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AI for Lawyers

A Gentle Introduction

John A. McDermid, Yan Jia and Ibrahim Habli

I  Introduction

This chapter introduces the basic concepts of artificial intelligence (AI) to assist law-
yers in understanding in what way, if any, the private law framework needs to be 
updated to enable systems employing AI to be treated in an ‘appropriate’ manner. 
What ‘appropriate’ means is a matter for legal experts and ethicists, insofar as the 
law reflects ethical principles, so the chapter seeks to identify the technological chal-
lenges which might require a legal response, not to prejudge what such a response 
might be.

AI is a complex topic, and it is also moving very fast, with new methods and appli-
cations being developed all the time1. Consequently, this chapter focuses on princi-
ples that are likely to be stable over time, and this should help lawyers to appreciate 
the capabilities and limitations of AI. Further, it illustrates the insights with ‘concrete’ 
examples from current applications of AI. In particular, it discusses the state of the art 
in application of AI and machine learning (ML) and identifies a range of challenges 
relating to use of the technology where it can have an impact on human health and 
wellbeing.

The rest of the chapter is structured as follows. Section II introduces the key 
concepts of AI including ML and identifies some of the main types and uses of 
ML. Section III sets out a view of the current ‘state of the art’ in AI applications, 
the strengths and weaknesses of the technology and the challenges that this brings. 
This is supported by concrete examples. Section IV presents conclusions including 
arguing that a multidisciplinary approach is needed to evolve the legal framework 
relating to AI and ML.

	1	 Z Somogyi, The Application of Artificial Intelligence: Step-by-Step Guide from Beginner to Expert 
(Springer 2021).
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II  Artificial Intelligence: Key Concepts

The concept of AI is generally said to originate with Alan Turing2 who proposed 
an ‘imitation game’ where a human held a conversation through a textual interface 
either with another human or a computer (machine).3 If a human cannot distin-
guish the machine from another human, then the machine is said to have ‘passed 
the test’ – we now refer to this as the ‘Turing Test’,4 although Turing didn’t use 
that term himself. Technology has advanced to an enormous degree in the seventy 
years since Turing’s original paper but the concept of a machine imitating a human 
remains valid and indicative of the aims of AI.5

A  Artificial Intelligence and Machine Learning

First, we give a more direct definition of what is meant by AI and then introduce 
the concept of ML:

•	 AI involves developing computer systems to perform tasks normally regarded 
as requiring human intelligence, for example, deciding prison sentences,6 or 
medical diagnosis.7

At the moment, there is no consensus on a standard definition of AI.8 The European 
Commission’s Communication on AI proposed the following definition of AI:

Artificial intelligence (AI) refers to systems that display intelligent behaviour 
by analysing their environment and taking actions – with some degree of 
autonomy – to achieve specific goals. AI-based systems can be purely software-
based, acting in the virtual world (e.g., voice assistants, image analysis software, 
search engines, speech and face recognition systems) or AI can be embedded 
in hardware devices (e.g., advanced robots, autonomous cars, drones or Internet 
of Things applications).9

Some other definitions of AI tend to describe the technology in terms of its most 
widely used techniques, for example, ML, logic, and statistical approaches.10

	 2	 SB Cooper and J van Leeuwen (eds), Alan Turing: His Work and Impact (Elsevier 2013).
	 3	 A Turing, ‘Computing Machinery and Intelligence’ (1950) 59(236) Mind 433.
	 4	 J Moor (ed), The Turing Test: The Elusive Standard of Artificial Intelligence, vol 30 (Springer 2003).
	 5	 A Darwiche, ‘Human-Level Intelligence or Animal-Like Abilities?’ (2018) 61(1) Communications of 

the ACM 56.
	6	 J Ryberg and JV Roberts (eds), Sentencing and Artificial Intelligence (Oxford University Press 2022).
	 7	 EJ Topol, ‘High-Performance Medicine: The Convergence of Human and Artificial Intelligence’ 

(2019) 25(1) Nature Medicine 44.
	 8	 R Calo, ‘Artificial Intelligence Policy: A Primer and Roadmap’ (2017) 51 UCDL Rev 399.
	9	 <https://ec.europa.eu/futurium/en/system/files/ged/ai_hleg_definition_of_ai_18_december_1.pdf>.
	10	 T Madiega, ‘Briefing, EU Legislation in Progress, Artificial Intelligence Act, PE 698.792’ (European 

Parliamentary Research Service, January 2022) <www.europarl.europa.eu/RegData/etudes/BRIE/2021/ 
698792/EPRS_BRI(2021)698792_EN.pdf>. 
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Early AI systems, often called expert systems,11 were generally based on well-
defined rules, and these rules were normally defined by humans reflecting 
knowledge of the domain in which the system was to be used, for example, clin-
ical decision-support tools that utilise a knowledge repository and a predefined 
ruleset for the prescribing of medications for common conditions.12 ML is a form 
of AI, developing computer systems that learn to perform a task from training 
data, guided by performance measures, for example, accuracy.13 ML is intended 
to generalise beyond the training data so the resultant systems can work effec-
tively in situations on which they were not trained, for example, learning to iden-
tify the presence or absence of diabetic retinopathy from thousands of historic 
retinal scans labelled with outcomes.14 We will use the term AI to include ML, 
but not vice versa.

