, . . . , xm) ∈R

m such that
∑m

i=1 xi =
x and

∑m
i=1 �i(xi) ≥ 1 whenever �∗(x) > 1 or �∗(x) = 1. Construct (X1, . . . , Xm) as in

part (1). Then, P(Xj > xj) ≤ P(Aj) ≤ �j(xj) for j ∈ [m], implying VaR−
�j

(Xj) ≤ xj. Therefore,

�m
i=1VaR−

�i
(X) = −∞.

Next, consider L �=∅. Two subcases arise.
Subcase 1: Suppose sup L < ess-inf(X). By Lemma 6, we get �m

i=1VaR−
�i

(X) ≥ sup L.
For any x ∈ (sup L, ess-inf(X)), there exists (x1, . . . , xm) ∈R

m such that
∑m

i=1 xi = x and∑m
i=1 �i(xi) ≥ 1. Construct X ∈Am(X) as in part (1). Similarly, we have VaR−

�(Xj) ≤ xj for

j ∈ [m]. Thus,
∑m

i=1 VaR−
�i

(Xi) ≤ x, yielding �m
i=1VaR−

�i
(X) ≤ sup L by setting x ↘ sup L.

Therefore, �m
i=1VaR−

�i
(X) = sup L.

Subcase 2: Suppose sup L ≥ ess-inf(X). By part (1) of Lemma 6, we get that
�m

i=1VaR−
�i

(X) ≥ ess-inf(X). Also, by part (2) of Lemma 6, �m
i=1VaR−

�i
(X) ≤ ess-inf(X).

Thus,

m
�

i=1
VaR−

�i
(X) = ess-inf(X) = min {sup L, ess-inf(X)} .

This completes the proof of the proposition. �
Proof of Proposition 12. (1) The proof is similar to that of part (1) of Proposition 11.
(2) First, consider T =∅. Then, for any x < ess-inf (X), we have �∗(x) < 0. Thus, there

exists (x1, . . . , xm) ∈R
m such that x =∑m

i=1 xi and
∑m

i=1 �i(xi) > 1. Construct X as in the
proof of part (1) of Proposition 11. Then P(Xj > xj) ≤ P(Aj) < �j(xj) for j ∈ [m], implying
VaR+

�j
(Xj) ≤ xj. Therefore, �m

i=1VaR+
�i

(X) = −∞.
Next, consider T �=∅. Two subcases arise.
Subcase 1: Suppose sup T < ess-inf(X). For any x ∈ (sup T, ess-inf(X)), there exists

(x1, . . . , xm) ∈R
m such that

∑m
i=1 xi = x and

∑m
i=1 �i (xi) > 1. Construct X ∈Am(X) as in

part (1). Similarly, we have VaR+
�j

(Xj) ≤ xj for j ∈ [m]. Thus,
∑m

i=1 VaR+
�i

(Xi) ≤ x, yielding

�m
i=1VaR+

�i
(X) ≤ sup L by setting x ↘ sup T . On the other hand, by Lemma 7, for any x ∈ T ,

we have �m
i=1VaR+

�i
(X) ≥ x. Thus, �m

i=1VaR+
�i

(X) ≥ sup L. This proves part (2) in Subcase 1.
Subcase 2: Suppose sup T ≥ ess-inf(X). By part (1) of Lemma 7, we get that

�m
i=1VaR+

�i
(X) ≥ ess-inf(X). Also, by part (2) of Lemma 7, �m

i=1VaR+
�i

(X) ≤ ess-inf(X).

Thus, �m
i=1VaR−

�i
(X) = ess-inf(X) = min {sup T, ess-inf(X)}. This completes the proof of the

proposition. �
Proof of Proposition 13. The proof is similar to that of Proposition 12. �
Proof of Lemma 6. (1) Assume on the contrary that �m

i=1VaR−
�i

(X) < x0. Then there

exists (X1, . . . , Xm) ∈Am(X) such that
∑m

i=1 VaR−
�i

(Xi) < x0. Denote xi = VaR−
�i

(Xi) for

i ∈ [m]. Since �i is right-continuous, by Lemma 1 it follows that P(Xi > xi) ≤ �i(xi).
Thus,

∑m
i=1 P(Xi > xi) ≤∑m

i=1 �i(xi) ≤ �∗(x0) = 1. However, 1 = P(X ≥ x0) ≤∑m
i=1 P(Xi >

xi). This leads a contradiction.
(2) For any x > ess-inf(X), P(X > x) < 1. From the definition of �∗ and its monotonicity, it

follows that

�∗(x) = supy1+···+ym=x

m∑
i=1

�i(yi) ≥ �∗(−∞) ≥ 1,
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implying that there exists (x1, . . . , xm) ∈R
m such that

