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Kinetic modelling of rarefied gas flows
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Two kinetic models are proposed for high-temperature rarefied (or non-equilibrium)
gas flows with internal degrees of freedom and radiation. One of the models uses the
Boltzmann collision operator to model the translational motion of gas molecules, which
has the ability to capture the influence of intermolecular potentials, while the other adopts
the relaxation time approximations, which has higher computational efficiency. In our
kinetic model equations, not only the transport coefficients such as the shear/bulk viscosity
and thermal conductivity but also their underlying relaxation processes are recovered.
The non-equilibrium dynamics of gas flow and radiation are tightly coupled, where
the transport properties of gas molecules and photons are correlatively dependent. The
proposed kinetic models are validated by the direct simulation Monte Carlo method in
several non-radiative rarefied gas flows (e.g. the normal shock wave, Fourier flow, Couette
flow and the creep flow driven by the Maxwell demon), and the experimental data of planar
heat transfer and normal shock waves in nitrogen. Then, the rarefied gas flows with strong
radiation are studied based on the kinetic models, not only in the above one-dimensional
gas flows, but also in the two-dimensional radiative hypersonic flow passing a cylinder.
The characteristics of heat transfer in the tightly coupled fields of gas and radiation
are systematically investigated, particularly the influence of the non-equilibrium photon
transport and their interactions with gas molecules are revealed. It is found that the
radiation makes a profound contribution to the total heat transfer in radiative hypersonic
flow at an intermediate photon Knudsen number.

Key words: rarefied gas flow

1. Introduction

The non-equilibrium dynamics of molecular (diatomic/polyatomic) gas is commonly
encountered in aerospace engineering. For example, at a high Mach number, the air
surrounding an aircraft decelerates and heats up rapidly after compression by shock
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waves, which causes a strong conversion from the translational energy into the internal
energy (i.e. rotational, vibrational and electronic energies). The temperature may reach
thousands of degrees Kelvin and leads to significant changes in the physical and chemical
properties of the gas (Ivano & Gimelshein 1998; Anderson 2019). Meanwhile, the thermal
radiation, which is induced by transitions between excited states of gas molecules, makes a
significant contribution to the overall heat load on hypersonic aircraft. For instance, in the
re-entry into Mars’ atmosphere, the shock layer radiation can constitute a larger portion
than convective heating in the stagnation region of spacecraft (Edquist et al. 2014), and the
order of magnitude analysis suggests that the absolute radiative power at the stagnation
point scales as the eighth power of entry velocity (da Silva & Beck 2011). Therefore,
accurate predictions of molecular gas flow and radiative energy transfer are essential
for developing thermal protection systems for aircraft entering planetary atmospheres.
Additionally, radiative gas dynamics also play an important role in the interpretation of
spectrometer measurements (Horvath et al. 2010) and technologies of gas dynamics lasers.

Under the assumption of thermodynamic equilibrium, the traditional Navier–Stokes–
Fourier equations with proper boundary conditions, involving velocity slip and
temperature jump, are used to predict the thermal environment and aerodynamic
characteristics of the aircraft in the near-continuum regime. The influence of internal
degrees of freedom (DoF) is taken into account by the variations of heat capacity and
transport properties of molecular gas (Malik & Anderson 1991). On the other hand, when
thermodynamic non-equilibrium occurs, gases with different temperatures associated with
various relaxation processes need to be considered. Several sets of Navier–Stokes-type
equations have been developed with multi-temperatures of different types of kinetic modes
(Taylor & Bitterman 1969; Lee 1984; Park 1985; Colonna et al. 2006; Bruno & Giovangigli
2011; Aoki et al. 2020), and applied in the simulations of thermal non-equilibrium gas
dynamics (Kustova et al. 2011; Armenise, Reynier & Kustova 2016). In addition, studies
of radiative gas flow are largely oriented towards hypersonic re-entry vehicles (Vincent
& Traugott 1971). Since the transport properties of gas molecules and photons depend on
each other, the fields of gas flow and radiation have to be determined self-consistently.
Conventionally, the coupling of gas dynamics and radiative heat transfer is achieved by
integrating the radiative heat transfer as a heat source into the total energy conservation
equation.

Because the macroscopic models are obtained at small Knudsen numbers from the
gas kinetic theory, they are only applicable in the near-continuum flow regime, where
the mean free path of gas molecules is much smaller than the characteristic flow length.
However, the gas could be in highly thermal non-equilibrium in many realistic situations,
such as the re-entry of aircraft into the atmosphere, where the gas flow changes from the
continuum to the free molecular regime. Therefore, the treatment based on gas kinetic
theory from a mesoscopic perspective is inevitable, as the molecular dynamics (MD)
simulation at the microscopic level is limited to small spatial and temporal domains.
The fundamental equation in gas kinetic theory is the Boltzmann equation, but it is only
rigorously established for monatomic gas. For the molecular gas, its internal DoF pose
difficulties in the kinetic modelling. The heuristic way to describe the molecular gas
dynamics in all flow regimes is using the Wang-Chang–Uhlenbeck (WCU, Wang-Chang
& Uhlenbeck 1951) equation, which treats the internal DoF quantum mechanically and
assigns each internal energy level an individual velocity distribution function. Besides,
a general framework for the kinetic modelling of molecular gases is proposed recently
based on a set of allowed internal states endowed with a suitable measure (Borsoni, Bisi &
Groppi 2022). However, the complexity and excessive computational burden prevent their
engineering applications.
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The direct simulation Monte Carlo (DSMC) method (Bird 1994) is prevailing in
simulating the rarefied gas dynamics. Although it is proven that DSMC is equivalent to
the Boltzmann equation for monatomic gas (Wagner 1992), there are some drawbacks
when it is applied to radiative molecular gas flows. First, the bulk viscosity and
the thermal conductivities cannot be recovered simultaneously. The reason lies in its
phenomenological collision model of Borgnakke & Larsen (1975), which realizes the
correct exchange rate between the translational and internal energies to exactly recover
the bulk viscosity (Haas et al. 1994; Gimelshein, Gimelshein & Lavin 2002); however,
it cannot guarantee that the thermal conductivity, or its translational and internal
components, is recovered at the same time (Wu et al. 2020; Li et al. 2021). Second,
the DSMC method has been coupled with the photon Monte Carlo method to simulate
radiative gas flow, by calculating the rates of radiative heating/cooling at each time step
(Sohn et al. 2012). Because of the high sensitivity of radiation rates on temperature,
however, the fluctuation of temperature sampled in simulation cells may lead to significant
instabilities (Prem et al. 2019). Third, DSMC is computationally costly in the simulation
of low-speed or low-Knudsen-number flows due to its intrinsic stochastic nature. For
instance, it has been found that the computational cost increases as Ma−2 (Ma is the
Mach number) when the flow speed is approaching zero (Hadjiconstantinou et al. 2003).
Therefore, the multiscale feature in non-equilibrium hypersonic flows passing spacecraft
makes the DSMC method time consuming and even intractable in some cases.

Alternatively, kinetic models are proposed to imitate as closely as possible the behaviour
of the WCU equation, and multiscale deterministic methods are developed to solve those
kinetic models. The Bhatnagar–Gross–Krook (BGK) type kinetic models (Bhatnagar,
Gross & Krook 1954; Holway 1966; Shakhov 1968a), which replace the Boltzmann
collision operator (BCO) with a single relaxation approximation, has achieved notable
success in the modelling of monatomic rarefied gas flows. These kinetic models have been
extended to model molecular gas by introducing additional internal energy variables in the
distribution function (Morse 1964; Rykov 1975; Andries et al. 2000; Rahimi & Struchtrup
2016; Tantos et al. 2016; Wang et al. 2017; Bernard, Iollo & Puppo 2019), as well as the gas
mixture of polyatomic molecules (Pirner 2018). Besides, the Fokker–Planck models have
been proposed (Gorji & Jenny 2013; Mathiaud & Mieussens 2020), which take advantage
of the continuous distribution functions in terms of stochastic velocity processes to speed
up the stochastic particle methods.

These models however do not reduce to the Boltzmann equation for monatomic
gases when the translational–internal energy exchange is absent. Therefore, these models
cannot distinguish the influence of different intermolecular potentials. For example, the
uncertainties caused by different intermolecular potentials have been demonstrated in
the calculation of the thermal creep slip on diffuse walls (Loyalka 1990), the thermal
creep and Poiseuille flow (Sharipov & Bertoldo 2009; Takata & Funagane 2011; Wu et
al. 2015a), the viscous slip of the Couette flow (Su et al. 2019), and the slip coefficient
and mass flow rate of thermal transpiration (Wang, Su & Wu 2020). On the other hand,
all these kinetic model equations concern only the transport coefficients, such as the
thermal conductivity and bulk viscosity, while their fundamental relaxation processes are
not captured, which are found to be important in rarefied molecular gas dynamics. For
example, the relaxation rates of heat flux can significantly affect the creep flow driven
by a molecular velocity-dependent external force (Li et al. 2021). Thus, it is necessary to
tackle the two difficulties when building a gas kinetic model for molecules with rational
and vibrational DoF.

Additionally, the kinetic model of molecular gas flow with radiative heat transfer is still
far from being well developed. Groppi & Spiga (1999) proposed a kinetic model with
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radiation transitions between energy levels by the absorption and emission of photons, as
an extension of the WCU equation with a radiative field. However, it is unlikely to be solved
practically due to its even much higher complexity than the WCU equation. Therefore, the
tractable kinetic model equation incorporating radiative heat transfer is highly desirable
and urgently needed.

Hence, the present work is dedicated to developing general kinetic models of
molecular gas in radiative rarefied flow, which include translational, rotational and discrete
vibrational modes with correct rates of relaxation processes. The rest of the paper is
organized as follows. In § 2 the kinetic models with both relaxation time approximation
(RTA) and BCO are proposed, and the transport coefficients and their intrinsic relation
to relaxation rates are discussed. In § 3 the kinetic models without a radiation field are
validated by DSMC in typical rarefied gas flows and experimental data of planar heat
transfer and normal shock waves. Then, in § 4 the influence of radiative heat transfer
is examined by solving the kinetic models. Furthermore, the kinetic models are applied
to solve hypersonic flow passing a cylinder where the radiative heat transfer becomes
essential in § 5. Finally, conclusions are presented in § 6.

2. Kinetic model

In gas kinetic theory the distribution function is used to describe the status of the
dilute gaseous system at the mesoscopic level. The evolution of the distribution function
of molecular gas is governed by the WCU equation, which is too complicated to be
applied to realistic problems. Therefore, kinetic models are urgently needed to simplify
the collision operator. A fundamental requirement in constructing a kinetic model is
that all the transport coefficients are consistent with those obtained from the Boltzmann
equation for monatomic gas or the WCU equation for molecular gas. In dilute gases, due
to the excitation of rotational and vibrational DoF in molecular gas, additional relaxation
processes occur between different types of energies, which lead to exclusively transport
coefficients in molecular gas such as the bulk viscosity and internal thermal conductivity.
The recovery of these transport coefficients in the kinetic model is crucial to accurately
describe rarefied gas dynamics. For instance, the modelling of the shock wave requires
correct bulk viscosity due to its high compressibility, while the modelling of thermal
transpiration requires the recovery of translational thermal conductivity, rather than the
total thermal conductivity (Mason 1963; Porodnov, Kulev & Tuchvetov 1978; Loyalka &
Storvick 1979; Wu et al. 2020; Li et al. 2021).

Well-known kinetic models are the stochastic (Borgnakke & Larsen 1975) model in
DSMC and the deterministic (Rykov 1975) and ellipsoidal-statistical (ES) BGK models
(Holway 1966; Andries et al. 2000), with the emphasis to recover the transport coefficients,
rather than the rates of the essential relaxation processes. To be specific, although the
total thermal conductivity can be recovered in the ES-BGK model, this model cannot give
correct translational and internal thermal conductivities, respectively; the Rykov model
can recover each component of the thermal conductivity, and therefore, has flexibility in
the simulation of thermal transpiration, but in the rarefied flow driven by the Maxwell
demon, the flow velocity and heat flux are incorrect (Li et al. 2021; Zeng, Li & Wu 2022).

When radiation is concerned, transitions between different energy states of a gas
molecule lead to the absorption and emission of photons, and therefore, the interactions
between gas and photons have to be taken into account. The kinetic equations of the gas
and photon are coupled with each other through gas–photon collision terms (Groppi &
Spiga 1999), which are related to the radiation intensity and photon absorptivity that
depends on the gas distribution function. Thus, simplifications of gas and photon kinetic
965 A13-4
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equations are required to reduce the complexity of collision terms, both analytically and
computationally.

We start from a generalized kinetic model based on each discrete vibrational energy
level, which includes not only the intermolecular collisions but also the interactions
between vibrational transition and radiation. By introducing the reduced velocity
distribution function and total radiative intensity, the evolution of the gas flow and radiative
fields is governed by four coupled equations, three for the distribution functions of gas and
one for photon intensity. Meanwhile, we modify the Rykov model to recover the correct
thermal relaxation rates and then give a kinetic model based on the RTA. Furthermore, by
adopting the BCO for elastic intermolecular collisions, the second kinetic model, which
can accurately distinguish the intermolecular potentials, is proposed.

