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ABSTRACT

The aim of the paper is twofold. Firstly, to analyze the historical data of the
earthquakes in the boarder area of Greece and then to produce a reliable model
for the risk dynamics of the magnitude of the earthquakes, using advanced
techniques from the Extreme Value Theory. Secondly, to discuss briefly the
relevant theory of incomplete markets and price earthquake catastrophe bonds,
combining the model found for the earthquake risk and an appropriate model
for the interest rate dynamics in an incomplete market framework. The paper
ends by providing some numerical results using Monte Carlo simulation tech-
niques and stochastic iterative equations.
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1. INTRODUCTION

Catastrophe risks are related to extreme events which have low-probability
(which means that they can not be easily predicted) but relatively huge nega-
tive economic consequences. These severe undesirable economic characteristics
are normally found in natural disasters and have forced many insurers to find
an appropriate way to limit the respective amount of losses and transfer the
retained catastrophe risk.

In recent occurrences of the major catastrophic events in North America,
insurers and reinsurers have had the sufficient capital to meet successfully their
obligations, according to the Reinsurance Association of America (R.A.A.,
Nuter Fraklin, 2002). For instance, after hurricane Andew in 1992 with losses
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of $19.6 billion, the Northridge earthquake in 1994 with $14.9 billion (R.A.A.,
2002), the hurricanes Chares, Frances, Ivan and Jeanne in 2004 with $20 bil-
lion (United States General Accounting Office: G.A.O. 2005), the three largest
natural disasters on record in the U.S.A. before the recently hurricanes Katrina
and Rita in 2005 with $23 billion (G.A.O. 2006) which hit the south east coasts,
not one reinsurer went insolvent or failed to pay a claim as a result of an insol-
vency or financial distress. Moreover, the reinsurance industry succeeded to face
the largest insured loss ever happened (as a result of a man-made catastrophe)
of the September 11, 2001 terrorist attacks. For the last event, the insured losses
amounted approximately to $60 billion (R.A.A., 2002), with the reinsurance
industry paying the 65% of that total.

Although traditional reinsurance providers have had the sufficient capital
to meet their obligations out of the extreme catastrophic events, the insurance
and reinsurance industry was constantly looking for alternative ways to spread
the risk. In 1992, a new financial invention described as: catastrophe risk secu-
ritization, established with the introduction of a series of index-linked catastro-
phe loss futures and options by the Chicago Board of Trade (C.B.O.T). Those
securities were a supplement to traditional reinsurance market mainly for:
i) high layer coverage, for very rare events where they provide some experi-
mental capacity on the fringe of the traditional market capacity and ii) where
direct indemnity for losses is less important to the ceding companies. The rel-
atively few securitizations actually put in effect in the last 5 years makes clear
that insurers view securitization as a supplement to reinsurance, and not as a
replacement (R.A.A., Nuter Fraklin, 2002).

Those option and future contracts were among the first attempts to mar-
ket natural disaster-related securities, supporting the traditional reinsurance.
They offered the advantage of standardization with low transaction costs
traded over an exchange. Particularly, the purchasers of a catastrophe risk
option pay to the sellers a premium, and the sellers provide the purchasers
with cash payment if an index measuring insurance industry catastrophe losses
exceeds a certain fixed level. So, while the catastrophe loss index remains below
a specified level for the prescribed time period, the option expires worthless, and
the sellers keep the premium. The option (and futures respectively) may have
been purchased by an insurance company which requires hedging its cata-
strophe risk and may have been sold by firms which outperform in the event
of a catastrophe – for example, construction companies – or by investors look-
ing for a chance to diversify outside of traditional securities markets, extensive
analysis provided by several papers, including D’Arcy & France (1992), Cum-
mins & Geman (1995) and O’Brien (1997). Although, catastrophe option (and
future) contracts were revised several times and covered exposures on national,
regional and state base, because of the low trading which raised questions
about liquidity, forced the C.B.O.T to cease them in 1999 and one year later,
in 2000, to delist them (GAO, 2002).