It is common to distinguish ‘narrow AI’ from ‘general AI’, often referred to as artifi-
cial general intelligence (AGI).15 The key difference is that ‘narrow AI’ is focused on 
a specific task, for example, recognising road signs, whereas AGI is not – indeed we 
would expect AGI to have the breadth of capabilities of humans including the abil-
ity to hold conversations, drive a car, interpret legal judgments, and so on. Modern 
AI systems can be classed as ‘narrow’ and some view AGI as unattainable16 (see also 
the discussion of the ‘state of the art’ later).

ML is used in most modern AI systems as a cost-effective way of solving prob-
lems that would be prohibitively expensive or impossible to develop using con-
ventional programming – and the key to this is the ability of ML to generalise 
beyond training data.17 For example, an ML-based system used for medical diag-
nosis should work for any patient in the system’s intended scope of application. 
This is similar to the way that humans apply their knowledge – doctors can 
treat patients they have not seen before, we can drive on new roads, including 
those that weren’t built when we learnt to drive. This can be seen as gener-
alising Turing’s imitation game to a wider range of capabilities than textual 
communication.

	12	 J Fox, N Johns and A Rahmanzadeh, ‘Disseminating Medical Knowledge: The Proforma Approach’ 
(1998) 14(1–2) Artificial Intelligence in Medicine 157.

	13	 Most definitions of ML centre on learning from experiences that are captured via a training dataset. 
For example, Mitchell defines ML as ‘the scientific study of computer algorithms that improve auto-
matically through experience’. T Mitchell, Machine Learning (McGraw Hill 1997).

	14	 Y Liu, PHC Chen, J Krause and L Peng, ‘How to Read Articles that Use Machine Learning: Users’ 
Guides to the Medical Literature’ (2019) 322(18) Jama 1806.

	15	 G Marcus and E Davis, Rebooting AI: Building Artificial Intelligence We Can Trust (Vintage 2019).
	16	 Despite the impressive performance of many ML-based systems that have exceeded human ability, 

say for object recognition in images, no ‘new theory of the mind’ has emerged that could be seen as 
paving the way for AGI. A Darwiche, ‘Human-Level Intelligence or Animal-Like Abilities?’ (2018) 
61(10) Communications of the ACM 56.

	17	 I Goodfellow, Y Bengio and A Courville, Deep Learning (MIT Press 2016).

	11	 J Liebowitz (ed), The Handbook of Applied Expert Systems (CRC Press 2019).
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B  Types of Machine Learning

There are many different ML methods, but they can generally be divided into three 
classes.18 We provide some contextual information then give descriptions of these 
three classes before giving some examples of different ML methods.19

Data plays a key role in ML and learning algorithms are used to discover knowledge 
or patterns from data without explicit (human) programming.20 The result of learning 
is referred to as the ML model. The dataset used for training may be labelled, saying 
what each datum means, for example, a cat or a dog in an image, or it may be unla-
belled.21 The data is normally complex, and we will refer to the elements of each datum 
as features. The dataset is often split into a training set and a test set, with the test set 
used to assess the performance, for example, accuracy, of the learnt ML model.22

1  Supervised Learning

Supervised learning uses a labelled dataset and this a priori knowledge is used 
to guide the learning process. Supervised learning tries to find the relationships 
between the feature set and the label set. The knowledge extracted from supervised 
learning is often utilised for classification or for regression problems. Where the 
labels are categorical, the learning problem is referred to as classification.23 On the 
other hand, if the labels correspond to numerical values, the learning problem is 
defined as regression problem.24

Figure 1.1 gives a simple illustration of the use of ML for object identification 
and classification. The ML models have classified dynamic objects in the image 
and placed bounding boxes around them; in general, such algorithms will distin-
guish different classes of vehicle, for example, vehicles from people, as this helps in 
predicting their movement. Here, regression may be used for predicting the future 
position or trajectory of a vehicle based on its past positions.25

	18	 S Shalev-Shwartz and S Ben-David, Understanding Machine Learning: From Theory to Algorithms 
(Cambridge University Press 2014).

	19	 The descriptions and illustrations in the rest of this section are mainly drawn from: Y Jia, ‘Embracing 
Machine Learning in Safety Assurance in Healthcare’ (PhD thesis, University of York 2021).

	20	 JC Mitchell and K Apt, Concepts in Programming Languages (Cambridge University Press 2003).
	21	 R Raina and others, ‘Self-Taught Learning: Transfer Learning from Unlabeled Data’ (Proceedings of 

the 24th International Conference on Machine learning, June 2007) 759–766.
	22	 R Ashmore, R Calinescu and C Paterson, ‘Assuring the Machine Learning Lifecycle: Desiderata, 

Methods, and Challenges’ (2021) 54(5) ACM Computing Surveys (CSUR) 1.
	23	 G Haixiang and others, ‘Learning from Class-Imbalanced Data: Review of Methods and Applications’ 

(2017) 73 Expert Systems with Applications 220.
	24	 A Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, 

and Techniques to Build Intelligent Systems (O’Reilly Media 2019).
	25	 A Benterki, M Boukhnifer, V Judalet and M Choubeila, ‘Prediction of Surrounding Vehicles Lane 

Change Intention Using Machine Learning’ (10th IEEE International Conference on Intelligent Data 
Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), September 
2019) 839–843.
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2  Unsupervised Learning

Unsupervised learning uses unlabelled data and can draw inferences from the data-
set to identify hidden patterns.26 Unsupervised learning is often used for clustering 
(grouping together related data) and finding associations among features. An active 
area of work is so-called ‘self-supervised learning’ (the self here is a computer, not a 
person) which learns good generic features from an enormous unlabelled dataset.27 
These features can then be used to solve a specific task with a smaller labelled data-
set, that is, feeding into supervised learning.