2.1. Distribution functions and macroscopic quantities
Since the characteristic temperatures of the rotational modes of typical diatomic molecules
are less than 100 K (Bird 1994), the translational and rotational DoF can be regarded as
fully excited when the gas temperature is higher than 100 K. Therefore, it is a common
choice to use constant values of DoF for these modes. Since the gap between two
subsequent discrete levels is much lower for rotational energy than for vibrational energy,
the rotational energy of gas molecules takes continuous values approximately. However,
the vibrational DoF is temperature dependent, due to large energy gaps between discrete
vibrational energy levels (Bird 1994; Anderson 2019). Suppose there are N energy levels
allowed in the vibrational mode, then N distribution functions fi(t, x, v, Ir) are needed to
identify the states of molecular gas, where t is the time, x is the spatial coordinates, v
is the translational molecular velocity, Ir is the rotational energy and i = 0, 1, . . . , N − 1
indicates the vibrational level with sensible energy εi = ihν (the energy measured above
zero-point energy, h is the Planck number and ν is the vibrational frequency). Macroscopic
variables, such as the molecular number density n, flow velocity u, pressure tensor P,
temperatures Tt, Tr, Tv and heat fluxes qt, qr, qv , are obtained by taking the moments of
the distribution function and summing over all the N vibrational states,

(n, nu, P) =
N∑
i

∫ ∞

0

∫ ∞

−∞
(1, v, mcc)fi dv dIr,(

3
2

kBTt,
dr

2
kBTr,

dv(Tv)

2
kBTv

)
= 1

n

N∑
i

∫ ∞

0

∫ ∞

−∞

(
1
2

mc2, Ir, εi

)
fi dv dIr,

(qt, qr, qv) =
N∑
i

∫ ∞

0

∫ ∞

−∞
c
(

1
2

mc2, Ir, εi

)
fi dv dIr,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.1)

where the parentheses are used to collect the set of variables defined in an analogical way
and, thus, make the equations more compact; the subscripts t, r, v denote the translational,
rotational and vibrational components, respectively; c = v − u is the peculiar (thermal)
velocity, m is the molecular mass and kB is the Boltzmann constant; dr and dv(Tv) are the
rotational and vibrational number of DoF, respectively. Note that the quantum mechanics
must be applied for the vibration energy; thus, for a simple harmonic oscillator, the average
energy Ev in the case of the equilibrium Boltzmann distribution over the vibrational energy
levels can be calculated as (Bird 1994; Nagnibeda & Kustova 2009; Anderson 2019)

Ev = hν

exp [hν(kBTv)−1] − 1
. (2.2)
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The vibrational DoF dv is defined in the sense of an effective value such that dvkBTv/2 =
Ev . Then, dv is obtained as a temperature-dependent value,

dv(Tv) = 2Tref /Tv

exp(Tref /Tv) − 1
, (2.3)

where Tref is the characteristic temperature of the active vibrational mode defined in terms
of the oscillator frequency Tref = hν/kB. It shows that dv approaches 0 when Tv � Tref ,
while dv is around 1.54 when Tv = 2Tref .

We also define the temperature Ttr to be the equilibrium temperature between the
translational and rotational modes, Ttv to be the equilibrium temperature between the
translational and vibrational modes, and T to be the equilibrium temperature over all DoF,

Ttr = 3Tt + drTr

3 + dr
, Ttv = 3Tt + dv(Tv)Tv

3 + dv(Ttv)
, T = 3Tt + drTr + dv(Tv)Tv

3 + dr + dv(T)
, (2.4a–c)

and the corresponding pressures are ( pt, pr, pv, p, ptr, ptv) = nkB(Tt, Tr, Tv, T, Ttr, Ttv).

2.2. Generalized kinetic model with vibrational radiation transition
The distribution function fi(t, x, v, Ir) is changed due to the gas–gas interactions Jgas,
the gas–photon interactions Jphoton that exchanges energy between vibrational mode and
radiation field, and the streaming D. Ignoring the momentum exchange between gas and
photon (which is an acceptable approximation in most of the practical situations, since the
momentum exchange rate is proportional to the ratio of radiative heat flux to the speed
of light), the evolution of the distribution function under external body acceleration a is
governed by

∂fi
∂t

+ v · ∂fi
∂x

+ ∂(afi)
∂v︸ ︷︷ ︸

Dfi

= Jgas,i + Jphoton,i. (2.5)

The kinetic model of binary gas–gas collisions has been well established by the WCU
equation. When the rotational mode is treated by classical mechanics, it reads

Jgas,i =
∑
i′j′

∑
j

∫ ∞

−∞

∫
4π

(
gigj

gi′gj′
fi′ fj′ − fifj

)
|v − v∗|σ i′j′

ij dΩ dv∗, (2.6)

where v and v∗ are the pre-collision velocities of the two molecules with vibrational states
i and j, respectively, the superscript ′ indicates the state after collision; gi is the degeneracy
of the vibrational states i, σ i′j′

ij is the scattering cross-section and Ω is the solid angle. Since
the total energy is conserved during the collision, such a transition occurs only when

|v′ − v′
∗|2 = |v − v∗|2 + 4

m
(ei + ej − ei′ − ej′) > 0, (2.7)

where e is the total internal energy. When the collision is admissible, the molecular
velocity after the collision is

v′ = v + v∗
2

+ |v′ − v′∗|
2

Ω, v′
∗=

v + v∗
2

− |v′ − v′∗|
2

Ω. (2.8a,b)

Since each of the energy states i, j, i′, j′ has N possible choices, the computational cost will
be N4 times higher than that of the BCO, posing urgent needs to develop simplified gas
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kinetic models. Also, it should be noted that the collision is called elastic when |v′ − v′∗| =
|v − v∗| since the kinetic energy is conserved. Otherwise, it is inelastic.

Molecular bound-bound radiation occurs as a result of radiative transitions between
the quantized energy levels of gas molecules. These radiative events are determined by the
molecular structure itself, but are not associated directly with the intermolecular collisions.
For gas–photon interactions, the following three processes of vibrational energy transitions
that are related to the radiation are considered in the present work:

spontaneous emission: Mj → Mi + hνij,

stimulated emission: Mj + hνij → Mi + 2hνij,

absorption: Mi + hνij → Mj.

⎫⎪⎬⎪⎭ (2.9)

Here νij = (εj − εi)/h is the frequency of the photon absorbed or emitted during these
transitions; εj > εi are the corresponding energy of the vibrational energy levels i and
j of the molecule M. Since the photon frequencies have N(N − 1)/2 discretized values,
the radiation field is described by the same number of radiation intensity functions
IR
νij

(t, x, Ω), which measure the energy fluxes per unit solid angle of photons propagating
along the direction Ω with the frequency νij.

The transition changes the molecular population of the energy levels i and j. The rates of
change of distribution function fi during processes (2.9) can be calculated by the Einstein
coefficients, Aji, Bji, Bij for the spontaneous emission, stimulated emission and absorption,
which are denoted by the superscripts sp, st and ab, respectively,(

dfi
dt

)sp

j
=
∫

4π

Aji dΩfj,(
dfi
dt

)st

j
=
∫

4π

BjiIR
νij

dΩfj,(
dfi
dt

)ab

j
= −

∫
4π

BijIR
νij

dΩfi.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.10)

In the relativistic gas flow, the Doppler and aberration effects describe the shift of photon
frequency and the change of propagation direction, respectively, and have a magnitude
proportional to the ratio of flow velocity to the speed of light. When the non-relativistic
gas flow is considered, these effects can be ignored. Therefore, based on (2.10) the rates
of change of the distribution function fi due to all possible vibrational energy transitions,
which give the gas–photon interaction term Jphoton,i, yield (Groppi & Spiga 1999)

Jphoton,i =
∑
j>i

∫
4π

[Ajifj + (Bjifj − Bijfi)IR
νij

] dΩ

−
∑
j<i

∫
4π

[Aijfi + (Bijfi − Bjifj)IR
νji

] dΩ. (2.11)

Next, we consider the evolution of radiation intensity due to the interaction with gas
molecules JR

νij
. Ignoring the photon scattering (which is an accepted assumption when no

particles or droplets are considered in the gas flow, and the radiation occupies a spectral
range such that wavelengths are much larger compared with molecular size), the evolution
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of intensity IR
νij

is

1
cl

∂IR
νij

∂t
+ n ·

∂IR
νij

∂x
= JR

νij
, (2.12)

where cl is the speed of light and n is the unit vector of photon propagation direction. When
the radiation passes through the matter over distance cl dt, it is attenuated by a constant
fraction kνij , and it has a gain part jνij that does not depend on the photon intensity (Casto
2004). Therefore, the rate of change of intensity IR

νij
due to the gas–photon interaction can

be written as

1
cl

(
dIR

νij

dt

)loss

= −kνij I
R
νij

,

1
cl

(
dIR

νij

dt

)gain

= jνij .

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.13)

According to processes (2.9), the gain part comes from the spontaneous emission alone,
and the loss part is the difference between the absorption and stimulated emission, which
indicates the decay of radiation intensity caused by the gas–photon interactions during
propagation. Based on (2.10), the frequency-dependent absorptivity kνij and emissivity jνij

are determined by the Einstein coefficients as

kνij = hνij

(
Bij

∫ ∞

−∞
fi dv − Bji

∫ ∞

−∞
fj dv

)
, jνij = hνijAji

∫ ∞

−∞
fj dv. (2.14a,b)

Therefore, the rate of change of the photon intensity IR
νij

due to gas–photon interactions is

JR
νij

= jνij − kνij I
R
νij

. (2.15)

According to Kirchhoff’s law, the emissivity is related to the absorptivity as jνij =
BR

νij
(Tv)kνij , where the Planck function BR

νij
(T) is defined as

BR
νij

(T) =
2hν3

ij

c2
l

1
exp(hνij/kBT) − 1

. (2.16)

Then, the evolution of intensity due to the interaction with gas molecules is

1
cl

∂IR
νij

∂t
+ n ·

∂IR
νij

∂x
= kνij(B

R
νij

(Tv) − IR
νij

). (2.17)

The macroscopic radiative temperature TR and heat flux qR are defined as

(4σRT4
R, qR) =

∑
νij

∫
4π

IR
νij

(1, n) dΩ, (2.18)

where σR = 2π5k4
B/(15h3c2

l ) is the Stefan–Boltzmann constant. Since the energy exchange
between gas and photon is due to the radiation transition of vibrational energy, the radiative
temperature TR approaches vibrational temperature Tv at equilibrium state; hence, the
equilibrium temperature in Planck function in the photon kinetic equation (2.17) is Tv .
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Therefore, the governing equations of the rarefied molecular gas flow with radiation
consist of the N equations given by (2.5) of gas distribution functions with collision terms
(2.6) and (2.11), and N(N − 1)/2 equations given by (2.17) of radiative intensities. Then,
simplifications of collision terms will be introduced to develop tractable model equations.

2.3. Kinetic model with RTA

2.3.1. Modified Rykov model for gas–gas collisions
Here we build a kinetic model to simplify the WCU collision operator (2.6) for gas–gas
interactions based on the Rykov model, not only due to its greater freedom to reflect
the relaxation process of heat fluxes, but also due to its much reduced computational
complexity. In this model the elastic and inelastic collisions are considered separately
with different relaxation times, which can be adjusted to give a correct bulk viscosity.
Furthermore, the reference distribution functions to which the distribution function relaxes
contain the heat fluxes, so that the thermal conductivity can be recovered. Although the
Rykov model was initially proposed for diatomic gas without vibrational modes, it has
been extended to polyatomic gas (Wu et al. 2015b) and gases with vibrational modes
(Titarev & Frolova 2018).

However, to recover the correct thermal relaxation rates other than thermal
conductivities, the heat fluxes in the reference distribution functions in the original Rykov
model have to be adjusted. Thus, the modified Rykov model for gas–gas collisions with
discretized vibrational states becomes

Jgas,i = gt,i − fi
τ

+ gr,i − gt,i

Zrτ
+ gv,i − gt,i

Zvτ
, (2.19)

where Zr and Zv are the rotational and vibrational collision numbers, respectively.
The reference distribution functions gt,i, gr,i, gv,i are expanded about the equilibrium
distributions Et(T)Er(T)Ev,i(T) in a series of orthogonal polynomials of peculiar velocity
c, rotational energy Ir, vibrational energy εi and corresponding moments qt, qr, qv ,

gt,i = nEt(Tt)Er(Tr)Ev,i(Tv)

[
1 + 2mqt · c

15kBTtpt

(
mc2

2kBTt
− 5

2

)
+ 2mqr · c

drkBTtpr

(
Ir

kBTr
− dr

2

)
+ 2mqv · c

dv(Tv)kBTtpv

(
εi

kBTv

− dv(Tv)

2

)]
,

gr,i = nEt(Ttr)Er(Ttr)Ev,i(Tv)

[
1 + 2mq0 · c

15kBTtrptr

(
mc2

2kBTtr
− 5

2

)
+ 2mq1 · c

drkBTtrptr

(
Ir

kBTtr
− dr

2

)
+ 2mq2 · c

dv(Tv)kBTtrpv

(
εi

kBTv

− dv(Tv)

2

)]
,

gv,i = nEt(Ttv)Er(Tr)Ev,i(Ttv)

[
1 + 2mq0 · c

15kBTtvptv

(
mc2

2kBTtv
− 5

2

)
+ 2mq1 · c

drkBTtvpr

(
Ir

kBTr
− dr

2

)
+ 2mq2 · c

dv(Ttv)kBTtvptv

(
εi

kBTtv
− dv(Ttv)

2

)]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.20)

965 A13-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

40
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.400


Q. Li, J. Zeng, Z. Huang and L. Wu

with the equilibrium distribution functions,

Et(T) =
(

m
2πkBT

)3/2

exp
(

− mc2

2kBT

)
,

Er(T) = Idr/2−1
r

Γ (dr/2)(kBT)dr/2 exp
(

− Ir

kBT

)
,

Ev,i(T) = gi∑
j

gj exp
(

− εj

kBT

) exp
(

− εi

kBT

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.21)

where Γ is the gamma function, q0, q1 and q2 in (2.20) are linear combinations of
translational, rotational and vibrational heat fluxes, which will be designed to recover the
exact thermal relaxation rates.

