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SUMMARY

Agriculture can benefit substantially from long-range weather forecasts, for the month or the season,
which can help to optimize farming operations and deal more effectively with the adverse impacts of
climate variability, including extreme weather events. In the context of climate change, long-range
weather forecasts also represent key elements for the development of adaptation strategies. In spite of
an undeniable potential, long-range forecasts issued for instance by the European Centre for Medium-
RangeWeather Forecasts (ECMWF) have yet to find widespread application in European agriculture.
To address partially the question of why this is the case, the performance of the ECMWF monthly
ensemble forecasting system was examined. It was noted that predictability is currently limited to
about 3 weeks for temperature and 2 weeks for precipitation and solar radiation. This may appear
deceptive at first sight, but it was noticed that precipitation forecasts over a month are, overall, at least
as valuable as information obtained from observed climatology. Encouraged by this finding, the
possibility of using monthly forecasts to predict soil water availability was tested. In an operational
context, this could serve as a basis for scheduling irrigation. Positive skills were found for lead times of
up to 1 month. It was concluded that more systematic investigations of the possibilities offered by
long-range forecasts should be undertaken in the future. However, this will require additional efforts
to increase the quality of the forecasts, design appropriate application tools and promote the
dissemination of the outcome within the agriculture community.

INTRODUCTION

Thanks to advances in the modelling of coupled
ocean-atmosphere dynamics, ensemble predictions of
the atmospheric state over a season have become
well established and are operationally issued by many
weather services. The potential benefits from long-
range weather predictions in agricultural decision
problems have been pointed out by many authors
(e.g. Hansen 2005; Meinke & Stone 2005; Sivakumar
2006). This holds true, in particular, for regions
where the impact of the El Niño/Southern Oscill-
ation (ENSO) on the local or regional climate is

pronounced, a condition that has prompted a number
of initiatives in developing countries (e.g. Harrison
et al. 2007; Patt et al. 2007).

In view of the possible impacts of climate change on
agriculture, long-range probabilistic forecasts could
also represent a key element of adaptation, above all
in relation to what Olesen & Bindi (2002) call short-
adjustments, i.e. autonomous actions that can be im-
plemented without major system changes. Examples
of weather-sensitive decision problems of this sort are
the choice of crops and crop sequences, adjustments in
the cropping calendar, scheduling of irrigation and
fertilizer applications, application of pesticides, and so
on (Wilks 1997; Meinke & Stone 2005). In practice,
however, the decision process often requires precise
weather forecasts.
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In Europe, monthly and seasonal probabilistic
weather forecasts are far from being systematically
employed for guiding farming operations or helping
the decision-making process in extension services.
This may be because recent studies provide a some-
what inconclusive picture concerning the utility of
the forecasts. On the one hand, investigations con-
ducted in the framework of the DEMETER project
(Development of a European Multimodel Ensem-
ble System for Seasonal to Interannual Climate
Prediction; Palmer et al. 2004) seem to justify an
optimistic attitude, at least in relation to applications
at the regional and national scale (Cantelaube &
Terres 2005; Marletto et al. 2005; Marletto et al.
2007). On the other hand, little benefit has been found
at the local scale (Semenov & Doblas-Reyes, 2007).

Since DEMETER, some progress has been made in
relation to long-range weather predictions, in particu-
lar, with respect to ensemble forecasts over a month.
Compared to short- and medium-range forecasts,
monthly forecasts represent a significant extension of
the prediction horizon and could, therefore, provide a
valuable source of information for a variety of
decision problems, in particular, operations that do
not benefit from longer forecasts (Lawless & Semenov
2005).

The purpose of the present paper is to highlight the
possibilities for applying long-range weather forecasts
to agricultural decision problems in Europe. After
reviewing the quality of the monthly forecasts issued
by the European Centre for Medium-Range Weather
Forecasts (ECMWF), the study examines whether
bias correction of the precipitation forecasts by
statistical methods provide advantages in terms of
predictive ability. As an example of an agricultural
application, monthly forecasts are considered for
predicting soil water availability at the local scale.
A more general discussion on the research and
technical needs related to the set up of agricultural
decision systems based on long-range forecasts con-
cludes the paper.