Other risk-linked securities, which were created and used in the mid-1990s
in the aftermath of the two largest natural disasters on record in the U.S.A.,
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FIGURE 1: Catastrophe Bond Amount Outstanding, Year-end 1997-2004.
(Source: GAO analysis of Swiss Re Capital Markets data).

were Catastrophe Bonds (CAT bonds), which is also named as an “Act of God
bond” or “insurance-linked bond”. According to Swiss Re Capital Markets data,
the value of outstanding CAT bonds increased substantially from 1997 through
2004 (figure 1) about 615%. However, the value of $4.3 billion was small com-
pared to industry catastrophe exposures. For instance, a 5 Saffir-Simpson scale
hurricane striking densely populated regions of Florida alone could cause
more than an estimated $50 billion in insured losses (GAO, 2005).
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Currently, most risk-linked securities are CAT bonds which contain brunches
that have received particular investment grade ratings. One characteristic exam-
ple of this kind is Swiss Re Mortality bond. Swiss Re set up a special bond,
dubbed Vita Capital Ltd., which issued $400 million in mortality-indexed notes.
The proceeds were placed in a collateral account and invested in high-quality
securities, which returns were swapped into a Libor-based return. The notes
are expected to mature on January 1, 2007, at par. However, if mortality in five
countries increases to pre-defined levels, investors of the notes may receive less
than par or even zero at maturity. Note holders will receive quarterly interest
payments of Libor plus 1.35% (annualized) in return for bearing extreme mor-
tality risk, see Beelders O. & Colarossi D. (2004). Figure 1 contains a graphical
description of the issuance structure.

Under the terms of non indemnity-based catastrophe bonds, for the spon-
soring insurance company to collect part or the investors’ entire principal when
the catastrophe occurs, an independent third party must confirm that the objec-
tive catastrophic event was met, such as an earthquake reaching i.e. 7.0 in local
magnitude as reported by the National Geological Survey. Moreover, the Bond
Market Association (B.M.A, 2002) commented that there are often compelling
reasons for sponsors of the risk-linked securities to use non indemnity-based
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FIGURE 2: The structure of the CAT bonds (Source: GAO).

structures. For instance, they can more effectively shield the confidentiality
of the sponsor’s underwriting criteria and provide for more streamlined deal
structuring and deal execution, as well. Moreover they may facilitate a more
rapid payout in response to triggering events.

In this paper we will use the special framework explained above to create
a CAT bond for the earthquakes placed in the Greek boarder area. Thus, the
creation of a CAT bond for Greece provides a secure mechanism for direct
transfer of major catastrophic earthquakes’ casualties to capital markets. This is
one way to debilitate the homeowners’ insurance market and keep earthquake
insurance available at affordable prices.

A brief outline of the paper follows. Section 2 provides a quick overview
of the theory for pricing catastrophe bonds, for incomplete markets and builds
two models: one-period and multi-period, for pricing process of CAT bonds.
Section 3 relies extensively on Extreme Value Theory. We calculate the distri-
bution function of the annual maximum magnitude of earthquakes in the
boarder area of Greece for the period 1966-2005. In section 4, we design a
special 5-year period CAT bond and obtain (using Monte Carlo simulation
techniques and Iterative Stochastic Equations) the appropriate price. The final
section 5 provides a general overview of the results and reveals other potential
directions for further research.

2. MODELING CATASTROPHE BONDS

2.1. Pricing Catastrophe Bonds and Incomplete Markets

There are several important articles that focus on the pricing of catastrophe-
linked securities. For instance, in the research work of Briys (1997) a simple
formula for non-indemnity insurance-linked bonds is derived in an arbitrage-free
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framework. Loubergé, Kellezi & Gilli (1999) provide a numerical estimation
of the pricing of CAT bonds under the assumptions that the catastrophe loss
follows a pure Poisson process, the loss severity is an independently identical
lognormal distribution, and the interest rate is driven by a binomial random
process. In the same way, Baryshnikov, Mayo and Taylor (2001) present an
arbitrage-free solution to the pricing of CAT bonds under the assumption of
(almost) continuous trading. They use the compound Poisson for underlying
the CAT bond and the pure Poisson point process both for the occurrence and
the economic effect of catastrophes. Lee and Yu (2002) develop a contingent
claim model to price a default-risky, catastrophe-linked bond. However, they
are primarily interested in analyzing default risk, and therefore, to specialize
their results to the case where CAT bonds are directly issued by insurers.
Recently, Vaugirard (2003, 2004) vindicate the existence of well-defined arbitrage
prices for CAT bonds, not withstanding a framework of incomplete markets and
non-traded underlying state variables. It is showed that their valuation comes
down to computing first-passage time distributions, since bondholders are
showed to be in a short position on one-touch digital options based on risk-
tracking indices that follow jump-diffusion processes in a Gaussian interest
rate framework.

Although, the general problem of pricing a security may be well manipu-
lated within the framework of a complete market using the no-arbitrage theory,
the payoffs from insurance-based securities, whose cash flows may depend on
earthquakes or other catastrophic events, can not be closely approximated by
an appropriate portfolio of the traditional assets that already traded in the mar-
ket such as stocks and corporate bonds, Cox & Pedersen (2000). Consequently,
the pricing of a CAT bond requires an incomplete market framework.