2.3.2. Reduced distribution functions and radiative intensity
In practical numerical simulations it is almost impossible to solve N(N + 1)/2 equations
even with RTA, especially when the number of vibrational energy levels N considered
is large. However, the complexity arising from the discrete vibrational energy can be
eliminated with the reduced distribution technique (Chu 1965; Mathiaud & Mieussens
2020). Therefore, we eliminate the rotational energy variable Ir and vibrational energy
level index i by introducing the following reduced velocity distribution functions f0, f1, f2:

( f0, f1, f2) =
N∑
i

∫ ∞

0
(1, Ir, εi)fi(t, x, v, Ir) dIr. (2.22)

Similarly, the total radiative intensity IR will be solved instead of the frequency-dependent
ones, and the Planck function BR(T) summed over all frequencies are used,

IR =
∑
νij

IR
νij

,

BR(T) =
∑
νij

BR
νij

(T) = 1
π

σRT4.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.23)

Given the fact that the radiation transitions are not correlated with the translational
motion of the gas molecules, the governing equations (2.5) and (2.17) with modified Rykov
model (2.19) can be transferred to four coupled equations,

Df0 = g0t − f0
τ

+ g0r − g0t

Zrτ
+ g0v − g0t

Zvτ
,

Df1 = g1t − f1
τ

+ g1r − g1t

Zrτ
+ g1v − g1t

Zvτ
,

Df2 = g2t − f2
τ

+ g2r − g2t

Zrτ
+ g2v − g2t

Zvτ
− f0

n

∫
4π

(keBR(Tv) − kneIR) dΩ,

1
cl

∂IR

∂t
+ n · ∂IR

∂x
= keBR(Tv) − kneIR,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.24)
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Kinetic modelling of rarefied gas flows with radiation

with the reduced reference velocity distribution functions

g0t = nEt(Tt)

[
1 + 2mqt · c

15kBTtpt

(
mc2

2kBTt
− 5

2

)]
,

g0r = nEt(Ttr)

[
1 + 2mq0 · c

15kBTtrptr

(
mc2

2kBTtr
− 5

2

)]
,

g0v = nEt(Ttv)

[
1 + 2mq0 · c

15kBTtvptv

(
mc2

2kBTtv
− 5

2

)]
,

g1t = dr

2
kBTrg0t + mqr · c

kBTt
Et(Tt),

g1r = dr

2
kBTtrg0r + mq1 · c

kBTtr
Et(Ttr),

g1v = dr

2
kBTrg0v + mq1 · c

kBTtv
Et(Ttv),

g2t = dv(Tv)

2
kBTvg0t + mqv · c

kBTt
Et(Tt),

g2r = dv(Tv)

2
kBTvg0r + mq2 · c

kBTtr
Et(Ttr),

g2v = dv(Ttv)

2
kBTtvg0v + mq2 · c

kBTtv
Et(Ttv),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.25)

and the effective absorptivities

ke =

∑
νij

kνijB
R
νij

(Tv)

1
π

σRT4
v

,

kne =

∑
νij

kνijB
R
νij

(TR)

1
π

σRT4
R

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.26)

From (2.14a,b), it can be seen that the absorptivity kνij is proportional to the population of
molecules at vibrational energy levels i and j, which is determined by the number density
as well as the vibrational DoF of the gas. When the gray model of photons is adopted, the
absorptivity kνij = kgray is frequency independent, thus, both ke and kne reduce to kgray.

The macroscopic quantities of gas flow in (2.1) and the radiative field in (2.18) can be
calculated based on the reduced velocity distribution functions and intensity,

(n, nu, P) =
∫ ∞

−∞
(1, v, mcc)f0 dv,(

3
2

kBTt,
dr

2
kBTr,

dv(Tv)

2
kBTv

)
= 1

n

∫ ∞

−∞

(
1
2

mc2f0, f1, f2

)
dv,

(qt, qr, qv) =
∫ ∞

−∞
c
(

1
2

mc2f0, f1, f2

)
dv,

(4σRT4
R, qR) =

∫
4π

IR(1, n) dΩ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.27)

965 A13-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

40
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.400


Q. Li, J. Zeng, Z. Huang and L. Wu

2.4. Kinetic model with BCO
In the RTA operator (2.19) all molecules relax with the same speed, which is not
very physical, since in general molecules with larger peculiar velocity have larger
collision probability and, hence, smaller relaxation time; in fact, when (2.19) is used, the
temperature of the normal shock wave will be overpredicted in the upstream (Wu et al.
2015b). To circumvent this problem, by observing that the elastic collision term in the first
equation of (2.24) is just the Shakhov-type approximation of the BCO for monatomic gas
(Shakhov 1968a,b), we replace the elastic collision term (g0t − f0)/τ back with the BCO
in monatomic gas,

QB( f0) =
∫ ∞

−∞

∫
4π

B(cos θ, |v − v∗|)[ f0(v′
∗)f0(v

′) − f0(v∗)f0(v)] dΩ dv∗, (2.28)

so that the relaxation time depends on the molecular velocity through the collision kernel
B(cos θ, |v − v∗|) that is determined by the intermolecular potential. Note that in (2.28), θ
is the deflection angle of collision, v and v∗ are the pre-collision velocities of the two
molecules, while v′ and v′∗ are the corresponding post-collision velocities. When the
inverse power-law potential is considered, the collision kernel is modelled as (Wu et al.
2013; Wu, Reese & Zhang 2014)

B = 5
√

πmkBT0(4kBT0/m)(2ω−1)/2

64πμ(T0)Γ 2(9/4 − ω/2)
sin(1−2ω)/2

(
θ

2

)
cos(1−2ω)/2

(
θ

2

)
|v − v∗|2(1−ω),

(2.29)
where ω is the viscosity index in

μ(T) = μ(T0)

(
T
T0

)ω

. (2.30)

Meanwhile, g1t and g2t are modified correspondingly (Wu et al. 2015b), resulting in the
following kinetic model for molecular gas:

Df0 = QB( f0) + g0r − g0t

Zrτ
+ g0v − g0t

Zvτ
,

Df1 = g′
1t − f1

τ
+ g1r − g1t

Zrτ
+ g1v − g1t

Zvτ
,

Df2 = g′
2t − f2

τ
+ g2r − g2t

Zrτ
+ g2v − g2t

Zvτ
− f0

n

∫
4π

(keBR(Tv) − kneIR) dΩ,

1
cl

∂IR

∂t
+ n · ∂IR

∂x
= keBR(Tv) − kneIR.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.31)

Here

g′
1t = dr

2
kBTr[τQ( f0) + f0] + mqr · c

kBTt
Et(Tt),

g′
2t = dv(Tv)

2
kBTv[τQ( f0) + f0] + mqv · c

kBTt
Et(Tt).

⎫⎪⎪⎬⎪⎪⎭ (2.32)

The kinetic model with the BCO is able to distinguish the role of intermolecular
potentials (Sharipov & Bertoldo 2009; Takata & Funagane 2011; Wu et al. 2014, 2015a),
while the models based on the RTA do not have this capability, but keep the advantage of
computational efficiency. To be specific, the collision terms of RTA can be solved by the
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Kinetic modelling of rarefied gas flows with radiation

discrete velocity method with a computational cost of O(N3
v ), and the BCO can be solved

by the fast spectral method (Wu et al. 2013) with a cost of O(M2N3
v ln Nv), where Nv and

M2 are the number of grid points in one velocity direction and the solid angle, respectively;
both the computational costs are much smaller than solving the collision operator (2.6) in
the WCU equation.

2.5. Determination of parameters from relaxation properties
So far, the kinetic model equations with the RTA (2.24) and the BCO (2.31) have been
established, which contain the free parameters q0, q1, q2, Zr, Zv and τ . In addition to the
shear viscosity and translational heat conductivity in a monatomic gas, the molecular gas
possesses bulk viscosity and internal thermal conductivities. The essences of these new
transport coefficients are the relaxation of internal temperature and heat fluxes. Therefore,
the free parameters will be determined by the recovery of relaxation rates of shear stress,
energy, and heat fluxes, which correspond to the recovery of shear viscosity, bulk viscosity
and thermal conductivities of all modes, respectively.

We perform the Chapman–Enskog expansion and adjust the relevant relaxation
coefficients to recover the transport coefficients in the continuum flow regime, so that
the kinetic model and macroscopic fluid dynamics are consistent in this regime, which is
the basic requirement of kinetic modelling. In highly rarefied gas flows, the definitions of
transport coefficients lose validity, while the relaxation coefficients can still be determined
by involving the effect of non-equilibrium.

Since the Shakhov model and the Boltzmann equation for monatomic gas have the same
shear viscosity and translational thermal conductivity, it can be shown that the second
model (2.31) has the same transport coefficients as the first model (2.24). Therefore, for
the sake of simplicity, we use the first model with RTA to discuss the determination of free
parameters.

2.5.1. Relaxation of shear stress
Consider a spatial-homogeneous system without external acceleration. Multiplying the
first equation in (2.24) by mc2 and mcicj, and integrating them with respect to v, yields

∂pt

∂t
= ptr − pt

Zrτ
+ ptv − pt

Zvτ
,

∂pij

∂t
= ptδij − pij

τ
+ ptrδij − ptδij

Zrτ
+ ptvδij − ptδij

Zvτ
.

⎫⎪⎪⎬⎪⎪⎭ (2.33)

These two equations lead to the relaxation equation for the components of the
non-equilibrium stress tensor,

∂pij

∂t
= −1

τ
pij, (2.34)

which indicates the relaxation time of shear stress is the mean collision time due
to molecular translational motion. Therefore, the shear viscosity can be recovered by
adjusting the relaxation time τ as (see Appendix A)

μ = ptτ. (2.35)

The dependence of shear viscosity on mean molecular collision time in molecular gas is
the same as that in monatomic gas.
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2.5.2. Relaxation of energy
During the contraction or expansion of gas, the work done by pressure is converted to
translational energy immediately. However, in molecular gas the molecules exhibit internal
relaxation that exchanges the translational and internal energies in a finite time, which
gives rise to the resistance that opposes the volume change. This is the origin of bulk
viscosity in dilute gases.

The energy relaxation can be obtained by multiplying the first equation in (2.24) by
1
2 mc2 and integrating the first three equations with respect to v,

∂Tt

∂t
= Ttr − Tt

Zrτ
+ Ttv − Tt

Zvτ
,

∂Tr

∂t
= Ttr − Tr

Zrτ
,

∂(dv(Tv)Tv)

∂t
= dv(Ttv)Ttv − dv(Tv)Tv

Zvτ
− 2

nkB

∫
4π

(keBR(Tv) − kneIR) dΩ.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.36)

When the radiation is absent, (2.36) reduce to the Jeans–Landau–Teller equations for the
rotational and vibrational relaxation at the macroscopic level,

dTr

dt
= Tt − Tr

τr
,

dTv

dt
= Tt − Tv

τv

. (2.37a,b)

Given the rotational and vibrational collision times τr and τv , we define the rotational and
vibrational collision numbers as

Zr = 3τr

(3 + dr)τ
, Zv = 3τv

(3 + dv)τ
, (2.38a,b)

and find that the bulk viscosity can be derived based on the Chapman–Enskog expansion
(see Appendix A),

μb(Tt) = 2ptτ
(3 + dr)drZr + (3 + dv)dvZv

3(3 + dr + dv)2 . (2.39)

It is shown that the ratio μb/μ depends only on the numbers of internal DoF and the
corresponding collision numbers. Larger Zr or Zv makes the energy exchange between
translational and internal motions more difficult, thus leading to higher bulk viscosity.

During the radiation transitions of the vibrational mode, the energy exchange between
gas and photon alters the vibrational energy immediately, while the corresponding changes
in translational and rotational modes are delayed due to the finite time of internal energy
relaxation. Therefore, a new type of bulk viscosity arises, denoted as μR

b , which gives
the resistance of the translational–internal energy changes due to the vibrational radiation
transitions. Consider the energy conservation in the radiative gas,

nkB

2

(
3
∂Tt

∂t
+ dr

∂Tr

∂t
+ ∂(dv(Tv)Tv)

∂t

)
= −

∫
4π

(keBR(Tv) − kneIR) dΩ. (2.40)

When the deviations between equilibrium temperature T and Tt, Tr, Tv are small, the
higher-order terms of T − Tt can be ignored; thus, we have

pt − p = 2pv

3τv + dr(τv − τr)

(3 + dr + dv)2
1

Tv

∫
4π

(keBR(Tv) − kneIR) dΩ. (2.41)
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Kinetic modelling of rarefied gas flows with radiation

Then the bulk viscosity resisting the vibrational radiation transitions is obtained,

μR
b (Tv) = 2pvτ

(3 + dr)(3 + dv)Zv − (3 + dr)drZr

3(3 + dr + dv)2 . (2.42)

Clearly, both μb and μR
b are determined by the internal collision numbers Zr and Zv ,

which describe how rapidly the equipartition of kinetic energy among different modes
can be reached. Unlike shear viscosity, the determination of bulk viscosity has always
been a challenging task. Nevertheless, indirect techniques in the experiments, such
as the absorption and dispersion of sound waves (Graves & Argrow 1999), and the
Rayleigh–Brillouin scattering (Pan, Shneider & Miles 2005; Gu & Ubachs 2013), provide
ways to estimate the bulk viscosity. On the other hand, MD simulations are used to extract
the internal collision numbers and bulk viscosity. To be specific, the collision numbers can
be determined from the adiabatic/isothermal internal relaxation processes in homogeneous
MD systems (Valentini, Zhang & Schwartzentruber 2012), and the bulk viscosity can be
calculated through non-equilibrium MD simulations with the expansion or compression
processes (Sharma & Kumar 2019).