QUALITY OF ENSEMBLE MONTHLY
FORECASTS OVER EUROPE: A REVIEW

The ECMWF monthly ensemble forecasting system
used in the present study has been described in length
by Vitart (2004) and the reader should refer to that
paper for detailed information. In short, the system
consists of a coupled ocean-atmosphere global circu-
lation model. The ocean component is the Hamburg
Primitive Equation Model (HOPE; Wolff et al. 1997).
It is run at a horizontal resolution of 1·4°, correspond-
ing to c. 155 km outside the tropics. The atmospheric
component is the ECMWF atmospheric model
integrated forecast system (IFS). It is run at a
horizontal resolution of 1·125° corresponding to c.
125 km outside the tropics.

Forecasts for the forthcoming 32 days are issued
once a week. They are set up as ensemble forecasts
with 51 individual members. Along with each real-
time forecast, five-member ensemble re-forecasts with
the same starting day of the year and lead-time are
generated for the previous 12 years to provide a
corresponding climatology. The smaller size of the re-
forecasts has to be taken into account in evaluations
of the prediction skill (Müller et al. 2005; Weigel et al.
2007). The ECMWF issues the monthly forecasts as
weekly means, with forecasted fields for weeks 1, 2, 3
and 4 corresponding to averages over days 5–11,
12–18, 19–25 and 26–32, respectively.

The performance of the ECMWF monthly ensem-
ble forecasting system in relation to near-surface
temperature has been systematically examined by
Weigel et al. (2008), who found that over Europe
the model develops a substantial negative bias
(up to −2 K) during week 1. The bias amplifies as
the integration proceeds but the error growth saturates
after about 20 days of integration.

Decreasing performance over time is also apparent
when considering skill metrics such as the de-biased
ranked probability skill score, as defined in Weigel
et al. (2008). Over Europe, prediction skill exceeds a
value of 0·3 during week 1, dropping below 0·1 during
week 2. However, even during weeks 3 and 4 pre-
diction skill remains mostly positive, suggesting that
the forecasts are only rarely worse than climatology.

As discussed by Rodwell & Doblas-Reyes (2006),
analysis of skill on the basis of the weekly averages
penalizes the outcome, because skill does not only
vary as a function of lead time but also averaging
period. As a rule, prediction skill is better for longer
averaging times (up to the lead time); the reason is
twofold. First, extending the averaging interval im-
plies that more of the skilful information from earlier
stages of the integration contributes to the mean. For
instance, the operational forecast to day 18 includes
information only from days 12 to 18; however if the
averages were taken over a 2-week interval, it would
include information from day 5 onwards. Second,
high-frequency, unpredictable noise is more effectively
filtered out with longer averaging times.

Assessments of the monthly forecasting systems for
precipitation have been less systematic than for
temperature. There is, however, evidence that the
quality of the forecasts is worse than for near-surface
temperature. In general, the basic problem of current
forecasting systems is their tendency to overestimate
the number of rainy days but underestimate rainfall
intensity (Ines & Hansen 2006). Work by Buizza et al.
(1999) andMullen & Buizza (2001, 2002) suggests that
for events characterized by moderate intensity, skilful
predictions are possible for up to a week. However,
accuracy decreases as the intensity threshold increases
and for more intensive events forecasts show little
skill, even for very short lead times.
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Part of the problem is probably caused by the
relatively low spatial resolution of the atmospheric
component of current forecasting systems. Increasing
the spatial resolution could, therefore, help to improve
the quality of the forecasts, but only if this is not
realized at the cost of a smaller ensemble size. Mullen
& Buizza (2002) argued that low-resolution precipi-
tation forecasts with large ensemble size could
ultimately be more valuable to the end-users and
decision-makers than high-resolution forecasts with
small ensemble size, particularly in relation to heavy
precipitation events.

QUALITY OF ENSEMBLE MONTHLY
FORECASTS OVER SWITZERLAND

To better appreciate the forecasting skill of the
ECMWF ensemble prediction system at the regional
scale, monthly forecasts of near-surface temperature,
precipitation and solar radiation for the area of the
Swiss Central Plateau were examined. Solar radiation
was included in the analysis as it is one of the main
drivers of crop growth, but only seldom (if at all)
considered in discussions of long-range probabilistic
forecasts.