In the case of incomplete markets, there is no “universal” theory to date that
successfully addresses all aspects of pricing, such as specification of hedging
strategies and robustness of prices, Young V. (2004). For that reason, various
alternative pricing mechanisms have been developed that are tied to the specific
nature of each market.

Fortunately, the fact that catastrophe risk is uncorrelated with movements
in underlying economic variables renders the incomplete market theory some-
what simpler than the case of significant correlation, Cox & Pedersen (2000).
We use this approach and the theory of equilibrium pricing to develop a simple
one-period and one more complicated multi-period model for pricing cata-
strophe bonds.

Actually, the valuation is performed in two stages. The first stage with
respect to the estimation of risk dynamics is presented in section 3, i.e. the dis-
tribution function of the annual maximum earthquakes of the boarder area
of Greece. The statistical analysis of extremes is a key factor to many of the
risk management problems related to Insurance, Reinsurance and generally
speaking in Finance. In this paper we develop a model using the tools of
Extreme Value Theory. The second stage requires the selection or estimation
of the interest rate dynamics.
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2.2. One period (basic) Model

In this subsection we proceed with the construction of the simple one-period
model where the interest rate dynamics are restricted to constant values of dif-
ferent rates.

Firstly, we define the necessary symbols and the respective notation keeping
in mind the discrete framework of our analysis, i.e.

K : is the face amount of the CAT bond.
r : is the risk free rate continuously compounding (up to maturity date).
e : is the extra premium loading for bearing earthquake risk (Normally, this

is a positive quantity reflecting the respective risk aversion of the buyers
of such a security) 

R : is the basic element for the determination of the coupon payment rate for
the one year period as long as a specified catastrophic event does not occur.

M : is the maximum magnitude level of the earthquake in the boarder area
of Greece. M is a random variable following the distribution obtained in
Section 3 (see Table 2). Moreover, M is measured in local magnitude (LM)
scale.

P : is the price of the CAT bond
C : is the cash value of the CAT bond at the maturity date depending upon

the value of M according to the structure described in the following expres-
sion (2.2.1).
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(2.2.1)

Assuming that K, r, R and e are constants. And according to standard equiv-
alence principle the price of the CAT bond is obtained as

QP E e Cr e
1

$= - +]
`

g
j (2.2.2)

where Q1 is the probability measure corresponding to the distribution for M
obtained in next section (see Table 2). A numerical example is provided in sec-
tion 4.
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FIGURE 3: The diagram for the one period model.

2.3. Multi period (advanced) Model 

Now, we proceed with the formulation of the multi period model defining all
the necessary symbols and the respective notation, still keeping in mind the dis-
crete framework of our analysis, i.e.

K, r and e have the same meaning as in the one period model

T : is the maturity date of the CAT bond

in : is the annual rate of a typical bank deposit account return for the (n + 1)-th
year (i.e. in the interval [n, n + 1)). We assume that in is a log-normally dis-
tributed random variable (that assumption coincides with the practical
experience, see for further details: Kellison, 1991 and Baxter & Rennie, 1999)
with parameters m1 and s1

2 for any n = 1,2,3,… 

22m s s s1 1 1% & . %E i e Var i e e2 1 0 5n n
m1 2

1 2
1

2 2

= = = - =
+ +

^ ^ b ^h h l h

Thus, in : LogNormal (–3.94, 0.061) (2.3.1)

Rt: is the Euribor rate for 12 months lending at time t. Due to popularity we
assume that {Rt, t ∈ [0,T ]} is a stochastic process driven by a Geometrical
Brownian motion, see Baxter & Rennie (1999), Øksendal (2003), Romaniuk
(2003) and others, described by the following differential equation:

dRt = m2Rtdt + s2Rt dWt (2.3.2)

where m2, s2 > 0, are constants corresponding to the drift and the volatility
parameters and Wt is the standard arithmetic Brownian motion according
to a physical measure Q2. So,

t2expR R t Wm s s2
1

t o 2 2
2= - +cc m m (2.3.3)

R ( j ): is the j-th path (realization) of the Euribor rate {Rt, t ∈ [0,T ]} process.
Mn: is the annual maximum magnitude level of the earthquake in the boarder

area of Greece in the n-th year. The Mn’s are measured in local magnitude
(LM) scale and have the common distribution described in Section 3 (see
Table 2).
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FIGURE 4: The diagram for the cash-flow stream of the multi-period model.

M ( j): is the j-th path (realization) of the {Mn, n = 1,2,…} process for the annual
maximum magnitude of the earthquake.