2.5.3. Relaxation of heat flux
The rotational and vibrational modes in molecular gas carry the thermal energy and
contribute also to the heat flux, while the conductance can be quite different from that of
the translational one. In the continuum flow limit the total thermal conductivity determines
the gas dynamics in addition to the viscosity and diffusivity. However, the thermal
conductivity of a single type mode may be important and even dominant when the gas
is in a non-equilibrium state. For example, the mass flow rate in thermal transpiration
is found to depend on the translational thermal conductivity of gas rather than the total
thermal conductivity (Mason 1963).

In the original Rykov model, the relaxation of translational heat flux is independent
of the rotational one, and vice versa. However, due to the energy exchange between
different modes, it is necessary to consider the fact that the relaxations of heat fluxes
are coupled within all the DoF. In general, according to the WCU equation, the relaxation
of translational, rotational and vibrational heat fluxes satisfies the following relation in a
spatially homogeneous system (Mason & Monchick 1962):⎡⎢⎣∂qt/∂t

∂qr/∂t
∂qv/∂t

⎤⎥⎦ = −pt

μ

⎡⎣Att Atr Atv
Art Arr Arv

Avt Avr Avv

⎤⎦
⎡⎢⎣qt

qr

qv

⎤⎥⎦ . (2.43)

Here the dimensionless relaxation rate A is a 3 × 3 matrix encapsulating the dimensionless
thermal relaxation rates. Accordingly, q0, q1, q2 in reference distributions (2.20) can be
determined in terms of qt, qr, qv and the thermal relaxation rates A. To be specific, the
first three equations in (2.24) are multiplied by 1

2 mc2c, c and c, respectively, and then are
integrated with respect to the molecular velocity v, yielding⎡⎣q0

q1
q2

⎤⎦ =
⎡⎣(2 − 3Att)Zint + 1 −3AtrZint −3AtvZint

−ArtZint −ArrZint + 1 −ArvZint
−AvtZint −AvrZint −AvvZint + 1

⎤⎦⎡⎣qt
qr
qv

⎤⎦ , (2.44)

where Zint = (1/Zr + 1/Zv)
−1.
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When the gas flow is stationary, the thermal relaxation rates are related to the
translational, rotational and vibrational thermal conductivities, κt, κr and κv , respectively
(see Appendix A), ⎡⎣κt

κr
κv

⎤⎦ = kBμ

2m

⎡⎣Att Atr Atv
Art Arr Arv
Avt Avr Avv

⎤⎦−1 ⎡⎣ 5
dr

dv(Tv)

⎤⎦ . (2.45)

It is shown that the presence of radiation transition does not affect thermal conductivities.
It will be convenient to use the following dimensionless (Eucken 1913) factor feu:

cvfeu ≡ κ

μ
= κt + κr + κv

μ
. (2.46)

Here κ is the total thermal conductivity and cv is the specific heat capacity at constant
volume. Similarly, ft, fr and fv represent the Eucken factors of the translational, rotational
and vibrational modes, respectively,

ft = 2
3

mκt

kBμ
, fr = 2

dr

mκr

kBμ
, fv = 2

dv

mκv

kBμ
. (2.47a–c)

Therefore, the Eucken factors are determined by the thermal relaxation rates as⎡⎣ ft
fr
fv

⎤⎦ =
⎡⎣3Att drAtr dv(Tv)Atv

3Art drArr dv(Tv)Arv

3Avt drAvr dv(Tv)Avv

⎤⎦−1 ⎡⎣ 5
dr

dv(Tv)

⎤⎦ . (2.48)

Clearly, the elements in matrix A cannot be fully determined even though all the Eucken
factors ft, fr, fv (thermal conductivities κt, κr, κv equivalently) are fixed. In other words, in
molecular gas, having all the transport coefficients is not enough to exactly describe the
relaxation of heat flux. Therefore, it is necessary to recover the thermal relaxation rates
in the kinetic model correctly. Nevertheless, since the rate of translation–vibration energy
exchange is usually much slower than that of translation–rotational energy exchange, the
values of Atv, Avt, Arv, Avr in matrix A are much smaller than the others and, thus, can be
approximated to be zero practically (Mason & Monchick 1962). While the off-diagonal
elements Atr, Art still have to be correctly recovered, which have been found to make
uncertainty in predicting macroscopic gas dynamics (Li et al. 2021). We propose the
method for extracting the thermal relaxation rates from MD simulations by monitoring
the evolution of heat fluxes, which are initially generated with prescribed values by
manipulating the velocities of all atoms in the systems (see the details in Appendix B).

2.6. The H theorem
With all the parameters determined by the relaxation properties, the entropy of both gas
molecules and photons can be evaluated. We define the functional H according to Groppi
& Spiga (1999),

H( fi, IR
νij

) =
N∑
i

∫ ∞

0

∫ ∞

−∞
ln( fi)fi dv dIr +

N∑
i,j

∫
4π

ln(IR′
νij

)IR′
νij

dΩ, (2.49)
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Kinetic modelling of rarefied gas flows with radiation

where IR′
νij

= BijIR
νij

/(Aji + BjiIR
νij

). Then, with the kinetic model equations, the change of
functional H can be obtained as

dH
dt

=
N∑
i

∫∫
ln( fi)Jgas,i dv dIr︸ ︷︷ ︸(dH

dt

)
1

+
N∑
i

∫∫
ln( fi)Jphoton,i dv dIr +

N∑
i,j

∫
4π

ln

(
BijIR

νij

Aji + BjiIR
νij

)
JR
νij

dΩ

︸ ︷︷ ︸(dH
dt

)
2

. (2.50)

The term (dH/dt)1 indicates the change of H due to the intermolecular interactions. It
should be noted that as long as the simplifications of the gas–gas collision operators are
adopted, the evolution of entropy governed by the model equations is no longer the same
as that of the WCU equation. As the extensions of the Shakhov model for monatomic gas
and the Rykov model for diatomic gas, our kinetic models share similar properties in the
evolution of entropy. In the literature, the Boltzmann H theorem for the Shakhov model
has been proved in the linearized system (Shakhov 1968b), while it has not been discussed
for the Rykov model. We explicitly evaluate (dH/dt)1 for the RTA collision operator in
a linearized molecular gas system that slightly deviates from an equilibrium state (see
Appendix C),

(
dH
dt

)
1

= − 4
τp2

0v
2
m

⎡⎢⎣Δqt

Δqr

Δqv

⎤⎥⎦
T ⎡⎢⎣ Att/5 Atr/5 Atv/5

Art/dr Arr/dr Arv/dr

Avt/dv Avr/dv Avv/dv

⎤⎥⎦
⎡⎢⎣Δqt

Δqr

Δqv

⎤⎥⎦
− 1

τ

(
1
p2

0
ΔP : ΔP +

∑
(HoT)2

)
, (2.51)

where Δqt, Δqr, Δqv are the perturbed heat fluxes, ΔP is the perturbed stress tensor and
HoT is the high-order term. The thermal relaxation rates A are positive definite, since
the diagonal elements are positive and much larger than the magnitudes of off-diagonal
elements. Therefore, it is demonstrated that H always decreases with time due to the
gas–gas collisions in the linear system. Moreover, when the elastic collision operator is
changed to BCO, (dH/dt)1 ≤ 0 still keeps valid.

In a nonlinear system, because the reference distribution functions constructed in our
kinetic models only involve orthogonal polynomials in terms of the heat fluxes, the changes
of functional H due to the shear stress and all the high-order terms are exactly the same as
those governed by the standard BGK equation, which have been proven to be non-positive.
Additionally, by recovering the correct thermal relaxation rates and thermal conductivities
in the model equations, the change of functional H due to the heat flux should be the
same as that of the Navier–Stokes–Fourier equations in the continuum limit. Also, the
change of functional H is zero in the free molecular limit. Therefore, it is very likely
that (dH/dt)1 ≤ 0 holds in all the flow regimes, though it is not explicitly calculated or
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rigorously proved. On the other hand, although the H theorem has been proven in the
standard BGK and the ES-BGK models, the Shakhov and Rykov models perform better in
many problems (Fei et al. 2020; Zeng et al. 2022). Therefore, to achieve higher accuracy,
we still choose to construct the gas–gas interaction terms based on the Rykov model.

The term (dH/dt)2 indicates the change of H due to the gas–photon interactions. By
substituting the expressions of Jphoton,i (2.11) and JR

νij
(2.14a,b) and (2.15) into (dH/dt)2,

we have

(
dH
dt

)
2

=
N∑
i,j

∫∫∫
[Ajifi + (Bjifj − Bijfi)IR

νij
]

[
ln( fi) − ln( fj) + ln

(
BijIR

νij

Aji + BjiIR
νij

)]
dv dIrdΩ

=
N∑
i,j

∫∫∫
(Ajifj + BjifjIR

νij
)

[
1 −

BijfiIR
νij

Ajifj + BjifjIR
νij

]
ln

(
BijfiIR

νij

Ajifj + BjifjIR
νij

)
dv dIr dΩ.

(2.52)

Because of the positivity of Einstein coefficients and the convexity of the ln function, the
gas–photon interactions always lead to the decrease of H with time (dH/dt)2 ≤ 0.

2.7. Dimensionless expressions
Let L0, T0, n0 be the reference length, temperature and number density, respectively, then
the most probable speed is vm = √

2kBT0/m and the reference pressure is p0 = n0kBT0.
The dimensionless variables are introduced as

x̃ = x/L0, T̃ = T/T0, ñ = n/n0, t̃ = vmt/L0,

ṽ = v/vm, c̃ = c/vm, p̃ = p/p0, q̃ = q/( p0vm),

f̃0 = v3
mf0/n0, f̃1 = v3

mf1/p0, f̃2 = v3
mf2/p0, ĨR = IR/( p0vm).

⎫⎪⎬⎪⎭ (2.53)

When the gray model is used for photon transport, the Knudsen numbers for gas flow and
photon transport are defined, respectively, as

Kngas = μ(T0)

n0L0

√
π

2mkBT0
, Knphoton = 1

kgrayL0
. (2.54a,b)

The relative strength of the radiative to the convective heat transfer is given by the
dimensionless parameter

σ̃R = σRT3
0

n0kBvm
, (2.55)

which is equivalent to the reciprocal of the Boltzmann number commonly used
in radiation hydrodynamics (Casto 2004). Therefore, the model equations are
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Kinetic modelling of rarefied gas flows with radiation

non-dimensionalized as

D̃f̃0 = Q̃( f̃0) +
√

πñT̃1−ω
t

2Kngas

[
g̃0r − g̃0t

Zr
+ g̃0v − g̃0t

Zv

]
,

D̃f̃1 =
√

πñT̃1−ω
t

2Kngas

[
(g̃1t − f̃1) + g̃1r − g̃1t

Zr
+ g̃1v − g̃1t

Zv

]
,

D̃f̃2 =
√

πñT̃1−ω
t

2Kngas

[
(g̃2t − f̃2) + g̃2r − g̃2t

Zr
+ g̃2v − g̃2t

Zv

]
− f̃0

ñKnphoton

(
4σ̃RT̃4

v −
∫

4π

ĨR dΩ

)
,

1
c̃l

∂ ĨR

∂ t̃
+ n · ∂ ĨR

∂ x̃
= 1

Knphoton

(
1
π

σ̃RT̃4
v − ĨR

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.56)

where D̃f̃i = ∂ f̃i/∂ t̃ + ṽ · (∂ f̃i/∂ x̃) + ∂(ã̃fi)/∂ ṽ, c̃l = cl/vm does not affect the results of
steady-state problems, and Q̃( f̃0) represents the dimensionless elastic collision operators

Q̃( f̃0) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
πñT̃1−ω

t

2Kngas
(g̃0r − g̃0t), (RTA)

1
Kngas

5
27−ωΓ 2(9/4 − ω/2)

∫∫
sin(1−2ω)/2

(
θ

2

)
cos(1−2ω)/2

(
θ

2

)
× |ṽ − ṽ∗|2(1−ω) · [ f̃0(ṽ′

∗)f̃0(ṽ
′) − f̃0(ṽ∗)f̃0(ṽ)] dΩ dṽ∗. (BCO)

(2.57)
The dimensionless reduced reference velocity distribution functions are

g̃0t = ñ
(

1

πT̃t

)3/2

exp
(

− c̃2

T̃t

)[
1 + 4q̃t · c̃

15T̃t p̃t

(
c̃2

T̃t
− 5

2

)]
,

g̃0r = ñ
(

1

πT̃tr

)3/2

exp
(

− c̃2

T̃tr

)[
1 + 4q̃0 · c̃

15T̃trp̃tr

(
c̃2

T̃tr
− 5

2

)]
,

g̃0v = ñ
(

1

πT̃tv

)3/2

exp
(

− c̃2

T̃tv

)[
1 + 4q̃0 · c̃

15T̃tv p̃tv

(
c̃2

T̃tv
− 5

2

)]
,

g̃1t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dr

2
T̃rg̃0t +

(
1

πT̃t

)3/2

exp
(

− c̃2

T̃t

)
2q̃r · c̃

T̃t
, (RTA)

dr

2
T̃r

[
2Kngas√
πñT̃1−ω

t
Q̃B( f̃0) + f̃0

]
+
(

1

πT̃t

)3/2

exp
(

− c̃2

T̃t

)
2q̃r · c̃

T̃t
, (BCO)

g̃1r = dr

2
T̃trg̃0r +

(
1

πT̃tr

)3/2

exp
(

− c̃2

T̃tr

)
2q̃1 · c̃

T̃tr
,

g̃1v = dr

2
T̃rg̃0v +

(
1

πT̃tv

)3/2

exp
(

− c̃2

T̃tv

)
2q̃1 · c̃

T̃tv
,

g̃2t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dv(T̃v)

2
T̃v g̃0t +

(
1

πT̃t

)3/2

exp
(

− c̃2

T̃t

)
2q̃v · c̃

T̃t
, (RTA)

dv(T̃v)

2
T̃v

[
2Kngas√
πñT̃1−ω

t
Q̃B( f̃0) + f̃0

]
+
(

1

πT̃t

)3/2

exp
(

− c̃2

T̃t

)
2q̃v · c̃

T̃t
, (BCO)

g̃2r = dv(T̃v)

2
T̃v g̃0r +

(
1

πT̃tr

)3/2

exp
(

− c̃2

T̃tr

)
2q̃2 · c̃

T̃tr
,

g̃2v = dv(T̃tv)

2
T̃tv g̃0v +

(
1

πT̃tv

)3/2

exp
(

− c̃2

T̃tv

)
2q̃2 · c̃

T̃tv
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.58)
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When the gas species and relaxation rates are fixed, the solutions of (2.56) are determined
by four dimensionless parameters: Kngas, Knphoton, σ̃R and T0/Tref , where σ̃R gives the
relative importance of radiative heat transfer in the system, and T0/Tref indicates the
degree of vibrational excitation. From the term of energy exchange between vibrational
modes and the radiative field in the governing equations, it can be seen that when
σ̃R/Knphoton → 0, the interaction between gas and photon becomes negligible.