Prediction skill was assessed by comparing the so-
called re-forecasts covering the period 1994–2005 to
observations valid for the same period. As explained
in the previous section, the re-forecasts were produced
to provide a climatology for the operational monthly
forecasts issued for the year 2006. All fields were
interpolated to a 1×1° grid resolution. The analysis
was performed for six representative sites, but only
the results for a meteorological station on the Swiss
Plateau (Wynau, 7°47′ E, 47°15′, 422 m asl) are
presented in the current paper.

For this location, a substantial negative tempera-
ture bias was found (of the order of −3K), and a
positive bias both in relation to the occurrence of wet
days (of the order of +0·5) as well as solar radiation
(of the order of +0·1). The temperature bias should be

considered in relation to the inaccurate representation
of the Alpine topography in the forecasting system. It
is not considered further because it can be effectively
removed based on the altitude bias and the assump-
tion of a standard lapse rate. Removing the precipi-
tation bias is more delicate and will be discussed in the
following sections.

Following the suggestions of Müller et al. (2005)
and Weigel et al. (2007, 2008) the de-biased ranked
probability skill score was adopted as a measure of
forecast quality. This method is not sensitive to the
size of the ensemble, which in the present case varies
considerably between forecasts (51 individual mem-
bers) and re-forecasts (5 members). For all fields,
mean values were computed depending on the lead
time, taking averages over days 5–11, 5–18, 5–25 and
5–32 for weekly, bi-weekly, 3-weekly and monthly
forecasts, respectively.

Results are presented in Table 1 and reveal several
interesting features: (i) largely positive skill values up
to a month are obtained for all variables, suggesting
that monthly probabilistic forecasts are no worse than
climatology even in a region characterized by complex
topography and substantial biases in the model
output; (ii) skill scores for precipitation and solar
radiation are significantly lower than for near-surface
temperature but still significantly larger than zero up
to a lead time of c. 20 days; (iii) for temperature and
solar radiation, but not for precipitation, skill scores
calculated only over the 3 summer months (see values
in brackets in the table) are better than those com-
puted for the year as a whole, which is somewhat at
odds with the findings of Weigel et al. (2008) for the
northern extra-tropics.

BIAS CORRECTION OF DAILY
PRECIPITATION

In view of the importance of rainfall for crop pro-
duction, the question of improving the quality of
precipitation forecasts arises naturally in the context

Table 1. Skill scores of the ECMWF monthly forecasting system in predicting near-surface temperature (T),
precipitation (P) and solar radiation (R) over the Swiss Central Plateau. Details of calculation are described in
the text. Daily data were averaged over 7, 14, 21 and 28 days for forecasts out to day 11, 18, 25 and 32, respectively.

Skill scores for the summer season are given in brackets

Lead time

Variable 11 days 18 days 25 days 32 days

T 0·55 (0·67) 0·39 (0·43) 0·24 (0·27) 0·17 (0·23)
P 0·29 (0·16) 0·18 (0·07) 0·07 (0·03) 0·01 (−0·03)
R 0·20 (0·31) 0·13 (0·16) 0·08 (0·17) 0·07 (−0·01)
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of agricultural decision problems. A simple multi-
plicative correction of the rainfall intensity provides
unbiased estimates of monthly or seasonal precipi-
tation amounts and is readily implemented in practice.
However, it is inappropriate for studies that require
information on a daily or weekly time scale.

As an alternative, Ines & Hansen (2006) examined
the possibility of applying a two-step correction
directly to the daily output of an ensemble forecasting
system. Essentially similar to the procedure proposed
by Schmidli et al. (2006), the approach involves (i)
discarding rainfall events below a calibrated threshold
to match the observed frequency of wet days and (ii)
mapping the truncated distribution onto a gamma
distribution fitted to the observed intensity distri-
bution. Ines & Hansen (2006) tested the procedure for
a location in semi-arid Kenya, and discussed the
implications for the simulation of maize growth. They
concluded that while the procedure does effectively
remove the bias in both frequency of wet days and
rainfall intensity, it fails to account for the auto-
correlation structure in the observed time series, with
negative consequences for simulated maize yields.