P: is the price of the CAT bond based on earthquakes, at time 0.

f (Rl,Ml): is the cash value received by bondholder of the CAT bond at time
l = 1,2, ...,T (see Figure 4).
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P f (R1,M1) f (R2,M2) f (Rl,Ml) f (RT – 1, MT – 1) f (RT,MT)

0 1 2 … 1 … T – 1 T

Issue Date Maturity Date

It is obvious that a catastrophe might or might not occur prior to the sched-
uled maturity date, at time T. As we can see from the cash-flow stream to the
bondholders, in expression (2.3.6), the CAT bond with the face amount of
€K is scheduled to make coupons payments of €K · (3R), €K · (2R), €K ·R
at the end of each period if magnitude level of earthquake is between (0,5.4],
(5.4,5.8], (5.8,6.2], respectively or zero coupon payment if the magnitude of
the earthquake exceeds the level of 6.2. While the CAT bond is scheduled to
repay all, the two thirds, a third or nothing from the capital at maturity day
if the maximum magnitude level of earthquakes during that period, let us say
T-year time period, is between (0,6.6], (6.6,7.0], (7.0,7.4] and (7.4, ∞], respec-
tively.

Before we go further, we present some technical details in order to obtain
a concrete theoretical basis for our problem.

We model the financial market and consequently the process for the Euri-
bor rate Rt, t ∈ (0,T ) within a complete probability space (W2, F2, Q2) which is
equipped with the appropriate natural filtration.

The catastrophic risk is modeled via a discrete process {mn, n = 1,2, ...} for
the annual maximum magnitude level of the earthquake in the boarder area
of Greece within another complete probability space (W1,F1,Q1) also equipped
with the appropriate natural filtration.
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Hence, the probability space for the full model is the triple (W,F,Q), where:

• the sample space for our model is the following product: W = W1 ≈ W2. There-
fore, a typical element of the sample space for the full model is of the
form:

w = (w1, w2)  with  w1 ∈ W1, w2 ∈ W2

• the filtration for the product measure space is denoted by the rectangular:

F = F1 ≈ F2

• and the probability measure on the sample space W is given by the natural
product measure structure. Therefore, the probability of a generic state of
the world, w = (w1,w2), is 

Q (w) = Q1(w1) · Q2(w2)

This assumption implies the independence among the events depending only
on economic risk variables and those depending only on catastrophe risk vari-
ables. Hence, the time occurrence of the catastrophe is independent of the
term structure.

Now, according to equilibrium pricing theory we obtain the price P as

: ,P e f RQ
r e T

T l l
l

T

1
=

- +

=

E F MV!]
^

g
h( 2 (2.3.5)

where

, ,f R f R i iT l l l l l k
k

T l

0

1
$= + +

=

- -

F M MV %^ ^ ^h h h (2.3.6)

Assuming that expectation (2.3.5) exists, we can approximate the price of the
CAT bond as

limP P
m

m=
"3

] g (2.3.7)

where

i,P e m R M1m r e T
T l

j j

l

T

j

m

11
= - +

==

FV!!] ] ] ]
a

g g g g
k (2.3.8)

Therefore, the real price P at issue time may be calculated using Monte Carlo
methods, Boyle, Broadie & Glassermann (1997), Romaniuk (2003) and this
project is addressed to the section 4.

MODELING EARTHQUAKE RISK VIA EXTREME VALUE THEORY 171

9784-07_Astin37/1_09  31-05-2007  08:36  Pagina 171

https://doi.org/10.2143/AST.37.1.2020804 Published online by Cambridge University Press

https://doi.org/10.2143/AST.37.1.2020804


3. DISCUSSION OF THE GREEK EARTHQUAKE DATA

3.1. Extreme Value Theory and Modeling 

The model focuses on the statistical behavior of maxima.

Mn = max{X1n,X2n,…,Xmn} (3.1.1)

where X1n,X2n,…,Xmn, is the sequence of m = 365 independent random variables
having a common unknown distribution function (d.f.)F and measures the
magnitude of earthquakes during the 365 days of each year in the boarder area
of Greece for the period [n, n + 1). So the sequence of Mn represents the nth annual
maximum of the process over 40 years of observation (see Table 1).

In theory, the distribution of Mn can be derived exactly for all values of n:

Pr[Mn ≤ z ] = Pr[X1n ≤ z,…,Xmn ≤ z]

i

=
iid X

Pr[X1n ≤ z] · K · Pr[Xmn≤ z] = {F(z)}m (3.1.2)

However, this is not immediately helpful in practice, since the distribution func-
tion F is still unknown. There have been developed two well known statistical
methods to overcome this problem. The first standard technique estimates F
from the observed data, and then substitute this estimate into (3.1.2). As an
alternative approach, we accept that F is unknown and search for approximate
families of models for F m, which can be estimated on the basis of the extreme
data only. This is quite similar in practice with the approximation of the distri-
bution of sample mean by the Normal distribution, as justified by the Central
Limit Theorem (C.L.T.). So, the arguments are essentially an extreme value ana-
log of the C.L.T.