The ‘recommender’ systems for online shopping systems produce outputs such 
as: ‘people who bought this item also bought…’.28 Practical recommender systems 
use a mixture of ML methods, and this may include unsupervised learning.29 Thus, 
it is likely that most readers of this chapter will have used a system that employs 
unsupervised learning, without being aware of it.

Figure 1.1  Object classification (courtesy of AAIP)
Note:  Assuring Autonomy International Programme at the University of York, funded 
by the Lloyd’s Register Foundation.

	26	 M Alloghani and others, ‘A Systematic Review on Supervised and Unsupervised Machine Learning 
Algorithms for Data Science’ in M. Berry, A. Mohamed, B. Yap (eds), Supervised and Unsupervised 
Learning for Data Science (Springer 2020) 3.

	27	 D Hendrycks, M Mazeika, S Kadavath and D Song, ‘Using Self-Supervised Learning Can Improve 
Model Robustness and Uncertainty’ (2019) Advances in Neural Information Processing Systems 32.

	28	 I Portugal, P Alencar and D Cowan, ‘The Use of Machine Learning Algorithms in Recommender 
Systems: A Systematic Review’ (2018) 97 Expert Systems with Applications 205; M Beladev, L Rokach 
and B Shapira, ‘Recommender Systems for Product Bundling’ (2016) 111 Knowledge-Based Systems 193.

	29	 See: Luciano Strika, ‘K-Means Clustering: Unsupervised Learning for Recommender Systems’ 
(Towards Data Science, 3 April 2019) <www.towardsdatascience.com/k-means-clustering-unsupervised-
learning-for-recommender-systems-397d3790f90f> 18 August 2022.
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3  Reinforcement Learning

Reinforcement learning (RL) is a learning method that interacts with its environment by 
producing actions and discovering errors or receiving rewards.30 Trial-and-error search 
and delayed reward are the most relevant characteristics of RL. In this class of learning, 
there are three primary components: the agent (the learner or decision-maker), the envi-
ronment (everything the agent interacts with) and actions (what the agent can do).

The environment gives the agent a state (e.g., moving or stationary), the agent 
takes an action, then the environment gives back a reward as well as the next state. 
By analogy, this is like a children’s game where one child is blindfolded (the agent), 
this child can move forwards, backwards, left and right (the actions) in a room (the 
environment) to find an object and is given hints (rewards), for example, warm, hot, 
cold, freezing, depending on how close they are to the object, by other children.

This loop continues until the environment gives back a terminal state and a final 
reward (perhaps some chocolate in the children’s game), which ends the episode. 
The objective is for the agent to automatically determine the ideal behaviour in this 
environment to maximise its performance. Normally RL development is carried out 
in a simulated environment or on historical data before the agent is used in real-
world applications, for example, optimising the treatment of sepsis.31

RL can be used in planning and prediction problems, for example, identifying 
safe paths for a robot to move around a factory, and recommending medication for a 
patient.32 In constrained environments with concrete rules, for example, board games, 
RL has demonstrated outstanding performance. This is best illustrated by DeepMind’s 
AlphaGo computer program that utilised RL, amongst other ML models, and defeated 
the world champion in the game of Go, which is much more complex than chess.33

C  Developing ML Models

Following the identification and analysis of a problem in a specific context, ML models 
can be developed through three primary phases: data management, model learning 
and model testing.34 Data management involves collecting or creating, for example, 
by simulation, data on which to train the models. The data needs to be representative 
of the situation of interest, for example, roads for autonomous vehicles (AVs),35 patient 
treatments and outcomes in healthcare, and perhaps successful and unsuccessful cases 

	30	 RS Sutton and AG Barto, Reinforcement Learning: An Introduction (MIT Press 2018).
	31	 M Komorowski and others, ‘The Artificial Intelligence Clinician Learns Optimal Treatment 

Strategies for Sepsis in Intensive Care’ (2018) 24(11) Nature Medicine 1716.
	32	 I Kavakiotis and others, ‘Machine Learning and Data Mining Methods in Diabetes Research’ (2017) 

15 Computational and Structural Biotechnology Journal 104.
	33	 DeepMind, ‘AlphaGo’ <www.deepmind.com/research/highlighted-research/alphago>. 
	34	 Ashmore, Calinescu and Paterson (n 22).
	35	 We use the AVs term to embrace all driver assistance system, for example, adaptive cruise control, 

that reduce the need for the driver to engage in the dynamic driving task whether or not they are ‘fully 
autonomous’.
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for a legal assistant. As well as splitting a dataset into a training dataset and a test data 
set, a validation dataset can also be used for model parameter tuning during model 
learning. For model learning itself, it is necessary to consider how to represent the 
knowledge derived from the training data, that is, what type of ML method to use, how 
to evaluate the ML model performance and then how to optimise the learning process. 
This is illustrated in Figure 1.2.

In model testing, the performance of the ML models is assessed using various 
metrics on the test dataset. It is easiest to explain this concept by considering classi-
fication of objects for an AV. The ML model output is therefore the assessed class 
for the observed object. For simplicity, assume we are only interested in identifying 
dynamic objects, that is, those that can move, and distinguishing them from static 
objects. In this case, we can have:

•	 True positive – correct classification, for example, a person is identified as a 
dynamic object.