∑m
i=1 xi = x and

∑m
i=1 �i(xi) >

P(X > x). Let {A1, . . . , Am} be a partition of the set {X > x}, satisfying that

P(Ai) = P(X > x) · �i(xi)∑m
j=1 �j(xj)

, i ∈ [m],

and define Xm = X −∑m−1
j=1 Xj, where Xj = (X − x) 1Aj + xj for j ∈ [m − 1]. Obviously,

(X1, . . . , Xm) ∈Am(X) and P(Xi > xi) ≤ P(Ai) < �i(xi) for i ∈ [m], implying VaR−
�i

(Xi) ≤ xi

for i ∈ [m]. So we get
∑m

i=1 VaR−
�i

(Xi) ≤ x. The desired result now follows by setting x ↓
ess-inf(X). �

Proof of Lemma 7. (1) Assume on the contrary that �m
i=1VaR+

�i
(X) < x0. Then there exists

(X1, . . . , Xm) ∈Am(X) such that
∑m

i=1 VaR+
�i

(Xi) < x0. Denote xi = VaR+
�i

(Xi) for i ∈ [m], and

set ε = x0 −∑m
i=1 xi. Since �∗(x0) = 0, it follows that

∑m
i=1 �i(xi) ≤ 1. Since x1 + ε/2 +∑m

i=2 xi < x0, we have

�1

(
x1 + ε

2

)
+

m∑
i=2

�i(xi) ≤ �∗(x0) = 1.

By Lemma 1 and right-continuity of �i, it follows that P(Xi > xi) ≤ �i(xi) and P(X1 > x1 +
ε/2) < �1(x1 + ε/2). Thus,

1 = P

(
X >

m∑
i=1

xi + ε

2

)
≤ P

(
X1 > x1 + ε

2

)
+

m∑
i=2

P(Xi > xi)

< �1

(
x1 + ε

2

)
+

m∑
i=2

�i(xi) ≤ 1,

which is a contradiction. This proves part (1).
(2) The proof is the same as that of part (2) of Lemma 6. �

Appendix D. Proofs of results in Section 5

Proof of Theorem 6. Eq. (5.10) follows from Theorem 2. We focus on constructing its
optimal and asymptotically optimal allocations according to different situations.

(1) Suppose that P(X > x0) < �∗(x0). Let X ∈Am(X) be constructed as in the proof of
Theorem 4. It is easy to see that P(Xj > xj) < �j(xj), implying VaR+

�j
(Xj) ≤ xj for j ∈ [m]. By

(2.6) in Lemma 1, we have

P(Xj < xj) ≤ P(X < x0) ≤ �(x0−) ≤ �j(xj−),

implying VaR+
�j

(Xj) ≥ xj for j ∈ [m], where the last inequality follows from the fact that �(y) ≤
�j(y) for any y ∈R. Thus, VaR+

�j
(Xj) = xj for j ∈ [m], i.e. X is an optimal allocation of X.

(2) Suppose that P(X > x0) = �∗(x0), and P(X > x0 + ε) < P(X > x0) for any ε > 0. Let
{Bn}n∈N be a partition of {X > x0}, defined by B1 = {X > x0 + 1} and

Bn =
{

x0 + 1

n
< X ≤ x0 + 1

n − 1

}
, n ≥ 2.
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For k ≥ 1, let {Bk1, . . . , Bkm} be a partition of Bk, satisfying

P(Bkj) = P(Bk) · �j(xj)∑m
i=1 �i(xi)

, j ∈ [m].

Denote Cj =⋃
k≥1 Bkj for j ∈ [m]. Thus, {C1, . . . , Cm} constitutes a partition of {X > x0}.

Construct an allocation of X as follows:

Xi = xi + (X − x0) 1Ci , i ∈ [m − 1]; Xm = X −
m−1∑
j=1

Xj. (D.1)

Note that P(Xj > xj) = P(Cj) = �j(xj) for j ∈ [m] and that P(Xj > xj + ε) < P(Cj) = �j(xj) for
any ε > 0. Thus, VaR+

�j
(Xj) = xj for j ∈ [m]. This proves part (2).