The entire range of possible limit distributions for the rescaled sample maxima

n
nM a

M b
n

n=
-* is provided by the well known following Theorem of Fisher –

Tippett, Gnedenko (Fisher & Tippett, 1928; Gnedenko, 1943; Embrechts, Klüp-
pelberg & Mikosch, 2003: Theorem 3.2.3 and Coles, 2004: Theorem 3.1).

Theorem 3.1.1 (Fisher – Tippett, Gnedenko)

If exist sequences of constants {an : an > 0 ∀ n ∈ �} and {bn}n ∈ ¥ such that:

n
n

nPr PrM z a
M b

z G z*

n
"# #=

-
^ h8 <B F as  n → ∞, z ∈ �

(where G is a non-degenerate distribution function) then G belongs to one of
the following families.

I. (Gumbel) G(z) = ,exp exp a
z b

- -
-

c m< F' 1 – ∞ < z < ∞
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II. (Fréchet)

,

, >exp
G z

z b

a
z b z b

0

g

#

=
- -

-
-^

c
h

m< F

Z

[

\

]]

]] * 4

III. (Weibull)
, <

,

exp
G z a

z b z b

z b1

g

#

=
- -

-

^
c

h
m< F

Z

[

\

]]

]]

* 4

for parameters a > 0, b and in the case of families II and III, g > 0. ¡

The unification of the previous three families of extreme value distribution
into a single family simplified a lot the statistical implementation. Through
the inference of a new parameter z, the data determine by themselves the most
appropriate type of tail behavior, so we avoid completely making a priori judg-
ment for the individual extreme value family. Moreover, uncertainty in the
inferred value of z succeeds in measuring the lack of certainty as to which of
the original three types is most appropriate for a given dataset. For convenience
we restate Theorem 3.1.1 in the following modified form.

Theorem 3.1.2 (Fisher – Tippett, Gnedenko)

If exist sequences of constants {an : an > 0 ∀ n ∈ �} and {bn}n ∈ ¥ such that:

n
nPr PrM z a

M b
z G z*

n

n
"# #=

-
^ h8 <B F as  n → ∞, z ∈ �

for a non-degenerate distribution function G, then G is a member of the Gener-
alized Extreme Value (GEV) family of distributions or von Mises type Extreme
Value distribution or the von Mises-Jenkinson type distribution.

expG z
z

z s
m

1
z
1

= - +
-

-

^ dh n< F* 4 (3.1.3)

defined on the set {z : 1 + z(z – m) / s > 0}, where the parameters satisfy –∞ <
m < ∞, s > 0, and –∞ < z < ∞. ¡

The model has three parameters: z is a shape parameter, m is a location para-
meter and s is scale parameter. The type II and type III classes of extreme value
distribution correspond respectively to the cases z > 0 and z < 0 in the para-
meterization. The subset of the GEV family with z = 0 is interpreted as the limit
of (3.1.3) as z → 0, leading to the Gumbel family.

We complete this subsection by explaining the estimation technique for the
parameters (z, s, m). There are many considerable techniques, as the graphical
techniques which are based on versions of probability plots, the moment-based
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techniques in which the parameters are estimated as specified functions of
order statistics and the classical likelihood based method. Each technique has its
particular characteristics, but the undisputable value and adaptability to more
complex model-building of the likelihood method makes it particular attractive.

The maximum likelihood estimation for the parameters (z, s, m) has been
studied by a number of authors including Jenkinson (1969), Prescott and
Walden (1980, 1983), Hosking (1985) and Macleod (1989). Moreover, it should
be mentioned that the regularity conditions are satisfied when z > –1/2 and in
this case the asymptotic variances and covariances of the maximum likelihood
estimators are given by the elements of the Fisher inverse information matrix,
for further details see Kotz & Nadarajah (2002), Coles (2004). Fortunately, the
experience with real-world data, as the data from the annual maximum earth-
quakes of Greece analyzed in the next subsection, suggests the above condition
for z is almost always satisfied.