•	 True negative – correct classification, for example, a lamppost is not identified 
as dynamic.

•	 False positive – incorrect classification, for example, a statue36 is classified as 
dynamic.

•	 False negative – incorrect classification, for example, a person is not classified 
as dynamic.

It is common to convert these cases into rates and measures,37 for example, a true 
positive rate (TPR), which is the proportion of positives correctly identified, that 
is, true positives, out of all the positives. Similarly, other measures are defined, for 
example, accuracy, which is the proportion of correct outputs (true positives plus 
true negatives) out of all the ML model outputs.

Some ML methods, for example neural networks (NNs), produce a score or probabil-
ity qualifying the output,38 for example, dynamic object with 0.6 probability. If the thresh-
old in this case was 0.5, then the output would be interpreted as saying that the object was 

Figure 1.2  A simple illustration of machine learning process
Jia, ‘Embracing Machine Learning in Safety Assurance in Healthcare’ (n 19).

	36	 Although, of course, statues might move when being installed or if being toppled in a revolution or other 
form of protest – but this simply serves to show the difficulty of the problems being addressed by ML.

	37	 T Fawcett, ‘An Introduction to ROC Analysis’ (2006) 27(8) Pattern Recognition Letters 861.
	38	 MA Nielsen, Neural Networks and Deep Learning, vol 25 (Determination Press 2015).
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dynamic. However, if the threshold was set at 1, then the use of the NN would never give 
a positive output (saying the object was dynamic), thus the TPR would be 0, and so would 
the false positive rate (FPR). Similarly, a threshold of 0 would mean that everything was 
treated as positive, so both TPR and FPR would be 1. Intermediate thresholds, for exam-
ple 0.5, would give a different value for TPR and FPR. TPR and FPR are combined into 
a measure known as the receiver operating characteristic (ROC)39 which plots TPR vs. 
FPR as the threshold varies with different values, see Figure 1.3 for an example. It is also 
common to use the area under the curve ROC (AUC-ROC) to report the model perfor-
mance, and the closer the AUC is to 1, the better the performance is.40

	39	 The origin of the concept was in the development of radars in the 1940s, hence the slightly unintuitive 
name.

	40	 T Fawcett, ‘An Introduction to ROC Analysis’ (2006) 27(8) Pattern Recognition Letters 861.

Figure 1.3  Illustration of ROC
JA McDermid, Y Jia, Z Porter and I Habli, ‘Artificial Intelligence Explainability: The 
Technical and Ethical Dimensions’ (2021) 379(2207) Phil. Trans. R. Soc. A.
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The AUC-ROC can be used to compare different ML models to choose the best 
one for a particular application. Figure 1.3 illustrates the use of a ROC curve for this 
purpose, comparing a convolutional neural network (CNN) with a fully connected 
deep neural network (DNN).41 A random ML model (prediction) would produce a 
diagonal line on the ROC and the AUC-ROC would be 0.5. A perfect ML model 
would give an AUC-ROC of 1, and the ‘curve’ would follow the axes in the diagram. 
The example in Figure 1.3 shows that the two ML models have similar performance 
as measured by the AUC-ROC.

The intent of the evaluation criteria for ML models is to illuminate how well 
the model performs, contrasting desired behaviour with erroneous or undesirable 
behaviour.

In practice, development of ML models is highly iterative42 and model developers 
frequently build and test new models, evaluating them to see if the performance has 
improved. Once ML models are put into operation they may still be updated, for 
example if new data is available.

D  Examples of ML Methods

There are many ML methods as we mentioned earlier. The aim here is to illustrate 
the variety and their capabilities to inform the discussion on the use of ML methods 
later, and on strengths, limitations, the state of the art and challenges in Section III.

Some of the more widely used ML methods are:

•	 NNs – a network of artificial (computer models of) neurons, inspired by the 
human brain.43 NNs are good at analysing complex data, for example images, 
and can be used supervised, for example, with labelled images, or unsuper-
vised.44 There are many variants, for example, CNN and fully connected DNN 
as illustrated in Figure 1.3.

•	 Random forest (RF) – a collection of decision trees which is normally more 
robust (less susceptible to error in a single input) than a single decision tree.45 
Usually, RF is developed using supervised learning, and they are well-suited to 
decision problems, for example, for clinical diagnosis.46

	41	 NNs have an input layer (of neurons), and an output layer with hidden layers in between. Here, the 
fully connected DNN means all of the hidden layers are fully connected. CNN means that at least 
one of the hidden layers uses convolution instead of being fully connected.

	42	 R Hawkins and others, ‘Guidance on the Assurance of Machine Leaning in Autonomous Systems 
(AMLAS)’ (2021) <arXiv:2102.01564>.

	43	 MA Nielsen, Neural Networks and Deep Learning, vol 25 (Determination Press 2015).
	44	 M Alloghani and others, ‘‘A Systematic Review on Supervised and Unsupervised Machine Learning 

Algorithms for Data Science’ in M. Berry, A. Mohamed, B. Yap (eds), Supervised and Unsupervised 
Learning for Data Science (Springer 2020) 3.

	45	 M Belgiu and L Drăguţ, ‘Random Forest in Remote Sensing: A Review of Applications and Future 
Directions’ (2016) 114 ISPRS Journal of Photogrammetry and Remote Sensing 24.