As mentioned, the procedure could still be of
practical use in a number of situations. Therefore, its
performance was tested in relation to the forecasted
precipitation over the Swiss Plateau. Specifically, the
study examined whether the procedure has positive
impact on skill scores and, if not, why not.

As before use was made of the ECMWF 1994–2005
monthly re-forecasts to evaluate the prediction skill,
resorting for illustrative purposes to a skill score based
on the mean square error without adjustment for the
ensemble size (Murphy 1988, equation (15)). This has
the advantage that the skill score can be decomposed
in terms reflecting different aspects of the degree
of agreement between forecasts and observations
(Murphy 1988), namely: (i) the square of the cor-
relation coefficient, i.e. a measure for the strength of
the linear relation between forecasts and observations;
(ii) a term related to the square of the slope of the
regression line between forecast and observations; (iii)
a term proportional to the square of the difference
between the mean forecast and mean observation, i.e.
a non-dimensional measure of the overall bias in the
forecasts. Terms (ii) and (iii) have a negative impact
on the skill score whenever the slope of the regression
line between forecasts and observations significantly
depart from 1 and the forecasts are biased.

For the Swiss Plateau, it was found that the cor-
rection procedure proposed by Ines & Hansen (2006)
had an overall negative impact on the skill score, with
e.g. values for week 1 decreasing from 0·3 using
uncorrected data to less than 0·2 using bias-corrected
data. Decomposition of the skill score revealed that
skill loss was mainly associated with a larger
departure of the slope of the regression line between
forecasts and observations from the ideal 1:1 line than

found with the uncorrected data. In turn, this was
prompted by changes in the statistical structure of the
time series of daily values. Thus, not only is the
procedure unable to recover the observed auto-
correlation, as found by Ines & Hansen (2006), but
in some instances it can even lead to a deterioration of
the statistical properties of the original forecasts.

Based on these findings, an alternative procedure
was chosen for the post-processing of monthly
forecasts. The approach is based on creating daily
input data for application models with the help of a
stochastic weather generator and is described in more
detail in the next section.

FORECASTING SOIL WATER
AVAILABILITY

The availability of soil water remains one of the main
determinants of crop growth, particularly in rain-fed
agriculture. For this reason, the possibility of predict-
ing soil water availability up to a month in advance
was studied, as an example, by linking the ECMWF
monthly weather forecasts to a simple model of the
soil water balance. In short, the model represents
the root zone as a simple bucket, and computes
changes in soil water storage in response to inputs
from precipitation and outputs from evapotranspira-
tion and deep percolation (see e.g. Rodriguez-Iturbe
et al. 1999). Computation of the evaporative flux is
carried out following Calanca (2007), with potential
evapotranspiration estimated using the Priestley–
Taylor equation (Priestley & Taylor 1972) and actual
evapotranspiration limited according to soil water
content.

Apart from the meteorological drivers, the model
requires specification of the soil hydraulic properties.
The parameters were calibrated by fitting model
simulations to measurements of the soil water content
from a field experiment running since 2002 at a
location close to the study site (Ammann et al. 2007).
Results from the calibration showed that the model
reproduces soil water dynamics reasonably well, in-
cluding key features of the drought that accompanied
the summer 2003 heat wave (length of dry spells,
cumulated soil water deficit, etc.).

For the reasons detailed in the previous section, the
probabilistic monthly forecasts were translated into
daily realizations of temperature, precipitation and
solar radiation consistent with the monthly forecasts
with the help of a weather generator. This approach is
common in climate studies (Wilks 2002; Hansen &
Indeje 2004; Feddersen & Andersen 2005; Lawless &
Semenov 2005). The generator used was the LARS-
WG stochastic weather generator (Semenov & Barrow
1997, Semenov et al. 1998).

The generator was first conditioned with 25 years of
daily weather observations and subsequently run to
generate 3000 years of daily data consistent with the
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observed climatology. Then, 51 realizations were
selected at random from this pool to reproduce the
joint probability distributions of temperature, precipi-
tation and solar radiation anomalies for each starting
date and lead time indicated by the forecasts. These
were then used to drive the soil moisture model over
the forecasting period.