So, we assume that M1, …, Mn are independent variables having the GEV
distribution. Then, the log-likelihood for the GEV parameters is given by the
following expression (3.1.4) when z ! 0.
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provided that

i > ,
M

z s
m

1 0+
-

d n for i = 1,2, ...,n (3.1.5)

The expression (3.1.5) is very important because it provides a compact rela-
tionship for the three parameters. At least when one of the observed data falls
beyond an end-point of the distribution, the likelihood is zero and conse-
quently the log-likelihood equals to –∞.

The maximization of equation (3.1.4) with respect to the parameter vector
(z, s, m) leads to the maximum likelihood estimate with respect to the entire
GEV family. There is no analytic solution, but for any given dataset the max-
imization is obtained straightforward by using standard numerical algorithms
(e.g. Newton-Raphson method), Coles (2004). From the programming point
of view, Hosking (1985) has provided a FORTRAN subroutine MLEGEV
that facilitates the calculation of the maximum likelihood estimates of the
parameter vector (z, s, m) and the variance-covariance matrix of the estimated
parameters. McNeil (1997, 2001) has created a library of S-PLUS functions
for implementing Extreme Value Theory (EVT) including subroutines for
GEV distributions with the code name EVIS, Version 4. Although, in the next
subsection 3.2 we use Coles (2004) GEV.FIT function for finding maximum
likelihood estimators of the GEV model.
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FIGURE 5: Scatter Plot of the Annual maximum magnitude Earthquakes of Greece.

3.2. Data Analysis

This analysis is based on the series of annual maximum magnitude of the
earthquakes in the boarder area of Greece, over the period 1966-2005 as
described in the following Table 1, and the presentation of the elements based
on Coles (2004). From Figure 5, it seems reasonable to assume that the pattern
of variation has stayed constant over the observation period, so we model the
data as independent observations from the GEV distribution.
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TABLE 1

ANNUAL MAXIMUM EARTHQUAKES IN THE BOARDER AREA OF GREECE

1966 5.1 1976 5.7 1986 5.5 1996 5.9
1967 6.3 1977 6.1 1987 5.4 1997 6.1
1968 6.7 1978 6.1 1988 5.5 1998 5.5
1969 6.3 1979 5.5 1989 5.4 1999 5.9
1970 5.4 1980 6.3 1990 5.5 2000 6.4
1971 5.1 1981 6.3 1991 5.3 2001 5.3
1972 6.0 1982 6.3 1992 5.8 2002 6.1
1973 5.5 1983 6.6 1993 5.4 2003 5.9
1974 5.5 1984 5.9 1994 5.9 2004 6.0
1975 5.6 1985 5.3 1995 6.1 2005 5.7

A Revised Catalogue of Earthquakes in the Boarder Area of Greece for
the Period 1966-2000 & Site Data from the Institute of Geodynamics,
National Observatory of Athens (IG-NOA) for the Period 2001-2005.
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FIGURE 6: Profile log-likelihood for z for the Annual Maximum Earthquakes of Greece.

Maximization of the GEV log-likelihood for these data leads to the following
estimate:

(z, s, m ) = (–0.1977803, 0.3656859, 5.6708431) (3.2.1)

for which the log-likelihood is 18.75536. The approximate variance-covariance
matrix of the parameter estimates is

.
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(3.2.2)

The diagonals of the variance-covariance matrix correspond to the variances
of the individual parameters of (z, s, m). Computing square roots, the standard
errors are 0.1493686, 0.05038415 and 0.06735417 for z, s and m respectively.
Combining estimates and standard errors, approximate 95 % confidence inter-
vals for each parameter are [– 0.50, 0.10] for z, [0.07, 0.27] for s and [5.57, 5.77]
for m. In particular, although the maximum log-likelihood estimate for z is
negative, corresponding to a bounded distribution, the 95% confidence inter-
val extends well above zero, so that the strength of evidence from the data for
a bounded distribution is not strong. Greater accuracy of confidence intervals
can usually be achieved by the use of profile likelihood. Figure 6 shows the
profile log-likelihood for z, from which a 95% confidence interval is obtained,
which is only slightly different to the earlier calculation.
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FIGURE 7: Diagnostic plots for GEV fit to the Annual Maximum Earthquakes of Greece.