	46	 KR Gray and others, ‘Random Forest-Based Similarity Measures for Multi-Modal Classification of 
Alzheimer’s Disease’ (2013) 65 NeuroImage 167.
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•	 Probabilistic graphical models (PGMs) – a graph of variables (features) of inter-
est in the problem domain and probabilistic relationships between them. There 
are several types of PGM including Bayesian networks (BNs) and Markov net-
works.47 They can be used both supervised and unsupervised.

Generally, the learnt models, most notably DNNs, are very complex and ‘opaque’ to 
humans, that is, not open to scrutiny. PGMs are more amenable to human inspec-
tion, and it is possible to integrate human domain knowledge into PGMs. The pri-
mary difference between DNNs and PGMs lies in the structure of the machine learnt 
model in that PGMs tend to reflect human reasoning more explicitly, including cau-
sation.48 This aids the process of interrogating the model for understanding the basis 
of its output. This level of transparency is harder to achieve with DNNs and therefore 
the majority of the techniques that are used to explain the output of DNN models 
rely on indirect means,49 for example, examples and counterfactual explanations.50

E  Uses of ML Models

There are many uses of ML models. Some are embedded in engineered systems, 
for example, AVs, whereas others are IT systems, that is, operating on a computer, 
phone, or similar device.

AVs are an example of embedded ML. AVs often use ML for camera image anal-
ysis and understanding, for example classifying ‘objects’ into dynamic vs static, and 
identifying subclasses of dynamic objects – cars, bicycles, pedestrians, and so on. 
Typically, the systems employ a form of NN, for example, CNNs.51 Many employ 
conventional computational methods of path planning (local navigation) but some 
use RL to determine safe and optimal paths.52

ML is increasingly being proposed for use in healthcare for both diagnosis and 
treatment;53 most of such applications are IT systems. Some of the systems also 
involve image analysis, for example, identifying tumours in images, with perfor-
mance exceeding that of clinicians in some cases.54 There are online systems, for 

	47	 J Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan 
Kaufmann 1988); D Lowd and A Rooshenas, ‘Learning Markov Networks with Arithmetic Circuits’ 
(2013) 31 Artificial Intelligence and Statistics 406.

	48	 J Pearl and D Mackenzie, The Book of Why: The New Science of Cause and Effect (Basic Books 2018).
	49	 J McDermid, Y Jia, Z Porter and I Habli, ‘Artificial Intelligence Explainability: The Technical and 

Ethical Dimensions’ (2021) 379(2207) PhilTrans.
	50	 S Wachter, B Mittelstadt and C Russell, ‘Counterfactual Explanations without Opening the Black 

Box: Automated Decisions and the GDPR’ (2017) 31 Harv JL & Tech 841.
	51	 S Ren, K He, R Girshick and J Sun, ‘Faster R-CNN: Towards Real-Time Object Detection with 

Region Proposal Networks’ (2015) 28 Advances in Neural Information Processing Systems 91.
	52	 AE Sallab, M Abdou, E Perot and S Yogamani, ‘Deep Reinforcement Learning Framework for 

Autonomous Driving’ (2017) 19 Electronic Imaging 70.
	53	 E Topol, Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again (Hachette 2019).
	54	 EJ Hwang and others, ‘Development and Validation of a Deep Learning Based Automatic Detection 

Algorithm for Active Pulmonary Tuberculosis on Chest Radiographs’ (2019) 69(5) Clinical Infectious 
Diseases 739–747.
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example, from Babylon Health,55 which employs an ML-based symptom checker. 
Applications which recommend treatments are also being explored, for example, 
delivery of vasopressors as part of sepsis treatment.56

Legal uses of AI are also IT systems. The applications include predicting the 
outcome of tax appeals57 and helping with the production of legal letters which cor-
rectly phrase non-expert text in support of claims, and other legal actions.58 Some 
of the benefit of such tools arises from currently available computational power to 
trawl large volumes of documents, and there are now commercially available tools 
that use ML (including supervised and unsupervised learning) to find appropriate 
legal documentation to support a case.59

III  State of the Art and Challenges

AI, particularly ML, has enormous potential. As noted above, this arises out of its 
ability to generalise from the data used for training to new situations; this is per-
haps the strongest justification for the use of the term ‘intelligence’. However, some 
would argue that the potential hasn’t been fully realised.60 The aim in this section 
is to try to characterise the state of the art in the use of ML, noting that it differs 
across application domains, and to identify some of the challenges in achieving 
more widespread use of the technology. The focus here is on technical and ethical 
issues, rather than on legal challenges.

A  State of the Art

ML is already pervasive in a range of online applications (IT systems). As indicated 
above, online platforms, which many use daily, such as Google search and online 
shopping, make massive use of ML.61 Arguably, Google’s search engine is one of the 
most impressive applications of ML providing extensive results to arbitrary textual 
queries in a very short space of time. This is all the more impressive as the learning is 
necessarily unsupervised. As well as good algorithms, this is made possible by access 
to massive computational power in data centres (sometimes referred to as ‘cloud 
computing’).62

	55	 www.emed.com/uk 18 August 2022.
	56	 Y Jia and others, ‘Safety-Driven Design of Machine Learning for Sepsis Treatment’ (2021) 117 Journal 

of Biomedical Informatics 103762.
	57	 <www2.deloitte.com/nl/nl/pages/tax/articles/tax-i-outcome-predictions-dutch-tax-cases.html>. 
	58	 <www.donotpay.com>.
	59	 <www.luminance.com>. 
	60	 Demis Hassabis, ‘Royal Society Lecture on the History, Capabilities and Frontiers of AI’ <www​