3. Validation of the kinetic model

When the radiation is absent, the accuracy of the proposed kinetic models (2.24) and
(2.31) are evaluated by comparing the numerical solutions of one-dimensional Fourier
flow, Couette flow, thermal creep flow and the normal shock wave in nitrogen with constant
vibrational DoF to DSMC solutions, and also compared with the experimental data of
Fourier flow and normal shock waves. We use kinetic models I and II to represent the
model equations with RTA and BCO, respectively. The kinetic model equations are solved
by the discretized velocity method with the fast spectral method for the BCO (Wu et al.
2013, 2014), while DSMC simulations are conducted using the open source code SPARTA
(Plimpton et al. 2019).

3.1. Relaxation rates extracted from DSMC
In the validation of the proposed kinetic models, we need to first compare the results of
our models with the reference solutions using the same physical properties and system
parameters to demonstrate that the model equations can give an accurate evolution of
the system when all the necessary parameters have been known. In DSMC simulation
for molecular gas flow, generally, not all the transport coefficients of a real gas can
be recovered simultaneously in this method. However, the results of DSMC still can
be regarded as reference solutions when we consider a virtual gas with the exact
same relaxation rates realized in DSMC simulations. Therefore, we extract the thermal
relaxation rates from the DSMC and apply them to our kinetic model to make a fair
comparison. With the fixed shear viscosity and self-diffusion coefficient, the collision
number Zr and Zv are the only parameters that affect the thermal relaxation rates in DSMC.
As an example, we take the temperature-independent collision number Zr = 2.667, which
is determined in DSMC by matching the experimentally measured thermal conductivity
of nitrogen at room temperature (Li et al. 2021), and choose Zv = 10Zr as a typical value
of vibrational collision number, as it is usually much larger than the rotational one. For the
cases that Zv has an even higher order of magnitude, the vibrational modes can be treated
as frozen and, thus, no longer need to be coupled with the other modes into the kinetic
modelling.

Similar to the procedure of extracting thermal relaxation rates for the translational and
rotational DoF from DSMC (Li et al. 2021), here a homogeneous system of nitrogen
is simulated, which consists of 106 simulation particles in a cubic cell of the volume
(10 nm)3. The periodic condition is applied at all boundaries. Binary collisions are
described by the variable-soft-sphere model, and the system parameters and properties of
nitrogen used in the simulations are dr = dv = 2, n0 = 2.69 × 1025 m−3, T0 = 5000 K,
m = 4.65 × 10−26 kg, the molecular diameter is d = 4.11 × 10−10 m, the viscosity index
is ω = 0.74, the angular scattering parameter is α = 1.36 and the Schmidt number is Sc =
1/1.34 (Bird 1994). Initially, simulation particles with positive velocity in the x1 direction
follow the equilibrium distribution at 4500 K, while those moving in the opposite direction
follow the equilibrium distribution at 5500 K, see figures 1(a) and 1(b), so that initial heat
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Figure 1. Extraction of the thermal relaxation rates A in (2.43) from the DSMC simulation. Special
distributions of (a) the molecular velocity and (b) rotational/vibrational energy (overlap with each other) are
designed to generate an initial heat flux. (c) The evolution of heat fluxes and (d) their time derivatives are
monitored until the system reaches thermal equilibrium.

fluxes in all DoF are generated. Then the evolution of heat flux is monitored until the entire
system reaches thermal equilibrium; see figure 1(c). An ensemble average is taken from
3000 independent runs to get the time derivative of heat flux in figure 1(d). Finally, the
following relaxation rates are extracted by solving the linear regression problem (2.43)
with the least squares method,⎡⎣ Att Atr Atv

Art Arr Arv
Avt Avr Avv

⎤⎦ =
⎡⎣ 0.786 −0.208 0.003

−0.047 0.883 −0.049
−0.004 −0.038 0.772

⎤⎦ . (3.1)

Hence, according to (2.48), we have ft = 2.3635, fr = 1.3979, fv = 1.3825 and feu =
1.807. With these parameters, our kinetic model is uniquely determined.

3.2. Fourier flow
The heat transfer in the nitrogen gas between two parallel plates located at x2 = 0 and
L0 are considered, where the temperature of the lower and upper plates are Tw = Tl and
Tw = Tu, respectively. The averaged number density of nitrogen is set to be n0, and the
characteristic length L0 is chosen to be the distance between two plates. The Maxwell
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boundary conditions for molecular gas with a single accommodation coefficient α are
adopted (Larina & Rykov 1986), so that the reflected distributions are

x2 = 0, v2 ≥ 0 : f +
0 = n−(x2 = 0)

n0
Et(T+

t ), f +
1 = dr

2
kBT+

r f +
0 , f +

2 = dv

2
kBT+

v f +
0 ,

x2 = L0, v2 ≤ 0 : f +
0 = n−(x2 = L0)

n0
Et(T+

t ), f +
1 = dr

2
kBT+

r f +
0 , f +

2 = dv

2
kBT+

v f +
0 ,

⎫⎪⎪⎬⎪⎪⎭ (3.2)

where the superscripts − and + represent the incident and reflected molecules,
respectively; n− is determined by the flux of incident number density of gas at the plates

n− =
∣∣∣∣∣
(

2mπ

kBTw

)1/2 ∫
vn<0

v2 f −
0 dv

∣∣∣∣∣ , (3.3)

where vn is the molecular velocity component normal to the wall (vn = v2 at x2 = 0 and
vn = −v2 at x2 = L0); T−

t , T−
r , T−

v are the temperatures of the incident molecules,

T−
t = 1

2

∫
vn<0

1
2

mc2vn f −
0 dv∫

vn<0
vn f −

0 dv

, T−
r = 2

dr

∫
vn<0

vn f −
1 dv∫

vn<0
vn f −

0 dv

, T−
v = 2

dv

∫
vn<0

vn f −
2 dv∫

vn<0
vn f −

0 dv

. (3.4)

Then the temperatures of reflected molecules T+
t , T+

r , T+
v are the linear combination of Tw

and T−
t , T−

r , T−
v as T+

t = αTw + (1 − α)T−
t , T+

r = αTw + (1 − α)T−
r and T+

v = αTw +
(1 − α)T−

v (Larina & Rykov 1986).

3.2.1. Comparison with DSMC
In the comparison with DSMC simulations, the Knudsen numbers considered are Kngas =
0.1 and 1. The temperature of the lower and upper plates are Tl = 0.8T0 and Tu =
1.2T0, respectively, and the accommodation coefficient α = 1. Numerical solutions of
the kinetic models I and II, as well as the DSMC results, are shown in figure 2. For
both Kngas = 0.1 and Kngas = 1, excellent agreement in the density, temperature and
heat flux are observed. Meanwhile, profiles of translational, rotational and vibrational
temperatures nearly overlap, although the relaxation times for different modes are
different. Additionally, the rotational and vibrational heat fluxes are almost the same
(figure 2f ), due to the close values of the rotational and vibrational thermal conductivities.
Thus, it is clearly seen that the values of collision numbers Zr and Zv do not have an
influence on the distribution of macroscopic quantities for the steady-state planar Fourier
flow.

3.2.2. Comparison with experiments
Teagan & Springer (1968) performed the experimental measurements of heat transfer and
density distributions of argon/nitrogen between two parallel plates in the transition regime.
The heat flux was determined by measuring the total electrical power input into the hot
plate and subtracting the energy losses. The density profiles were measured by observing
the luminescence produced by a high-energy electron beam traversed between the plates.
In the experiments, the temperature of the cold plate is maintained at 288 K, while the
temperature of the hot one is 296 K in the heat transfer measurements, and it is 368 K
in the density distribution measurements to increase the accuracy. The accommodation
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Figure 2. Comparisons of the (a) density, (b) translational temperature, (c) rotational temperature,
(d) vibrational temperature, (e) translational heat flux and ( f ) rotational/vibrational heat flux of nitrogen
between kinetic model I (green lines), kinetic model II (red lines) and DSMC (blue circles) for the Fourier
flows.

coefficient was determined from the heat transfer measurement at low pressure (free
molecular condition), where Knudsen’s formula is applicable, and it gave the value
α = 0.76 for nitrogen.

Both kinetic models I and II are used to predict the heat flux and density profiles of
nitrogen at the experimental conditions. Since the temperature difference of the two plates
is relatively small, the constant values of α = 0.76, Zr = 2.667 are used (α is obtained
in experiments, and Zr is determined by matching the thermal conductivity of nitrogen at
room temperature). The vibrational DoF is negligibly small in these conditions.

Figure 3 compares the results obtained by kinetic models and experimental data in a
wide range of Kn. The total heat flux qtot in figure 3(a) is normalized by the value qfm at the
free molecular limit, which is calculated at Kn = 1000. The number density in figures 3(b)
and 3(c) is normalized by the values at the midpoint between the plates. Good agreements
between the numerical results and the experimental data are achieved. It is found that
the maximum discrepancy in density profiles is less than 6 %, which is expected to be
further reduced by using a more accurate gas–surface interaction model if accommodation
coefficients of translational and rotational modes can be measured separately (Larina &
Rykov 1986).

3.3. Couette flow
The configuration of the Couette flow is the same as the Fourier flow, while the
temperatures of both plates are kept the same at T0, and the speed of the lower and upper
plates are u1 = −vm and u2 = vm, respectively. Due to the symmetry, only half of the

965 A13-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

40
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.400


Q. Li, J. Zeng, Z. Huang and L. Wu

1.0
1.10

1.08

1.06

1.04

1.02

1.00

Kinetic model I

Kinetic model II

Experiment

Kinetic model I

Kinetic model II

Experiment
0.8

0.6

q to
t/

q fm

n/
n x=

0
.5

1.10

1.08

1.06

1.04

1.02

1.00

n/
n x=

0
.5

0.4

0.2

0 10 20 30 0 0.1

Kn = 1/2.58

Kn = 1/11.25

Kn = 1/15.5

Kn = 1/5.62

0.2 0.3 0.4 0.5

Inverse Kn x2/L0

0 0.1 0.2 0.3 0.4 0.5

x2/L0

(b)(a) (c)

Figure 3. Comparisons of the normalized (a) total heat flux, (b,c) density distribution of nitrogen between
kinetic model I (green squares/lines), kinetic model II (red diamonds/lines) and experimental data (Teagan &
Springer 1968) (blue circles) for the planar heat transfer flows.

domain (L0/2 ≤ x2 ≤ L0) is simulated. The diffuse boundary condition at x2 = L0 yields

v2 ≤ 0 : f +
0 = n−(x2 = L0)

n0
Et(T0, u2), f +

1 = dr

2
kBT0f +

0 , f +
2 = dv

2
kBT0f +

0 , (3.5)

where n−(x2 = L0) is determined as the same way as (3.3), and Et(T0, u2) is the
equilibrium distribution function defined in (2.21) with temperature T0 and macroscopic
velocity u2. The symmetrical condition at x2 = L0/2 reads

v2 ≥ 0 : f +
0 = f −

0 (−v1, −v2, v3), f +
1 = dr

2
kBTf +

0 , f +
2 = dv

2
kBTf +

0 . (3.6)

The results from our kinetic models I and II as well as the DSMC simulation at Kngas =
0.5 are shown in figure 4. The kinetic model II with BCO shows better accuracy, while the
relative error given by kinetic model I in translational heat flux is around 7 %. It can be seen
that the vibrational temperature is much lower than the rotational one in the Couette flow,
since the energy increase in internal DoF only comes from the exchange with translational
DoF in this problem. Thus, a larger collision number leads to less increase in internal
temperature at the same distance from the wall (due to the infrequent relaxation with the
translational mode), and also contributes less to the heat flux.

3.4. Creep flow driven by the Maxwell demon
The creep flow driven by the Maxwell demon is a thought test (Li et al. 2021), where each
gas molecule is subjected to an external acceleration based on its kinetic energy,

a1 = a0

(
v2

1
v2

m
− 3

2

)
. (3.7)

That is, fast molecules are forced toward the positive direction, while slow molecules move
in the opposite direction.