To account for the memory effect in soil water
dynamics and the sensitivity of forecasted soil water to
initial conditions, simulations were initialized by
running the model from the beginning of each year
up to each starting date using observed weather data
(or by setting the initial soil water content to field
capacity for the first forecasting period of the year).

An example of ensemble simulations obtained in
this manner is shown in Fig. 1. Each panel refers to a
different lead time, and predicted soil moisture
evolution for each of the individual ensemble mem-
bers is plotted on the background of a reference
simulation driven with observed weather data and a
12-year climatology obtained from simulations for
1994–2005. The example refers to the year 2003,
which was characterized by exceptionally high temp-
eratures (Schär et al. 2004), considerable water deficits

over extended periods of time (Calanca 2007), and
therefore a marked departure from the climatology.

Figure 1 illustrates two key features of the appli-
cation. First, the dispersion of the ensemble (the
spread of the forecast plume) is already considerable
for a lead time of 2 weeks, and in some cases even for
a lead time of 1 week. Second, even for lead times of
3 weeks, individual members tend to cluster around
the reference rather than the climatology. However,
systematic departures from the reference can be seen
on occasions, suggesting that the forecasts do not
always capture the observed evolution, not even in a
probabilistic sense.

A similar analysis for all years between 1994 and
2005 confirms the existence of significant predictive
skill (larger than or of the order of 0·2) for lead times
of up to 1 month (Table 2). Compared to precipi-
tation, this represents at least a 2-week extension of
the predictability limit. However, owing to a weaker
performance of the ECMWF forecasting system in
relation to summer precipitation, skill scores for
the summer seasons are slightly smaller than for the
year as a whole. Moreover, Fig. 1 suggests that this
particular application benefits to a large extent from
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Fig. 1. Illustrative example of the application of a prototype system for forecasting soil volumetric moisture content (θ) at lead
times of (a) 11, (b) 18, (c) 25 and (d ) 32 days. All graphs refer to the spring/summer of 2003, a period characterized by a
drought conditions. DOY: day of year. See text for further comments. ( ) Individual forecasts.——Reference simulation.
- - - - A corresponding 12-year climatology for 1994–2005.
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the initialization procedure. It therefore appears
that applications possessing some degree of inertia
may partially overcome intrinsic weaknesses of long-
range weather forecasts. In a practical context, this
property could help with identifying the other types of
applications.

DISCUSSION

In view of the persistent improvements in the field
of weather forecasting, there is a real possibility that
agriculture, as with other weather-sensitive human
activities, could take advantage of the information
provided by long-range forecasts. Efforts to deliver
better forecasts have been undertaken along different
lines of research, e.g. developments in physical
parameterization schemes and multi-model ensemble
forecasting (Palmer et al. 2004) and also the re-
calibration of single-model ensemble predictions
(Weigel et al. 2009).

In spite of a promising background, with respect
to European agriculture systematic efforts to foster the
use of such forecasts still need to be undertaken. To
some extent, this is understandable against the back-
ground of a limited skill of long-range forecasts, firstly
in relation to precipitation. But limited predictability
is also of concern in relation to other variables of
interest in agrometeorology, such as solar radiation or
air humidity. Little has been done to date with respect
to these to systematically evaluate the performance of
forecasting systems. Promoting targeted research in
this direction could help to increase confidence in the
forecasts.

In the present study, the quality of monthly
precipitation forecasts were examined more closely
using the example of the monthly ensemble forecasts
issued by the ECMWF for Switzerland. It was found
that extending the averaging time beyond the weekly
scale at which the forecasts are issued could provide
useful forecasts up to about 15 days. This is a sensitive
time scale for decision problems involving, e.g.
irrigation. Correction of the daily precipitation out-
put, as suggested by Ines & Hansen (2006), did not

improve the prediction skill, since the procedure tends
to destroy the auto-correlation structure and reduce
skill scores.