.royalsociety​.org/science-events-and-lectures/2018/04/you-and-ai-history/>. 
	61	 See: <www.blog.hubspot.com/marketing/rankbrain-guide>.
	62	 R Buyya, J Broberg and AM Goscinski (eds), Cloud Computing: Principles and Paradigms (Wiley & 

Sons 2010).
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Such capabilities are becoming ‘commoditised’ and companies, for example, 
Amazon Web Services,63 now provide access to data centres as a commercial offer-
ing. Further, the software to build ML applications is now widely available. For 
example, TensorFlow,64 originally developed by Google is readily available; it can 
be used to build applications with a wide range of ML models including NNs, 
although it still requires extensive programming skills; there is also support for devel-
oping popular classes of system such as recommenders.

Further, there is a growing availability of skills to develop such systems with most 
computer science departments in universities teaching ML at undergraduate and 
postgraduate level. Thus, the ingredients are there for widespread development of 
AI and ML applications.

Most application domains where ML is being applied can be viewed as emergent 
or nascent. Whilst there are examples of systems, for example, in healthcare and 
legal practice, their adoption is not widespread. We will illuminate some of the rea-
sons for this when we consider challenges.

There has been work on ML in embedded systems for some time, for exam-
ple, in robotics, but the ‘autonomous vehicle challenge’ set up by the US Defense 
Advanced Research Projects Agency (‘DARPA’) about fifteen years ago can per-
haps be seen as prompting a step-change in research in this area.65 Although there 
is work using ML systems across transportation and in other sectors, for example, 
factory automation,66 mining67 and robotic surgery,68 perhaps the greatest invest-
ment and development has been seen in AVs. Waymo (a spin off from Google) is 
now offering a ‘ride hailing’ service known as Waymo One;69 whilst this service is 
only available in limited areas, for example, in Phoenix Arizona,70 the service does 
operate without a human driver and the vehicles have now operated for about 20 
million miles on the roads.71 Waymo has also now forged partnerships with sev-
eral automotive Original Equipment Manufacturers (‘OEMs’), for example, Jaguar 
Land Rover.72 However, whilst extremely impressive, the systems are not ‘perfect’, 

	63	 <www.aws.amazon.com/>. 
	64	 <www.tensorflow.org>. 
	65	 M Buehler, K Iagnemma and S Singh (eds), The DARPA Urban Challenge: Autonomous Vehicles in 

City Traffic, vol 56 (Springer 2009).
	66	 DH Kim and others, ‘Smart Machining Process Using Machine Learning: A Review and Perspective 

on Machining Industry’ (2018) 5(4) International Journal of Precision Engineering and Manufacturing-
Green Technology 555.

	67	 Z Hyder, K Siau and F Nah, ‘Artificial Intelligence, Machine Learning, and Autonomous 
Technologies in Mining Industry’ (2019) 30(2) Journal of Database Management (JDM) 67.

	68	 M Bhandari, T Zeffiro and M Reddiboina, ‘Artificial Intelligence and Robotic Surgery: Current 
Perspective and Future Directions’ (2020) 30(1) Current Opinion in Urology 48.

	69	 <www.waymo.com/waymo-one/>.
	70	 At the time of writing, services were being extended to San Francisco to ‘trusted testers’, see for example:  

<www.arstechnica.com/gadgets/2021/08/waymo-expands-to-san-francisco-with-public-self-driving-test/>.
	71	 <www.reuters.com/article/us-autonomous-waymo-idUSKBN1Z61RX>. 
	72	 <www.theverge.com/2018/3/27/17165992/waymo-jaguar-i-pace-self-driving-ny-auto-show-2018>. 
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and there have been several examples of vehicles getting confused or ‘stuck’, for 
example, by traffic cones.73

Note that these systems are computationally expensive (particularly for image anal-
ysis)74 and are only practicable because of the availability of super-computer levels of 
performance at affordable prices.75 Further, computational power is doubling roughly 
every eighteen months76 which should facilitate the broader adoption of ML.

B  Challenges

There are many challenges in developing ML-based systems, so that they can be used 
with confidence that their behaviour will be sound, safe, legal, and so on, where their 
use can give rise to harm. The aim here is to identify some of the key technical chal-
lenges and to outline some of the possible approaches to addressing these challenges.

First, and most fundamentally, there is a transfer of decision-making or responsi-
bility for recommending a course of action from a human to a computer and its ML 
components. From a legal perspective, this raises issues about agency and liability 
which are discussed elsewhere in this volume.

Second, humans have a semantic model, for example, know what a bicycle is and 
its likely behaviour; computers, even those incorporating ML, do not have these mod-
els.77 Similarly, humans have contextual models, for example, know what a round-
about is and the effects on driver behaviour, and the ML does not.78 These semantic 
and contextual models allow humans to generalise beyond their experience to reliably 
deal with new situations. However, for systems using ML the lack of such models can 
contribute to ‘gaps’ between what is required and what is achieved, which may be 
significant in engineering, ethical and legal terms.79 The solution to this is to encode 
enough additional information in the systems to cope with the limitations in the ML 
components to enable effective operation – note that this is potentially feasible as we 
are considering ‘narrow AI’ not AGI80 – but, as the example of the Waymo getting 
stuck encountering traffic cones shows, doing this remains a major challenge.