Consider the nitrogen flow driven by the Maxwell demon confined between two parallel
plates with distance L0 apart. To solve the force-driven flow, we choose small values of
a0 so that the gas flow deviates only slightly from the global equilibrium; the acceleration

965 A13-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

40
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.400


Kinetic modelling of rarefied gas flows with radiation

1.05 0.6

0.4

0.2

0

1.03

1.01

n/
n 0

T/
T 0

q/
n 0

k BT
0
v m

u 1
/v

m

0.99

1.4 0.2
q1t

q1vq1r

q2t

q2r q2v

0

–0.2

–0.4

1.2

1.0

0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0

0.5 0.6 0.7 0.8 0.9 1.0

x2/L0

0.5 0.6 0.7 0.8 0.9 1.0

x2/L0

Tt

Tr

Tv

Kinetic model I, Kn = 0.5 Kinetic model II, Kn = 0.5 DSMC, Kn = 0.5

(b)(a)

(d)(c)

Figure 4. Comparisons of the (a) density, (b) flow velocity, (c) temperature and (d) heat flux q1 in the flow
direction and q2 perpendicular to the flow direction of nitrogen, between kinetic model I, kinetic model II and
DSMC for the one-dimensional Couette flow at Kngas = 0.5.

acting on the molecules is linearized, which results in

∂(af0)
∂v

= 2a0L0

v2
m

v1Et(T0)

(
v2

1
v2

m
− 5

2

)
,

∂(af1)
∂v

= dra0L0

v2
m

v1kBT0Et(T0)

(
v2

1
v2

m
− 5

2

)
,

∂(af2)
∂v

= dva0L0

v2
m

v1kBT0Et(T0)

(
v2

1
v2

m
− 5

2

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.8)

The plates at rest are fully diffuse, then the boundary conditions are simply given by (3.2)
and (3.3), but with the wall temperature replaced by T0.

Figure 5 shows the good agreement between the solutions of kinetic model II and DSMC
at Kngas = 1. The rotational/vibrational heat flux is one/two orders of magnitude smaller
than the translational heat flux and, hence, makes a negligible contribution to the total heat
transfer in this problem. However, significant discrepancies are observed in both velocity
and heat flux profiles predicted by kinetic model I. It demonstrates the importance of
using correct velocity-dependent collision rates based on the intermolecular potential, as
it is realized in kinetic model II.
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Figure 5. Comparisons of the (a) velocity and (b) heat flux in the flow direction of nitrogen between kinetic
model I (green lines), kinetic model II (red lines) and DSMC (blue circles) for one-dimensional creep flow
driven by the Maxwell demon at Kngas = 1. Both the flow velocity and the heat flux have been further
normalized by 2a0L0/v
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Figure 6. Same as figure 5, except that the off-diagonal elements in A are set to be zero (blue), the values
from DSMC (red) and double of those from DSMC (green), respectively.

To assess the influence of the thermal relaxation rates on the creep flow, two more cases
are conducted using kinetic model II by varying the values of the matrix A but keeping the
Eucken factors fixed. More specifically, the off-diagonal elements in A in the two cases are
set to be zero and double of those given by DSMC, respectively. The values of diagonal
elements are calculated based on (2.48) using the fixed Eucken factors. Figure 6 shows
that these relaxation rates affect the flow velocity and heat fluxes, despite the fact that
the thermal conductivities are fixed. In particular, when the off-diagonal elements in A
are zero, the heat fluxes of different types of DoF are decoupled, so that the internal heat
fluxes are exactly zero. These situations occur in many traditional kinetic models, such as
the Rykov model and the ES-BGK model. This example demonstrates the importance of
recovering the fundamental thermal relaxation process rather than the apparent thermal
conductivities in rarefied gas flow simulations.

3.5. Normal shock wave
In the simulations of the normal shock wave of nitrogen, the upstream number density
nu = n0 and temperature Tu = T0 are chosen to be the reference values, which also
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determine the characteristic length to be L0 = 16μ(T0)/(5n0
√

2πmkBT0) and, hence,
Kngas = 5π/16 in this problem. The total length of the simulation domain is 90L0, so
that the boundary conditions at both ends can be approximated by equilibrium states (the
wave front is initially located at x = 0),

x = −30L0, v ≥ 0 : f0 = nu

n0
Et(Tu), f1 = dr

2
kBTuf0, f2 = dv

2
kBTuf0,

x = 60L0, v ≤ 0 : f0 = nd

n0
Et(Td), f1 = dr

2
kBTdf0, f2 = dv

2
kBTdf0,

⎫⎪⎪⎬⎪⎪⎭ (3.9)

where the subscripts u and d represent the upstream and downstream ends, respectively.
Given the Mach number, the macroscopic quantities at the downstream end are determined
by the Rankine–Hugoniot relation.

3.5.1. Comparison with DSMC
Numerical results of both kinetic models I, II and DSMC are compared in figure 7, when
the Mach number is Ma = 5. As expected, kinetic model II reproduces the structure of
normal shock waves with high accuracy. While kinetic model I significantly overestimates
the temperature, heat flux and deviated pressure before the wave front, because the velocity
dependence of the collision frequency is not involved in the RTA. The rotational and
vibrational collision numbers, Zr and Zv , which affect the energy exchange rate between
internal and translational modes, play roles in the difference between rotational and
vibrational temperatures. That is, the distance for the vibrational temperature to reach
equilibrium is much longer than that for rotational modes. This is consistent with the fact
that we set Zv = 10Zr.

3.5.2. Comparison with experiments
Then we compare the results of our kinetic models with experimental data for normal
shock waves with high enthalpy incoming nitrogen flow reported by Alsmeyer (1976). The
experiments were performed in a conventional shock tube for argon and nitrogen with
the Mach number range from 1.55 to 9 and from 1.5 to 10, respectively, and the density
distribution of the shock wave was measured by the attenuation of an electron beam. The
differentiated density profiles and reciprocal shock thickness may have an error of 4 %, as
it is mentioned in Alsmeyer (1976).

According to the experimental conditions, the temperature of the upstream flow is
300 K. Thus, the temperature at the downstream end exceeds 2000 K when Ma > 6, where
the vibrational DoF of nitrogen cannot be ignored. Also, the temperature dependence
of the vibrational DoF (2.3) and internal collision numbers in the modelling have to
be considered to compare with experimental data. For diatomic molecules, the most
commonly used empirical model for the temperature-dependent vibrational collision
number Zv is given by (Millikan & White 1963)

Zv = 3π

4(3 + dv)

(
C1

Tω
v

)
exp (C2T−1/3

v ), (3.10)

with parameters C1 = 9.1, C2 = 220. As for the rotational collision number, discrepancies
for Zr between different experimental data are large (Carnevale & Larson 1967; Annis &
Malinauskas 1971). Parker (1959) presents an analytical derivation of Zr, which shows
good predictions of selected experimental data with appropriately chosen parameters.
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Figure 7. Comparisons of the (a) density and velocity, (b) temperature, (c) deviated pressure and (d) heat flux
of nitrogen between kinetic model I (green lines), kinetic model II (red lines) and DSMC (blue circles) for a
normal shock wave at Ma = 5.

However, it gives a rather strong increase of Zr with temperature (Nyeland 1967), and
does not distinguish the difference between the translational and rotational temperatures
(Lordi & Mates 1970). Nevertheless, MD simulations provide a reliable way to extract
collision numbers for specific gas systems. Valentini et al. (2012) studied Zr of nitrogen
with the Lennard-Jones intermolecular potential using MD simulations, which shows
weaker dependence on the gas temperature but a strong influence of difference between the
translational and rotational temperatures. Also, a demonstrative model of Zr is provided
by Valentini et al. (2012), which is fitted by their MD results at the temperature below
2000 K,

Zr = π

4
Z0

r

[
1 − b1

(
1 − Tr

Tt

)]
,

Z0
r = a1T1/4

t + a2T−1/4
t + a3(Tt − 1000 K),

⎫⎪⎬⎪⎭ (3.11)

where the parameters are a1 = 1.33868, a2 = −6.19992, a3 = −0.00107942, b1 = 1.
When Tt goes to 2000 K, Z0

r approaches a constant value, which will be used for higher
Tt.

Because of the variations of the internal collision numbers from the upstream to
the downstream end, the resultant changes in relaxation rates of heat flux have to be
considered. We adopt the thermal relaxation rates A derived from the asymptotic expansion
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Figure 8. Comparisons of (a) the reciprocal shock thickness δ−1 and (b,c) density profiles between kinetic
model I (green squares/lines), kinetic model II (red diamonds/line) and experimental measurements reported
by Alsmeyer (1976) (blues circles).

of the WCU equation (Mason & Monchick 1962; Gorji & Jenny 2013),

A =

⎡⎢⎢⎢⎢⎢⎣
2
3

+ 5
6

(
dr

(3 + dr)Zr
+ dv

(3 + dv)Zv

)
− 5

2(3 + dr)Zr
− 5

2(3 + dv)Zv

− dr

2(3 + dr)Zr
Sc + 3

2(3 + dr)Zr
0

− dv

2(3 + dv)Zv

0 Sc + 3
2(3 + dv)Zv

⎤⎥⎥⎥⎥⎥⎦ .

(3.12)

The dimensionless reciprocal shock thickness, denoted as δ−1, is defined as the
maximum gradient of the density (Alsmeyer 1976),

δ−1 = max
(

∂n∗

∂x

)
L0, (3.13)

where the density is normalized by n∗ = (n − nd)/(nu − nd).
Figure 8 compares the reciprocal shock thickness and density profiles obtained by

kinetic models and experiments, where excellent agreements can be observed. Although
kinetic model I significantly overestimates the temperature before the wave front, as
discussed previously, the density distribution and, hence, the shock thickness are not
affected that much.

4. Rarefied molecular gas flow with radiation

The influence of thermal radiation on the total heat transfer is investigated by
solving the kinetic model equation with BCO. Three typical problems are considered:
one-dimensional Fourier flow, Couette flow and the normal shock wave in nitrogen flow.
The vibrational DoF change with temperature as (2.3), and the effective absorptivity in the
photon gray model kgray is assumed to be constant for simplicity. The transport coefficients
and relaxation rates of gas are fixed as in § 3, while the parameters Knphoton and σ̃R are
varied to investigate the importance of radiation in rarefied molecular gas flows.
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Figure 9. Comparisons of the (a) translational temperature, (b) vibrational and radiative temperature, (c)
vibrational and radiative heat flux of nitrogen in the Fourier flow between different radiation strengths, when
Kngas = 0.1 and T0/Tref = 2. The results are obtained from kinetic model II.

4.1. Fourier flow
Consider the heat transfer between two plates maintained at different temperatures T1 =
0.5T0 and T2 = 1.5T0, which emit photons with Planck distribution and reflect gas
molecules diffusely. The Knudsen numbers of gas is Kngas = 0.1, Knphoton varies from
0.1 to 100, σ̃R changes from 0.001 to 0.1 and T0/Tref = 2.

It can be seen from figure 9 that the radiation significantly changes the profiles of
vibrational temperature (figure 9b), especially in the low-temperature region, while its
influence on translational temperature is relatively small (figure 9a). Also, the presence
of radiation leads to a remarkable variation of vibrational heat flux (figure 9c), which
indicates a strong coupling between molecular vibrational modes and photons. The
radiative heat flux and its proportion to the total one are calculated and shown in
figure 10(a) and 10(b), respectively. Firstly, it is observed that the radiative heat flux
qR and its proportion to the total one increase with σ̃R. This is because σ̃R indicates
the relative strength of the radiative intensity in terms of the characteristic heat flux of
gas flow. Secondly, when Knphoton approaches 100, the radiative heat flux is found to
be linearly proportional to σ̃R. The reason is that no interaction between gas molecules
and photons occurs when Knphoton is large enough and, thus, the gas flow is transparent
to radiation. Thirdly, when Knphoton = 0.1, the energy transported by the radiation field
becomes negligible. This is due to the extremely short transport distance of radiative
energy at small Knphoton, which implies that the photons emitted by vibrational transitions
are absorbed immediately. In summary, in the Fourier flow the radiative heat transport is
important and even dominated when both σ̃R and Knphoton are large. The relative difference
between the radiative heat flux from kinetic models I and II are less than 0.1 % in these
cases.

4.2. Couette flow
For the Couette flow between two plates with the same temperature T0, the velocities
of the lower and upper plates are u1 = −vm and u2 = vm, respectively. Two vibrational
collision numbers are considered Zv = 2Zr and Zv = 10Zr here. The Knudsen number
of gas is Kngas = 0.1, Knphoton varies from 0.1 to 100, σ̃R changes from 0.01 to 0.1 and
T0/Tref = 2.

Due to the symmetry, only half of the domain (L0/2 ≤ x2 ≤ L0) is shown in figure 11.
A large vibrational collision number (Zv = 10Zr) suppresses the rise of the vibrational
temperature, and, hence, limits the radiation effect. When Zv = 2Zr, the radiative effect
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Figure 10. The radiative heat flux change with Knphoton and σ̃R in the Fourier flow, when Kngas = 0.1 and
T0/Tref = 2, (a) radiative heat flux, (b) ratio of radiative heat flux to the total one.
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Figure 11. Comparisons of the (a,c) temperature, (b,d) heat flux of nitrogen Couette flow, when Knphoton = 1,
σ̃R = 0.1, Kngas = 0.1 and T0/Tref = 2; (a,b) Zv = 10Zr , (c,d) Zv = 2Zr .

lowers the vibrational temperature and heat flux significantly compared with those of the
non-radiative gas flow. However, the radiation itself may contribute a non-negligible part
to the total heat flux.

Figure 12 shows the variations of the ratio of radiative heat flux to the total one with
respect to Knphoton and σ̃R. Contrary to the results in the Fourier flow problems (figure 10),
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Figure 12. The ratio of radiative heat flux to the total heat flux change with Knphoton and σ̃R in the Couette
flow, when Kngas = 0.1 and T0/Tref = 2; (a) Zv = 2Zr , (b) Zv = 10Zr .

the proportion of radiative heat flux in the Couette flow is not a monotonical function of
Knphoton. With the increase of Knphoton, the radiative heat flux firstly becomes significant
due to the longer distance the photons can propagate before being absorbed by gas
molecules. However, it decreases gradually when Knphoton further increases, since the rise
of radiative temperature is generated by the gas–photon interaction in the Couette flow,
and the lower emissivity of photons (larger Knphoton) reduces the radiative temperature
difference between the gas and the wall. As the result of the two opposite mechanisms, the
radiative heat flux reaches the maximum value at an intermediate value of Knphoton, which
is around 1 in these cases.