(3) First, suppose that �j
(
xj + ε

)
< �j

(
xj
)

for any ε > 0. Let X ∈Am(X) be defined as in
(D.1). Then P(Xj > xj) = �j(xj) < �j(xj + ε), implying VaR+

�j
(Xj) = xj for j ∈ [m]. Thus, X is

an optimal allocation of X.
Next, consider the second half of part (3). We prove that no optimal allocation exists

by contradiction. Assume on the contrary that there exists an optimal allocation X ∈Am(X).
Denote yj = VaR+

�j
(Xj) for j ∈ [m], satisfying

∑m
i=1 yi = x0. By the assumption of part (3),

there exists k, say, k = 1, such that �k (yk) = �k (yk + τ0). Denote ε1 = min {ε0, τ0} /2. Then
P(X1 > y1 + ε1) < �1(y1 + ε1) = �1(y1), and P(Xk > yk) ≤ �k(yk) for k ≥ 2. Hence,

P(X > x0) = P(X > x0 + ε1) ≤ P(X1 > y1 + ε1) +
m∑

i=2

P(Xi > yi)

<

m∑
i=1

�i(yi) = �∗(x0),

which contradicts with the assumption P(X > x0) = �∗(x0).
Let (X1n, . . . , Xmn) ∈Am(X) be as defined by (5.8). By a similar argument to that of part (2)

in Theorem 5, we have

P

(
X1n > x1n − 1

n

)
< �1(x1n), P(Xkn > xkn) < �k(xkn), k ≥ 2,

implying that VaR+
�i

(Xin) ≤ xin for i ∈ [m]. Hence,
∑m

i=1 VaR+
�i

(Xin) ≤∑m
i=1 xin = x0 + 1/n.

By Theorem 2, the desired statement follows by letting n → +∞. �
Proof of Theorem 7. (1) Suppose that P(X > x0) < �∗(x0). In this case, there exists

(x1, . . . , xm) ∈R
m such that x0 =∑m

i=1 xi and
∑m

i=1 �i(xi) ∈ (P(X > x0), �∗(x0)
)
. Let X ∈

A(X) be as defined by (5.2). Then P(Xj > xj) = P(Cj) < �j(xj), implying that VaR+
�j

(Xj) ≤ xj

for j ∈ [m] and

m
�

i=1
VaR+

�i
(X) ≤

m∑
i=1

VaR+
�i

(Xi) ≤
m∑

i=1

xi = x0.

In view of Theorem 2, we conclude that X is an optimal allocation of X with VaR+
�j

(Xj) = xj

for j ∈ [m].
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(2) First, we show that no optimal allocation exists by contradiction. Assume on the con-
trary that there exists an optimal allocation X ∈Am(X). Denote xj = VaR+

�j
(Xj) for j ∈ [m].

Then
∑m

i=1 xi = x0 and �∗(x0) = P(X > x0) ≤∑m
i=1 P(Xi > xi) ≤∑m

i=1 �i(xi), However, by
Proposition 7, it follows that

∑m
i=1 �i(xi) < �∗(x0), a contradiction.

Next, we turn to constructing a sequence of asymptotically optimal allocations. We consider
two subcases.

Subcase 1: Suppose that P(X > x0 + ε) < P(X > x0) for any ε > 0. Let (X1n, . . ., Xmn) ∈
Am(X) be defined by (5.6). Then

P

(
Xjn > xjn + 1

mn

)
< �j(xjn), j ∈ [m],

implying VaR+
�j

(Xjn) ≤ xjn + 1/ (mn) for j ∈ [m]. Thus,
∑m

i=1 VaR+
�i

(Xin) ≤∑m
i=1 xin + 1/n =

x0 + 1/n.
Subcase 2: Suppose that P(X > x0 + ε0) = P(X > x0) for some ε0 > 0. Then �∗ (x0 + ε) <

�∗(x0) for any ε > 0. Construct (X1n, . . . , Xmn) ∈Am(X) as in (5.8). Similarly, we have∑m
i=1 VaR+

�i
(Xi,n) ≤ x0 + 1/n.

By Theorem 2, the desired statement follows by letting n → +∞. �
Proof of Theorem 8. We prove only part (3); the proofs of parts (1) and (2) are the same as

those of Theorem 6. We consider two subcases.
Subcase 1: Suppose that �i (xi + ε) < �i (xi) for any ε > 0 and i ∈ K. Let (X1, . . . , Xm) ∈

Am(X) be defined by (D.1). Then, P(Xi > xi) = �i(xi) < �i(xi + ε) for i ∈ K, and P(Xi > xi) =
�i(xi) for i /∈ K. Thus, VaR

κj
�j

(Xj) ≤ xj for all j ∈ [m], implying
∑m

i=1 VaRκi
�i

(Xi) = VaR+
�∗ (X).

Subcase 2: Suppose that for any (y1, . . . , ym) ∈R
m satisfying

∑m
i=1 yi = x0 and∑m

i=1 �i(yi) = �∗(x0), there always exists some τ0 > 0 such that �k (yk) = �k (yk + τ0) for
some k ∈ [m]. By a similar argument to that in the proof of Theorem 6 (3), we can construct a
sequence of allocations (X1n, . . . , Xmn) ∈Am(X), satisfying

∑m
i=1 VaRκi

�i
(Xin) → x0. �

Proof of Theorem 9. The proof is similar to that of Theorem 7. �
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