	73	 <www.vice.com/en/article/y3dv55/waymo-self-driving-car-gets-stuck-by-cones-drives-away-from-assistance>. 
	74	 F Dufaux, ‘Grand Challenges in Image Processing’ (2021) 1 Frontiers in Signal Processing 3.
	75	 <www.qblocks.medium.com/how-much-did-it-cost-to-build-the-fastest-supercomputer-in-the-world-

8e9e30a56f60>. 
	76	 This claim is often made in reference to Gordon Moore’s prediction that the number of components 

in an integrated circuit would double every two year (referred to as ‘Moore’s law’), <www.britannica​
.com/technology/Moores-law>. 

	77	 A Darwiche, ‘Human-Level Intelligence or Animal-Like Abilities?’ (2018) 61(10) Communications of 
the ACM 56.

	78	 C Paterson and others, ‘DeepCert: Verification of Contextually Relevant Robustness for Neural 
Network Image Classifiers’ (International Conference on Computer Safety, Reliability, and Security, 
September 2021) 3–17.

	79	 S Burton and others, ‘Mind the Gaps: Assuring the Safety of Autonomous Systems from an 
Engineering, Ethical, and Legal Perspective’ (2020) 279 Artif Intell 103201.

	80	 G Marcus and E Davis, Rebooting AI: Building Artificial Intelligence We Can Trust (Vintage 2019).
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Third, the way the ML systems work, generalising from training data, identifies 
correlations not causation.81 A recent study82 used ML to assess the relationship 
between body shape and income, and identified correlations which differ across 
genders, for example that obesity in females correlates with lower income. It would 
be a mistake, however, to infer that body shape causes low income – it may be 
that those on low income cannot afford a good diet and that might lead to obesity. 
Further, there may be other causally relevant factors that have not been considered 
in the ML model. This does not mean that the ML model is wrong; just that care 
needs to be taken when acting on the outputs of the ML model.

Fourth, the learnt ML models are ‘opaque’, that is not amenable to human scru-
tiny.83 This means that it is hard to understand why the ML models produce their 
outputs. This can, in turn, give rise to doubts – why was that recommendation made, 
and was it biased? This has legal implications, for example, in terms of complying 
with the General Data Protection Regulations,84 as well as ethical ones in terms of 
fairness. A partial solution is via so-called explainable AI methods, where simpler 
approaches are used to make the workings of the ML model human interpretable.85 
One of the most commonly used explainable AI methods is feature importance 
which illustrates the relative weight of each input feature for the ML model as a 
whole (global importance) or for a particular output (local importance).86 This is 
illustrated in Figure 1.4, for a system concerned with weaning intensive care patients 
from mechanical ventilation. Here, the longer bars show greater influence of that 
input feature on the ML model output, with those bars close to zero length being 
of least importance.

This figure is for the two ML models shown in Figure 1.3. The two ML models 
have similar performance as shown in Figure 1.3, but the feature importance is quite 
different. Clinicians can judge the relevance and validity of these weightings to 
see which, if either, of the ML models is preferable. It is also notable that gender, 
ethnicity, and age are close to zero (low importance) for the CNN but age and gen-
der in the fully connected DNN are relatively important, so this model might be 
thought to show bias. Care needs to be taken here. Age and gender might be clin-
ically relevant, so a judgement about whether a system is biased or not needs to be 

	81	 JG Richens, CM Lee and S Johri, ‘Improving the Accuracy of Medical Diagnosis with Causal 
Machine Learning’ (2020) 11(1) Nature Communications 1.

	82	 S Song and S Baek, ‘Body Shape Matters: Evidence from Machine Learning on Body Shape-Income 
Relationship’ (2021) 16(7) PLoS One e0254785 <https://doi.org/10.1371/journal.pone.0254785>.

	83	 C Molnar, ‘Interpretable Machine Learning’ (Lulu.com, 2021).
	84	 C Kuner and others, ‘Machine Learning with Personal Data: Is Data Protection Law Smart Enough 

to Meet the Challenge?’ (2017) 7(1) International Data Privacy Law 1, 1–2.
	85	 D Doran, S Schulz and TR Besold, ‘What Does Explainable AI Really Mean? A New Conceptualization 

of Perspectives’ (2017) <arXiv preprint arXiv:1710.00794>.
	86	 LH Gilpin and others, ‘Explaining Explanations: An Overview of Interpretability of Machine 

Learning’ (IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), 
October 2018) 80–89.
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considered carefully; in this case, ethical considerations need to be treated alongside 
clinical ones.

Fifth, there is an issue of trust and human control over the system employing 
ML. As noted above, some ML systems produce outputs with a probability; in all 
cases, there is uncertainty in the accuracy of the results.87 Users should be (made) 
aware of this intrinsic uncertainty. However, even if they are aware, there can be 
automation bias where users tend to trust the system’s outputs without question-
ing them.88 Further, the user might have no practical way of cross-checking the 
output of the ML system – they might not have access to the ‘raw’ data and there 
may simply be insufficient time to assess the data and to intervene. Such issues 
might, in part, be addressed using techniques such as explainable AI methods but 
there remain legal and ethical issues, for example, the ethical conditions for carry-
ing responsibility might not be met for those who carry legal responsibility for the 
effects of using the system89.