The various diagnostic plots for assessing the accuracy of the GEV model
fitted to the Annual Maximum Earthquakes of Greece data are shown in
Figure 7. Neither the probability plot nor the quantile plot give cause to doubt
the validity of the fitted model: each set of plotted points is near-linear.
The return level curve converges asymptotically to a finite level as a conse-
quence of the negative estimate of z, though the estimate is close to zero and
the respective estimated curve is close to a straight line. The curve also provides
a satisfactory representation of the empirical estimates, especially once sampling
variability is taken into account. Finally, the corresponding density estimate
seems consistent with the histogram of the data. Consequently, all four diag-
nostic plots provide support to the fitted GEV model.
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Moreover, a further graphical tool which is the plot of the sample mean excess
function, see Figure 8, provides an important sign of the tail behavior of the
distribution, as it is explained in Beirlant, Teugels & Vynckier (1996), Embrechts,
Klüppelberg & Mikosch (2003) and others. It is a plot of this kind: {(u, en(u),
M(1) < u < M(n))}, where M(1) and M(n) are the first and the n-th order statistics
and en(u) is the sample mean excess function defined as:
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FIGURE 8: A sample mean excess plot of the Annual Maximum Earthquakes of Greece.

The sample mean excess function en(u) is an empirical estimate of the mean
excess function which is defined as en(u) = E [X – u | X > u ]. The mean excess
function describes the estimated overshoot of a threshold given the exceedance
occurs. If the points show an upward trend, then this is a clear sign of heavier
tail behavior. Exponentially distributed data would give an approximately hor-
izontal line and data from a short tailed distribution would show a downward
trend. In particularly, as we can observe from Figure 6 the downward trend gives
a strong evidence for a very short tail behavior for the Annual Maximum Earth-
quakes of the boarder area of Greece.
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Finally, we determine the type of the limiting distribution for Annual Maximum
Earthquakes of Greece, which is a type of Weibull (more precisely G is called
a standard extreme value distribution and have no similarity with the standard
distribution Weibull whose extremal behavior is completely different, see more
details in Embrechts, Klüppelberg & Mikosch, 2003) and it is concentrated on
(–∞, 0): This type has the following form

expG z
z

z s
m

1
z
1

= - +
-

-

^ dh n< F* 4 (3.2.4)

where parameters are (z, s, m ) = (–0.1977803, 0.3656859, 5.6708431).

Moreover, we notice that the extreme value distribution function is continuous
on �, hence cn

–1(Mn – dn) "
d G is equivalent to 
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lim
n "3

P(Mn ≤ cnz + dn) = lim
n "3

{F (cnz + dn)}n = G(z), z ∈ � (3.2.5)

and according to the convergence of type theorem (Theorem A1.5 of Embrechts,
Klüppelberg & Mikosch, 2003; see their book for further details) it is ensured
that the limit law is uniquely determined up to any affine transformation.

In Table 2, we provide the exceedance probabilities intervals for the standard
extreme value distribution (3.2.4) 
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TABLE 2

EXCEEDANCE PROBABILITIES FOR THE MODEL

P(5.0<M<5.4) P(5.4<M<5.8) P(5.8<M<6.2) P(6.2<M<6.6) P(6.6<M<7.0) P(7.0<M<7.4) P(M>7.4)

0.1358699 0.3639984 0.3338672 0.1373934 0.0272371 0.001633007 9.79 10–7

4. NUMERICAL EXAMPLE AND SIMULATION

4.1. Numerical Example for the one-period model

Assuming the one period model and defining the variables K = 1,000€, r = 2.10%,
as for the one year Greek government bond (Bank of Greece, June 2005), R =
2.08% and e = 5%, we obtain according to expression (2.3.2) the price P = 952.5€.

4.2. Simulation and Pricing for the multi-period model 

As a practical case study we describe a 5-year period CAT bond with payments
depending on the magnitude of earthquakes in the boarder area of Greece as
it has been described extensively in sections 2 and 3.

We build our simulation using the following five steps.

STEP 1
Firstly, we generate 50,000 sequences of five arithmetic values from the GEV
distribution representing the maximum magnitude of the earthquake for the
5-year period up to the maturity date. This is relatively easily to do because we
can invert the cumulative distribution function:

expG z
z

z s
m

1
z
1

= - +
-

-

^ dh n< F* 4 (4.2.1)

with parameters (z, s, m ) = (–0.1977803, 0.3656859, 5.6708431).
Thus, we receive the expression:

z-
logz G zm s 1= + - - ^^` hh j9 C (4.2.2)
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The number G (z) ∈ [0,1] can be generated by the uniform (pseudo) random
number generator, see for further details: Bratley, Fox & Schrage (1987), Banks,
Carson, Nelson & Nicol (2001).

STEP 2
Secondly, using Monte Carlo simulations, we obtain 50,000 different paths
for the Euribor rate Rt, t ∈ [0,5]. To implement geometric Brownian motion and
model its movements, we use, in our simulation, the methodology based on
Iterative Stochastic Equations (ISE). This method uses the concept of local
characterizations for the Levy processes. A short description of this approach
is provided below while for further details see Romaniuk M. (2003).