Therefore, there is some evidence that processing
the output of ensemble forecasting systems via
statistical downscaling and/or stochastic weather
generation remains, for the time being, the method
of choice for retrieving information at the temporal
and spatial scales required by application models
(Wilks 2002). There have been considerable develop-
ments along these lines in recent years (see e.g.
Feddersen & Andersen 2005), including, in particular,
the generation of spatially coherent data (see e.g.
Wilks 1998, 1999; Semenov & Brooks 1999). How-
ever, further research is needed to develop the
downscaling of variables other than near-surface
temperature and precipitation (Huth 2005). Addi-
tional efforts are also necessary to improve the
downscaling of extreme events (Semenov 2008),
regardless of progress achieved in the recent past
(e.g. Busuioc et al. 2008; Hundecha & Bárdossy
2008).

From a practical point of view, a case study was
presented where decisions based on monthly forecasts
proved to have some benefits in predicting soil moist-
ure availability up to a month ahead. Linking
monthly forecasts with even a simple soil moisture
model could thus serve as a starting point for
developing a prediction system aimed at guiding
irrigation. In presenting the results it was noted that
in this case the decision process benefits from memory
effects inherent to the system under consideration
(the soil water store). It is not guaranteed that the
same conclusion would have been reached, had the
target of the investigation been another.

This shows the importance of evaluating the set-
up of a decision support system relying on long-
range forecasts on a case to case basis. Questions that
need to be addressed are, among others, whether the
forecasts are in an appropriate form, predict the
proper variables and refer to the relevant time scales
(Wilks 1997; Garbrecht et al. 2005). With regard to
the last of these questions, Lawless & Semenov (2005)
have shown that the lead time in prediction of crop
yield does not only vary between locations but also
depends on the crop characteristics affecting the
decision process at a single location. In addition,
sufficient care should be taken to fully exploit the
probabilistic format of long-range forecasts (Doblas-
Reyes et al. 2007).

Examining the performance of decision support
systems in the specific context of their application is
also of paramount importance (Hansen et al. 2006).
Showing that forecasting systems provide a more
reliable decision basis than approaches relying on
experience and knowledge of climatology and/or
persistence is one of the prerequisites for endorsing a
positive attitude toward long-range forecasts by the

Table 2. Skill scores of the prototype forecasting
system for predicting soil moisture content (θ)
described in the text. Details are given in the text.
Skill scores for the summer season are given in brackets

Lead time

Variable 11 days 18 days 25 days 32 days

θ 0·43 (0·37) 0·32 (0·24) 0·27 (0·19) 0·17 (0·12)
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end-users (McCrea et al. 2005). Opening the access
to the forecasts, ensuring a better link between the
climate and agricultural communities and fostering
capacity-building activities are other measures that
could help to promote the use of long-range forecasts
(Garbrecht et al. 2005). In particular, it is funda-
mental that end-users and decision-makers appreciate
the difference between deterministic short- to
medium-range weather forecasts and probabilistic
monthly and seasonal forecasts.

Progress in long-range weather forecasting is
important in the context of climate change as well, as
timely information is needed for risk management
and to devise effective measures of adaptation. The
impacts of events such as the European heat wave in
summer 2003, with uninsured losses for the agricul-
tural sector estimated at US$12·4 billion (SwissRe
2004), can be dramatic. Climate scenarios suggest
that in many parts of Europe events of this sort
could occur more often in the future (Beniston 2004).
Increasing the preparedness of farmers and other end-
users is therefore essential to reduce the economic

impacts of climate variability and limit the conse-
quences of extreme events. It is encouraging to see that
recent developments at ECMWF have already helped
significantly improving the predictability of extreme
European summer temperatures (Weisheimer et al.
2009).

Part of this work has grown from activities of
the lead author for the Commission on Agri-
cultural Meteorology by the World Meteorological
Organization (WMO) and is a contribution to
COST Action 734 (Impact of Climate Change and
Variability on European Agriculture, http://www.
cost734.eu). The case study was supported by the
Swiss National Science Foundation through the
National Centre for Competence in Research on
Climate (NCCR Climate). We thank Mikhail
Semenov (Rothamsted Research, Centre for Math-
ematical and Computational Biology, Harpenden,
Herts, AL5 2JQ, U.K.) for making available LARS-
WG and also to two anonymous reviewers for useful
comments.
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