Figure 1.4  Global feature importance for CNN and fully connected DNN
McDermid, Jia, Porter and Habli, ‘Artificial Intelligence Explainability: The Technical 
and Ethical Dimensions’ (n 49).

	87	 MA Nielsen, Neural Networks and Deep Learning, vol 25 (Determination Press 2015).
	88	 R Parasuraman and V Riley, ‘Humans and Automation: Use, Misuse, Disuse, Abuse’ (1997) 39(2) 

Human Factors 230.
	89	 Burton and others (n 79).
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Sixth, many embedded systems operate in situations where they can pose a threat 
to human health or safety, for example, in unmanned aircraft for reconnaissance.90 
However, this is perhaps most apparent with AVs although it can arise in other cases, 
for example, robotic surgery. Figure 1.5 presents a partial timeline for the accident 

Figure 1.5  Partial timeline in Uber Tempe accident

	90	 JA McDermid, Y Jia and I Habli, ‘Towards a Framework for Safety Assurance of Autonomous Systems’ 
(CEUR Workshop Proceedings, August 2019) 1–7.
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caused by an Uber ATG vehicle in March 2018 in Tempe Arizona that led to the 
death of Elaine Herzberg.91 This example enables us to illustrate the importance of 
some of the concepts introduced earlier.

Figure 1.5 shows the positions of Elaine Herzberg and her bicycle (labelled as 
pedestrian) and the Uber ATG vehicle (shown in green) at four times prior to the 
impact. The Highway Accident Report published by the National Transportation 
Safety Board stated that the Automated Driving System ‘never accurately classi-
fied her as a pedestrian or predicted her path’.92 Critically, the predicted motion 
depended on the classification so when she was on one of the left turn lanes and 
classified as a car, she was predicted to leave the main road. Her movement history 
was discarded each time the vehicle reclassified her so at no time was her trajectory 
predicted as crossing the road. An impending collision was predicted 1.2S before the 
actual accident took place but the system did not act automatically (due to a concern 
over false positives leading to unnecessary emergency braking) with the expectation 
that the safety driver would respond. The safety driver (Rafaela Vasquez) didn’t ini-
tiate timely braking – reportedly she was not paying attention, perhaps due to lack 
of training or due to automation bias (the vehicle had already successfully navigated 
the ‘circuit’ on which she was driving once). However, it may have been the case 
that she had insufficient time to react – see the previous discussion about legal and 
ethical responsibility. Uber was found to have no (legal) (criminal) case to answer 
for the accident, but the safety driver is facing a trial for negligent homicide.93 There 
is no currently accepted solution to assuring the safety of autonomous systems.94 
There is relevant work on the assurance of the ML components of autonomous sys-
tems95 but this remains an active area of research.

Finally, ML models can be set up to continue learning in operation – sometimes 
referred to as online learning.96 This is, of course, analogous to the way humans 
learn. Most current ML-based systems learn off-line with the ML models being 
updated periodically by the developers (perhaps via over-the-air updates in the case 
of AVs).97 As systems move towards online learning this introduces new challenges 
including how to assure continued safety, and it raises further questions about 
human control and agency.

	91	 National Transportation Safety Board, ‘Collision between Vehicle Controlled by Developmental 
Automated Driving System and Pedestrian’ (2019) NTSB Tech Rep <www.ntsb.gov/investigations/
AccidentReports/Reports/HAR1903.pdf>. 

	92	 Ibid.
	93	 <www.bbc.co.uk/news/technology-54175359>. 
	94	 McDermid, Jia and Habli ‘Towards a Framework for Safety Assurance of Autonomous Systems’ (n 90).
	95	 R Hawkins and others, ‘Guidance on the Assurance of Machine Leaning in Autonomous Systems 

(AMLAS)’ (2021) <arXiv:2102.01564>.
	96	 GI Parisi, ‘Continual Lifelong Learning with Neural Networks: A Review’ (2019) 113 Neural Networks 54.
	97	 J Bauwens, ‘Over-the-Air Software Updates in the Internet of Things: An Overview of Key Principles’ 

(2020) 58(2) IEEE Communications Magazine 35.
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IV  Conclusions

AI, especially ML, is already a key component of many systems affecting society – not 
least online search and other online services. The capability of current ML systems 
and the trends in the power of computer systems means that these uses are likely to 
expand over time from current applications which are predominantly IT systems to 
include embedded systems, for example, in AVs, implantable medical devices and 
manufacturing. Further, the range of application domains is likely to expand. These 
capabilities bring with them challenges in technical, ethical and legal terms.

Technically, the biggest challenge is to develop and assure systems employing 
ML models so that they can be used with confidence that they are safe and have 
other desirable properties, including being free from bias. This links to the broader 
issues of trust and the ability for humans to exercise informed control or consent 
when this is appropriate. There are many legal questions, including those around 
the notion of agency and liability. This is a complex and intellectually challenging 
area, but also one requiring urgent attention since systems employing ML models 
are already being used and there is potential for considerable growth in applications.

This chapter has tried to give an accessible (gentle) introduction to the concepts 
of AI and ML for lawyers. Some technical details have been presented, for example, 
explaining the concept of feature importance for ML models, to give an idea of the 
depth and subtlety of the issues raised by the use of AI and ML models. It is hoped 
that this makes clear the need to take a multi-disciplinary approach to studying and 
evolving the legal framework relating to AI and ML and gives an adequate basis to 
help lawyers engage in constructive discussions with technical specialists.
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