Let [0,T ] denotes the life time interval for the CAT bond. We discretize [0,T ]
into a set of time moments t = {t0 = 0, t1, ..., tn = T}, where n is the number
of steps. We assume that distances between points in the set t are constant,
in our simulation we take the step equal to one day, Dt = ti +1 – ti = const for i
= 1,2, ..., n – 1.

Now after the discretization, equation (2.3.3) may be replaced by the fol-
lowing iterative scheme

expR R t tm s s eD D2
1

t t i1 2 2
2

2= - ++ cc m m (4.2.3)

where e0, e1, …, en are independent, identically distributed random variables
from N(0,1) distribution. This sequential form (4.2.3) is called an Euler scheme.
The numbers e0, e1, …, en can be generated by the normal (pseudo) random
number generator, see also: Bratley, Fox & Schrage (1987), Banks, Carson,
Nelson & Nicol (2001). The Statistical Toolbox of MatLab simplified our tar-
get, as there is a generator for random numbers of the typical Normal distrib-
ution. Therefore, the statistical analysis of the Euribor historical data from 1999
until June 2005 gave us the following estimates for the parameters: m2 = 0.032
or 3.2% and s2 = 0.01. For the initial value R0 of the equation (4.2.3), we assume
Ro = 0.02082 or 2.082% which refers to the actual value in June 2005 for the
Euribor rate.

STEP 3
The third important step is the generation of sequences for the annual rate of
a typical bank deposit account. Recall that, we have assumed that in is a log-
normally distributed random variable with parameters m1 and s1

2 for any n =
1,2,3,…, i.e. in : LogNormal (–3.94, 0.061). The sequences are also obtained
using the respective generator found in the Statistical Toolbox of MatLab.

STEP 4
The fourth step is the calculation of the payments (cash-flow stream) of the CAT
bond for the five year period for all the 50,000 simulation. It can be easily con-
cluded that this procedure is quite complex and requires logical functions and
many subroutines. It should be mentioned that a catastrophic event may diminish
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our capital if and only if the maximum magnitude level of the sequence of
5 earthquakes is above 6.6. Looking carefully in Table 2, the possibility of
losing capital is below 3%. That means, we have a 97% Capital guarantee CAT
bond which makes it quite attractive for conservative investors. Moreover,
we assume a value for the face amount €K = 1,000 and a certain value risk
premium e = 0.050 or 5%. While, the risk free rate continuously compounding
(up to maturity date) is r = 0.027 or 2.7% as for the five year Greek government
bond (Bank of Greece, June 2005).

STEP 5
The last step is the calculation of future values at time T = 5 according to equa-
tions (2.3.5) and (2.3.6) and then averaging over all the discounted values, we
obtain the price of the CAT bond approximately equal to € 786.5.

5. CONCLUSION

In this paper, we have tried to provide a short but comprehensive technical
review for the design and implementation of risk-linked securities and especially
the CAT bonds. That may be very useful for insurance practitioners and experts
from the finance industry and the governmental authorities worldwide who
realize that the CAT bonds demonstrate an innovative solution for improving
the diversification of several different insurance risks.

Moreover, we have developed a practical example for covering earthquake
risk in the boarder area of Greece estimating the respective probabilities using
the tools of Extreme Value Theory. The proposed security has a non-indem-
nity-linked structure. It cancels the annual coupon payments or/and reduces
the capital repayment at the maturity date whenever the triggering variable
(i.e. the magnitude of the earthquake) raises beyond certain levels of the local
magnitude scale.

Having estimated a Weibull type distribution for the risk dynamics of the
magnitude of the earthquake and adapting, (for easiness of use) the Geometric
Brownian motion for the risk dynamics of the Euribor rate (which determines
the respective coupon payments), a certain price for the catastrophe bond is
obtained. It is profound that the CAT bonds’ price is more attracted to single
investors, because of the higher yields. The investor of such bonds should not
overlook the duration which is larger than the duration of similar straight
bonds, as a consequence of the existence of the extra premium rate for bear-
ing earthquake risk. Thus, the CAT bonds are more sensitive to movements in
interest rates. Additionally, an intensive positive correlation between the CAT
bonds’ rate and the financial market returns is enhanced by the existence of this
extra premium risk rate.

Further research is directed to the more complex problem of pricing an
indemnity-linked security. Under that structure, coupon or capital payments
are related with the level of the actual insured losses. The modeling of this
problem should be developed in three stages by estimating:
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a) The distribution for the level of the magnitude of the earthquake.
b) A multivariate distribution for the basic characteristics of the respective earth-

quakes e.g. the location, depth, speed etc.
c) The distribution for the potential damages and losses after a certain type

of earthquake.
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