4.3. Normal shock wave
When the temperature-dependent vibrational DoF is considered, the specific heat ratio
changes with the temperature across the shock wave structure, thus, the Rankine–Hugoniot
relation for the upstream and downstream macroscopic quantities is no longer applicable.
In this situation, consider the conservation of mass, momentum and energy of the normal
shock wave,

n1u1 = n2u2,

mn1u2
1 + p1 = mn2u2

2 + p2,

cp,1T1 + 1
2

u2
1 + 2π

∫
IR
1 cos θ dθ = cp,2T2 + 1

2
u2

2 + 2π

∫
IR
2 cos θ dθ,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.1)

where cp is the specific heat capacity with constant pressure, which relates to the
specific heat ratio γ (T) = (5 + dr + dv(T))/(3 + dr + dv(T)) as cp = [γ /(γ − 1)]kB/m.
The heat flux due to radiation vanishes far away from the shock wave layer, then the (4.1)
are solved,

n2

n1
= 1 − 1

γ (T1)Ma2

(
p2

p1
− 1

)
,

u2

u1
= n1

n2
,

T2

T1
= p2

p1

n1

n2
, (4.2a–c)

with
p2

p1
= ((γ (T1)

2Ma4 + γ (T2)
2)(γ (T1) − 1) − 2Ma2γ (T1)(γ (T2)

2 − γ (T1)))
1/2

(γ (T1) − 1)1/2(γ (T2) + 1)

+ γ (T1)Ma2 + 1
γ (T2) + 1

, (4.3)
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Figure 13. Comparisons of the (a,d) density and velocity, (b,e) temperature and (c, f ) heat flux distribution
across the shock wave structure, when Ma = 2, σ̃R = 0.1 and T0/Tref = 1. Results are shown for (a–c)
Knphoton = 1, (d–f ) Knphoton = 10.

where the Mach number is defined by the velocity of upstream flow Ma =
u1/

√
γ (T1)kBT1/m.

Figure 13 shows the density, velocity, temperature and heat flux across the shock wave
structure with different Knphoton. The smaller Knphoton means a more frequent interaction
between vibrational mode and radiation field and, thus, makes the radiative temperature
very close to the vibrational one. When Knphoton = 1 (figure 13a–c), only the vibrational
temperature and heat flux deviate from the non-radiative one slightly, while the other gas
flow properties are almost unaffected. When Knphoton increases to 10 (figure 13d–f ), the
radiative temperature is more smoothly distributed between upstream and downstream
ends (figure 13e), hence, significantly changing the gas flow properties and leading to
a thicker normal shock wave.
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5. Applications to two-dimensional hypersonic radiative flows

One of the most important situations in which the radiative energy interacts strongly
with the rarefied gas flow is radiative shock wave passing obstacles. The gas is heated
sufficiently for the radiative flux to be comparable to the flux of kinetic energy. With the
ability to perform coupled simulations of rarefied gas dynamics and radiative fields, the
effect of radiation on the flow structure of hypersonic non-equilibrium can be understood.
Since our objective here is to examine the significance of radiative transfer, for the sake of
computational simplicity, kinetic model I with RTA is adopted. The photon absorptivity
is still approximated by the gray model, but its value is proportional to the product of
gas number density and vibrational DoF, as indicated in (2.14a,b). When the spectrum
absorptivities are available, the extension to the non-gray model of the radiation field is
described by (2.26).

We consider the hypersonic gas flow with density n0 at Ma = 15 passing a cylinder
with diameter L0, the temperatures of both the incoming flow and surfaces of the cylinder
are maintained at T0 = Tref /2. The Knudsen number of the incoming gas flow is Kngas =
0.05, the Knudsen number of photons at reference state Knphoton,ref , when the gas density
is n0 and the vibrational DoF is 1, varies from 0.1 to 1000, and the dimensionless radiative
strength σ̃R changes from 0.1 to 10.

The discretized velocity method is applied to solve the kinetic model equations.
The simulation domain has a radius ten times larger than that of the cylinder (r =
L0/2). Only the upper half-domain is used in the simulation due to symmetry, which
is divided into 40 × 60 structured quadrilateral meshes with refinement near the
cylinder surface. The reduced two-dimensional molecular velocity space is truncated
by [−25

√
2vm/2, 25

√
2vm/2] × [−7

√
2vm, 7

√
2vm], and discretized uniformly by 120 ×

50 velocity points. The properties of photons over the solid angle are obtained
by the Gauss–Legendre integral with 48 × 48 discretized points. In the numerical
implementation a finite volume method with a second-order reconstruction scheme is
adopted. The convention fluxes are evaluated implicitly by the point relaxation technique,
while the collision terms are calculated with the Venkata limiter.

5.1. Effect of radiation
When Knphoton,ref = 100 and σ̃R = 10, the temperature and heat flux of each mode of the
surrounding gas are shown in figure 14 for both non-radiative (dashed lines) and radiative
(solid lines) gas flow. Due to the direct energy exchange between the vibrational mode
of gas molecules and photons, the vibrational temperature is significantly reduced by
radiation, while the influence on both the translational and rotational modes are relatively
small. Therefore, the difference between the translational and vibrational temperatures
enlarges in the radiative hypersonic gas flow, since both μb and μR

b contribute to the
thermal non-equilibrium. To be specific, the bulk viscosity μb resisting the volume
change makes the maximum vibrational temperature about 1/4 of the translational one.
Meanwhile, the bulk viscosity μR

b resisting the radiation transition further lowers the
maximum vibrational temperature to be 1/12 of the translational one. Therefore, the heat
flux from the vibrational mode becomes negligible in this case.

The photon absorptivity is proportional to the population of the vibrational energy
state ((2.14a,b)), thus, it increases with the gas density and effective vibrational DoF.
Figure 15(a) shows that, the order of magnitudes of the photon absorptivity increases
significantly in the stagnation region and, hence, the local photon Knudsen number there
becomes much lower. The vibrational/radiative temperatures and heat fluxes along the
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Figure 14. A Ma = 15 shock wave passing through the cylinder. The distribution of the (a) translational,
(c) rotational, (e) vibrational temperatures (normalized by T0), and the (b) translational, (d) rotational ( f ),
vibrational heat fluxes (normalized by n0kBT0vm) around the cylinder solved by kinetic model equations when
the incoming flow has Kngas = 0.05 and T0 = Tref /2. The dashed lines represent the results of the case without
radiation, while the solid lines are the results of the case with Knphoton,ref = 100 and σ̃R = 10. Note that the
colourbars for vibrational temperature and heat flux are not in the linear scale.

stagnation line are shown in figures 15(b) and 15(c). It can be seen that the variation of
radiative temperature along the stagnation line is relatively small when compared with
that of the vibrational temperature, since the photon Knudsen number is much larger than
that of the gas over the entire domain. It is also found that the vibrational temperature
quickly approaches the radiative temperatures on the surface of the cylinder. It is attributed
to the high photon absorptivity (strong gas–photon interaction equivalently) near the
stagnation point, which is caused by the high molecular density there. However, owing to
the relatively high radiative strength σ̃R, the radiative heat flux is one order of magnitude
larger than that of the vibrational mode, and contributes around 32 % to the total heat flux
over the cylinder surface.

5.2. Influence of Knphoton and σ̃R

By varying the reference photon Knudsen numbers Knphoton,ref from 10−1 to 103, and the
dimensionless radiative strength σ̃R from 10−1.5 to 101, their influence on the radiative
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Figure 16. The heat flux (normalized by n0kBT0vm) from convection (blue lines) and radiation (red lines) along
the cylinder surface: (a) Knphoton,ref = 10, σ̃R =1 (solid lines), 10 (dashed lines). (b) σ̃R = 1, Knphoton,ref =0.1
(solid lines), 10 (dashed lines), 100 (dashed dot lines). Note that θ is the clockwise angle measured from the
stagnation streamline. Also note that the two lines of convective heat flux when Knphoton,ref = 0.1 and 100 are
overlapped in (b).

heat flux on the surface of the cylinder are systematically revealed. Figure 16 shows the
magnitude of normal heat flux from both convection and radiation to the cylinder. Note that
Knphoton,ref indicates the strength of gas–photon interaction at the reference state, which is
determined by the molecular structure and number density.

When Knphoton,ref is fixed (figure 16a), a higher value of σ̃R not only increases the
relative radiative intensity and heat flux, but also leads to stronger coupling between the
gas flow and the radiation field, and hence, decreases the convection heat flux. Therefore,
the relative importance of radiative heat transfer becomes significant.

When σ̃R is fixed (figure 16b), the influence of Knphoton,ref in the windward region
is different at different regimes of photon Knudsen number. Two mechanisms are
summarized below.

(i) The gas–photon interaction becomes weaker with the increase of Knphoton,ref
and, thus, makes the radiative temperature much lower than the gas temperature.
Consequently, the radiative heat flux decreases while the convective heat flux
increases. This mechanism dominates the influence of Knphoton,ref when the photon
Knudsen number is relatively large, e.g. when Knphoton,ref changes from 10 to 100
shown in figure 16(b).
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Figure 17. The ratio of radiative heat flux to the total heat flux on the surface of the cylinder in hypersonic
gas flow with the variation of Knphoton,ref and σ̃R.

(ii) The mean free path of photons (reciprocal of absorptivity) increases with
Knphoton,ref , and then the transportation distance of energy carried by the photon
before it is absorbed by the gas becomes longer. Therefore, the radiative heat
flux increases. This mechanism surpasses the first one when the photon Knudsen
number is relatively small, where the radiative temperature is almost the same as the
vibrational temperature, e.g. when Knphoton,ref changes from 0.1 to 10 as shown in
figure 16(b).

On the other hand, the radiative heat flux in the leeward side of the cylinder decreases
monotonically when Knphoton,ref changes from 0.1 to 100 (figure 16b). The reason is that
the local photon Knudsen number is much higher in the leeward region (due to the low
gas density there) than that in the windward region, thus, the first mechanism always
dominates. Therefore, due to the significant difference in the local photon Knudsen number
on the two sides of the cylinder, the radiative heat flux becomes much more important
than the convective one in the leeward region when Knphoton,ref is small. For example, the
radiative heat flux is almost uniformly distributed along the surface of the cylinder when
Knphoton,ref = 0.1.

To quantitatively measure the importance of the radiation in hypersonic gas flow as
Knphoton,ref and σ̃R change, the ratio of radiative heat flux to the total one on the surface
of the cylinder is calculated and shown in figure 17. The contour lines show two regimes
of the influence from the two parameters: when Knphoton,ref � 1, the proportion of the
radiative heat flux is constant along σ̃R/Knphoton,ref ; when Knphoton,ref � 1, it is constant
along σ̃RKnphoton,ref . Therefore, it gives clear criteria to determine the importance of
radiative heat transfer in these problems.

6. Conclusions

In summary, we have proposed two tractable kinetic models to describe the
high-temperature rarefied gas flows with radiation, where the gas flow and radiation
are coupled self-consistently from the mesoscopic perspective for the first time in
literature. Both the two kinetic models can recover not only the transport coefficients,
but also the underlying relaxation processes. While they differ in dealing with the elastic
intermolecular collisions: one uses the BCO that has the ability to capture the influence of
intermolecular potentials; the other adopts RTA that has higher computational efficiency.
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The accuracy of the proposed models has been assessed by comparing with DSMC
simulations for one-dimensional non-radiative Fourier flow, Couette flow, creep flow
driven by the Maxwell demon and normal shock wave. The kinetic model with the BCO
demonstrates its excellent accuracy in all these benchmarks, while the one with RTA shows
a slight discrepancy in the normal shock wave and creep flows, due to its ignoring of
the velocity-dependence of intermolecular collision rates. Moreover, excellent agreements
between the solutions of kinetic models and the experimental data of planar heat transfer
and normal shock waves in nitrogen are obtained.

Then, the study on the effect of radiation has been conducted by solving the kinetic
models in both one-dimensional typical rarefied gas flows and two-dimensional radiative
hypersonic flow passing a cylinder. It is found that the presence of radiation can double the
heat load on the obstacle surface compared with that with convective heat transfer only.
Additionally, the influences of the photon Knudsen number and relative radiation strength
are systemically investigated, and the parameter regions determining the importance of
radiative heat transfer are displayed at different regimes of the photon Knudsen number.

Although only the radiation transitions of the vibrational mode are involved in the
coupling of gas and radiation field in this work, a full consideration of all possible radiation
transitions can be achieved straightforwardly in the framework of our general kinetic
models. Meanwhile, an accurate prediction of the radiative environment requires a detailed
understanding and reliable data of the radiation transitions at the molecular level, which
can be acquired from the mathematical models (Zalogin et al. 2001; Babou et al. 2009), as
well as experimental measurements in relevant conditions (Reynier 2021). In future work
these realistic parameters will be incorporated into our general kinetic models to study the
high-temperature rarefied (non-equilibrium) gas flow with strong radiation.
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Appendix A. Transport coefficients from kinetic model equations

The transport coefficients given by the kinetic model equations can be obtained by the
Chapman–Enskog expansion (Chapman & Cowling 1970). To the second approximation
of the distribution function, it is assumed the velocity distribution function can be written
as fi = f (0)

i + f (1)
i , where f (0)

i = Et(T)Er(T)Ev,i(T) is the equilibrium distribution of
the vibrational state i at temperature T . Let Dfi ≡ ∂fi/∂t + v · ∂fi/∂x + a · ∂fi/∂v, and
consider D(0)fi = 0, according to the Chapman–Enskog expansion and the kinetic model
equation, we have

f (1)
i = gt,i − f (0)

i + 1
Zr

(gr,i − gt,i) + 1
Zv

(gv,i − gt,i) − τD(1)fi + τJphoton,i, (A1)

where

D(1)fi = ∂f (0)
i
∂t

+ v · ∂f (0)
i

∂x
+ a · ∂f (0)

i
∂v

= f (0)
i

[((
mc2

2kBT
− 5

2

)
+
(

Ir

kBT
− dr

2

)
+
(

εi

kBT
− dv

2

))
c · ∇ ln T
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+ 2
(3+ dr+ dv)

(
dr+dv

3

(
mc2

2kBT
− 3

2

)
−
(

Ir

kBT
− dr

2

)
−
(

εi

kBT
− dv

2

))
∇ · u

+ m
kBT

(
cc − 1

3
c2I

)
: ∇u

]
, (A2)

and I is a 3 × 3 identity matrix.
The pressure tensor P is then calculated according to (2.1),

P =
∑

i

∫ ∞

0

∫ ∞

−∞
mcc( f (0)

i + f (1)
i ) dv dIr

=
(

pt + 1
Zr

( ptr − pt) + 1
Zv

( ptv − pt)

)
I

− pτ

(
∇u + ∇uT − 2

3
∇ · uI

)
− pτ

2(dr + dv)

3(3 + dr + dv)
∇ · uI

= pI − pτ

(
∇u + ∇uT − 2

3
∇ · uI

)
− 2pτ

(3 + dr)drZr + (3 + dv)dvZv

3(3 + dr + dv)2 ∇ · uI,

(A3)

where the integral term of Jphoton,i vanishes, since the gas–photon interaction is
uncorrelated with the gas translational velocity. Then, the shear viscosity μ and bulk
viscosity μb are obtained,

μ(Tt) = ptτ,

μb(Tt) = 2ptτ
(3 + dr)drZr + (3 + dv)dvZv

3(3 + dr + dv)2 .

⎫⎬⎭ (A4)

The translational, rotational and vibrational heat fluxes can be calculated according to
(2.1),⎡⎣ qt

qr
qv

⎤⎦ =
∑

i

∫ ∞

0

∫ ∞

−∞
c

⎡⎢⎣ 1
2

mc2

Ir
εi

⎤⎥⎦ ( f (0)
i + f (1)

i ) dv dIr

=
∑

i

∫ ∞

0

∫ ∞

−∞
c

⎡⎢⎣ 1
2

mc2

Ir
εi

⎤⎥⎦
×
[
τ

(
gt,i−fi

τ
+ gr,i − gt,i

Zrτ
+ gv,i − gt,i

Zvτ

)
+ fi+τJphoton,i−τD(1)fi

]
dv dIr

= τ

⎡⎣ ∂qt/∂t
∂qr/∂t
∂qv/∂t

⎤⎦ +
⎡⎣ qt

qr
qv

⎤⎦ − kBμ

2m

⎡⎣ 5
dr

dv(Tv)

⎤⎦∇T. (A5)

Consider (qt, qr, qv) = −(κt, κr, κv)∇T , according to (2.43), the thermal conductivities
are given by (2.45).
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Shear viscosity (Nsm−2)

Temperature (K)
Green–Kubo

MD (this work)
Experiment (Dawe &

Smith 1970) μ0(T/T0)
ω

300 1.79 × 10−5 1.79 × 10−5 1.78 × 10−5

1000 4.10 × 10−5 4.12 × 10−5 4.33 × 10−5

Table 1. Comparison of shear viscosity obtained from Green–Kubo equilibrium MD calculations to the
experimentally measured values and those calculated by the temperature dependence power law (μ0 =
1.656 × 10−5 Nsm−2 is the reference viscosity at temperature T0 = 273 K, the viscosity index is ω = 0.74).

Appendix B. Thermal relaxation rates from MD simulations

According to (2.43), the thermal relaxation rates A depend on the shear viscosity and rate
of change of heat flux. The MD simulations provide a reliable way to obtain the transport
coefficients and relaxation rates of molecular gas, which are required in solving kinetic
model equations. As an example, we consider the diatomic molecule nitrogen with the
Lennard-Jones intermolecular potential φLJ for atoms belonging to different molecules,
and the harmonic intramolecular bond potential φhar for atoms in the same molecule,

φLJ = 4ε

[(σ

r

)12 −
(σ

r

)6
]

, r < rc,

φhar = 1
2

K(r − r0)
2,

⎫⎪⎬⎪⎭ (B1)

where r is the distance between two atoms; σ , rc and ε are the zero-crossing distance, the
cut-off and the potential depth of the Lennard-Jones potential, respectively; r0 and K are
the equilibrium distance and the stiffness of the harmonic bond, respectively. We conduct
the simulations for nitrogen with number density n0 = 7.25 × 1024 m−3 at temperatures
300 and 1000 K, and the following interaction parameters are used according to Valentini
et al. (2012, 2014): ε/kB = 47.2 K, σ = 3.17 Å, rc = 2.5σ , K = 2243 N m−2 and r0 =
1.098 Å. Here 1.48 × 105 molecules are uniformly distributed in a periodic cubic box of
side 270 nm, and a time step of 0.6 fs is used for all the simulations in the present work.

The shear viscosity can be calculated in an equilibrium MD system based on the
Green-Kubo theory, which relates the ensemble average of the auto-correlation function
of the off-diagonal pressure tensor components to the shear viscosity μ,

μ(T) = V
kBT

∫ ∞

0
〈Pxy(0)Pxy(t)〉 dt, (B2)

where 〈·〉 denotes the ensemble average, V is the volume of simulation domain and
Pxy is the xy component of the pressure tensor that is equivalent to Pyz and Pzx in
the homogeneously equilibrium system. The shear viscosity μ obtained by (B2) at
temperatures 300 and 1000 K are shown in table 1, and excellent agreement is achieved
when comparing to the values measured by experiments (Dawe & Smith 1970) and
calculated by the temperature dependence power law.

To extract the thermal relaxation rates from MD, the heat fluxes of translational,
rotational and vibrational modes are generated in a spatially homogeneous simulation
domain at the initial stage: the molecules with positive velocity in the x1 direction are
assigned with the centre-of-mass velocities drawn from the Maxwellian distribution at a
lower temperature Tl, and their rotational and vibrational energies are distributed according
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Figure 18. Extraction of the thermal relaxation rates A in (2.43) from the MD simulation. (a,c) The evolution
of heat fluxes and (b,d) their time derivatives are monitored until the system reaches thermal equilibrium; the
system temperatures are (a,b) 300 K and (c,d) 1000 K.

to Boltzmann distributions at the same temperature; while the molecules moving in the
opposite direction follow the equilibrium distribution at a higher temperature Th. We
choose Tl = 200 K, Th = 400 K and Tl = 500 K, Th = 1500 K for the systems with the
average temperatures 300 and 1000 K, respectively. Then the microcanonical ensemble
is used to perform time integration to update the positions and velocities of all atoms.
The evolution of translational, rotational and vibrational heat fluxes are recorded until
the systems reach the thermal equilibrium. Here 1500 and 360 independent runs are
conducted to get the ensemble-averaged results for the systems at temperatures 300 and
1000 K, respectively. The heat fluxes and their corresponding time derivatives are fitted by
two-term exponential functions to obtain the smooth profiles, as shown in figure 18. Note
that the vibrational energy is negligible when the system temperature is 300 K.

By solving the linear regression problem (2.43) with the least squares method, the
relaxation rates of heat flux can be obtained. When the system temperature is 300 K,
only translational and rotational energies are considered, and we have Att = 0.8986,
Atr = −0.3857, Art = −0.0051, Arr = 0.6947. When the system temperature is 1000 K,
the vibrational modes are activated. Given the fact that the vibrational collision number
is much larger than the rotational one, it is reasonable to assume that Atv = Avt = Arv =
Avr = 0, and then we have Att = 1.1670, Atr = −0.8746, Art = −0.1278, Arr = 0.9148,
Avv = 0.7398. The Eucken factors are calculated according to (2.48) and shown in table 2,
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Temperature (K) ft fr fv feu

300 2.271 (2.16) 1.456 — 1.945 (1.93)
1000 2.205 (2.32) 1.555 1.352 1.846 (1.89)

Table 2. Comparison of the Eucken factors extracted from the MD calculations in this work and the values
derived by Mason & Monchick (1962) (in parentheses).

which have good agreement with the values obtained by Mason & Monchick (1962) from
the Chapman–Enskog expansion of the WCU equation.

Appendix C. H theorem in linearized molecular gas system

To explicitly evaluate (dH/dt)1 for the RTA collision operator in a linearized molecular
gas system, we consider a gas system that deviates slightly from an equilibrium state
at rest, it is convenient to use the variables expressing the perturbation from this state.
Let L0, T0, n0 be the reference length, temperature and number density, respectively, then
the most probable speed is vm = √

2kBT0/m and reference pressure is p0 = n0kBT0. The
deviated variables are chosen as follows,

ΔT = T − T0, Δn = n − n0, Δu = u, ΔP = P − p0I, Δq = q. (C1)

Then the linearized collision operator for gas–gas interaction (2.19) is given as

Jl
gas,i = gl

t,i − fi
τ

+ gl
r,i − gt,i

Zrτ
+ gl

v,i − gt,i

Zvτ
, (C2)

where gl
t,i, gl

r,i and gl
v,i are the linearized reference distribution functions

gl
t,i = f (0)

i

[
1 + Δn

n0
+ 2

v · Δu
v2

m
+
(

v2

v2
m

− 3
2

)
ΔTt

T0
+
(

Ir

kBT0
− dr

2

)
ΔTr

T0
+
(

εi

kBT0
− dv

2

)
ΔTv

T0

+ 4Δqt · v

15p0v2
m

(
v2

v2
m

− 5
2

)
+ 4Δqr · v

dvp0v2
m

(
Ir

kBT0
− dr

2

)
+ 4Δqv · v

dvp0v2
m

(
εi

kBT0
− dv

2

)]
,

gl
r,i = f (0)

i

[
1 + Δn

n0
+ 2

v · Δu
v2

m
+
(

v2

v2
m

− 3
2

)
ΔTt

T0
+
(

Ir

kBT0
− dr

2

)
ΔTr

T0
+
(

εi

kBT0
− dv

2

)
ΔTv

T0

+ 4Δq0 · v

15p0v2
m

(
v2

v2
m

− 5
2

)
+ 4Δq1 · v

dvp0v2
m

(
Ir

kBT0
− dr

2

)
+ 4Δq2 · v

dvp0v2
m

(
εi

kBT0
− dv

2

)]
,

gl
v,i = f (0)

i

[
1 + Δn

n0
+ 2

v · Δu
v2

m
+
(

v2

v2
m

− 3
2

)
ΔTt

T0
+
(

Ir

kBT0
− dr

2

)
ΔTr

T0
+
(

εi

kBT0
− dv

2

)
ΔTv

T0

+ 4Δq0 · v

15p0v2
m

(
v2

v2
m

− 5
2

)
+ 4Δq1 · v

dvp0v2
m

(
Ir

kBT0
− dr

2

)
+ 4Δq2 · v

dvp0v2
m

(
εi

kBT0
− dv

2

)]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(C3)

To explicitly evaluate the change of functional H due to the gas–gas collisions, the
distribution function fi is expanded about f (0)

i in a series of orthogonal polynomials in
variables v, Ir, εi, the corresponding moments Δn, Δu, ΔTt, ΔTr, ΔTv , ΔP, Δqt, Δqr,
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Δqv and high-order terms HoT (the moments in terms of higher order of v),

fi = f (0)
i

[
1 + Δn

n0
+ 2

v · Δu
v2

m
+
(

v2

v2
m

− 3
2

)
ΔTt

T0

+
(

Ir

kBT0
− dr

2

)
ΔTr

T0
+
(

εi

kBT0
− dv

2

)
ΔTv

T0

+ 4Δqt · v

5p0v2
m

(
v2

v2
m

− 5
2

)
+ 4Δqr · v

dvp0v2
m

(
Ir

kBT0
− dr

2

)
+ 4Δqv · v

dvp0v2
m

(
εi

kBT0
− dv

2

)
+ ΔP

p0
:
(

vv

v2
m

− v2

3v2
m

I
)

+
∑

HoT
]

. (C4)

Therefore, the term (dH/dt)1 can be obtained,(
dH
dt

)
1

=
N∑
i

∫∫
ln( fi)Jl

gas,i dv dIr

=
N∑
i

∫∫
ln( fi)

[
1
τ
(gl

t,i − fi) + 1
Zrτ

(gl
r,i − gl

t,i) + 1
Zvτ

(gl
v,i − gl

t,i)

]
dv dIr

= 1
τ

[
− 8Δq2

t

15p2
0v

2
m

+
(

1
Zr

+ 1
Zv

)
1

p2
0v

2
m

×
(

4
15

Δqt · (Δq0−3Δqt)+
4
dr

Δqt · (Δq1−Δqr)+
4
dv

Δqt · (Δq2 − Δqv)

)

− 1
p2

0
ΔP : ΔP −

∑
(HoT)2

]

= − 4
τp2

0v
2
m

⎡⎣ Δqt
Δqr
Δqv

⎤⎦T ⎡⎣ Att/5 Atr/5 Atv/5
Art/dr Arr/dr Arv/dr
Avt/dv Avr/dv Avv/dv

⎤⎦⎡⎣ Δqt
Δqr
Δqv

⎤⎦
− 1

τ

(
1
p2

0
ΔP : ΔP +

∑
(HoT)2

)
. (C5)

The change of functional H due to the shear stress and high-order terms is obviously
non-positive. Besides, the matrix corresponding to the heat flux is positive definite, since
the diagonal elements are positive and much larger than the off-diagonal elements (the
approximated values of the thermal relaxation rates A can be found in (3.12)). Therefore,
the non-positivity of (dH/dt)1 is guaranteed.
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