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A SEMIGROUP WITH AN EPIMORPHICALLY
EMBEDDED SUBBAND

PETER M. HIGGINS

We construct a semigroup S with an epimorphically embedded

proper subband U . The band U furnishes an example of a

regular semigroup which is not saturated, thus answering a

question posed by Ha I I, Semigroup Forum (to appear).

1. Preliminaries and introduction

Let U, S be semigroups with U a subsemigroup of S . Following

Howie and IsbelI [70] we say that U dominates an element d Z S if and

only if for every semigroup T and all pairs of morphisms a, 3 : S -*• T ,

a\U = 311/ implies that da = d3 . The set of all elements of 5

dominated by U is called the dominion of U in 5 and is denoted by

Dom(i/, 5) . It is easily verified that Dom(J/, S) is a subsemigroup of S

containing U .

Let a. : S -*• T be a semigroup morphism. Then a is an epimorphism

if for every pair of morphisms 3, y : T •* V , otg = ay implies 3 = y .

One can easily show that a morphism a : S •*• T is an epimorphisms if and

only if the inclusion i : 5a •*• T is en epimorphism, which is equivalent

to the statement that Dom(Scx, T) = T .

We say U is epimorphically embedded in S if Dom(t/, S) = S and

that U is saturated if this only occurs when U = S . A class of semi-

groups is saturated if all its members have that property. A class of

semigroups closed under the taking of morphisms, such as a variety, is
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232 P e t e r M. Hi gg ins

saturated if and only i f every epimorphism from each member of the class

i s onto.

The main tool used in the field of semigroup dominions i s I sbe l l ' s

Zigzag Theorem.

RESULT 1 [7 7, Theorem 2.3 or 9, Chapter 7, Theorem 2.13]. Let U

be a subsemigroup of a semigroup S and l e t d € S . Then d € Dom(U, 5)

i f and only i f d € U or there is a series of factorizations of d as

follows:

2m

where m * 1 , u. € U , x., y. i S and
If %• Is

uQ =

and

Such a series of factorizations is called a zigzag in 5 over 1/

with value d , length m and spine u , u , ..., u . The proof of

this theorem is difficult, but in this paper we only require the 'if part

of the statement, which follows by a straightforward manipulation of the

zigzag equations.

The notations and conventions of Clifford and Preston [7, 2] and Howie

[9], will be used throughout without explicit reference.

It was proved in 1975 by Gardner [3] that any epimorphism from a

regular ring is onto, in the category of rings. It is natural therefore to

consider the same question for semigroups, and indeed Hall [4] has

explicitly posed the question: does there exist a regular semigroup which

is not saturated? This is equivalent to asking the question: does there

exist an epimorphism from a regular semigroup which is not onto (in the

category of semigroups)? Some recent related results in this area are as

follows: epimorphisms are onto for finite regular semigroups [5]; and

epimorphisms are onto for generalised inverse semigroups [6].

In this paper we give an example which shows that, in general, regular

semigroups are not saturated; indeed the example shows the same is true of
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A semig roup w i t h embedded subband 233

orthodox semigroups (regular semigroups whose idempotents form a band), as

the example is i tself a band.

The example is relevant to other related problems. The problem of

finding al l saturated varieties of semigroups is open, although all the

saturated commutative varieties [7], [J2], and a l l the saturated hetero-

typical varieties [S] have been determined. A necessary condition for a

variety 1/ to be saturated is that i t satisfies a homotypical identity of

the form x x .., x = f{x , x , ..., x) with the x. al l distinct, and

such that 1 -̂l.p > 1 for some i [S, Theorem 6]. The example shows that% I
this condition is not in general sufficient, and allows us to strengthen

this necessary condition, insofar as we may add that V must admit an
2

identity which is not a consequence of the identity x = x

The example is constructed using the same technique as was employed by

the author in [7] and [Sj, namely taking a free semigroup S and factoring

by a congruence p , generated by relations which ensure that S/p is

dominated by a subsemigroup U , which is a member of a particular variety

of interest.

2. The example

Let F be the free semigroup on G = X u Y u A where

X = { x 1 % x 2 , . . . } , Y = { y x , y 2 , . . . } a n d A = { a ± , a ^ , . . . } . T h e

subset X u .7 of G w i l l be denoted by R . Let p be the re la t ion on

F consist ing of a l l pai rs {(a, a ) | a (. (A)} , together with those

defined by the zigzags

yn = a6n+lh2n+l = X2«+ia6n+l2/2»+l

= X2n+ia6n+2y2n+l = X2n+l<26n+Jl2n+l

for n = 0, 1, 2, . . . and

Xn = aS = X2n%n-Xy2n = X2na6^2n = X2ny6n

for n = 1, 2 These are the pairs
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a n d (a6n+^2n+l' a6n+J f o r " = ° ' X' 2 ' " ' ' t o S e t h e r w i t h a

collection of pairs defined by the zigzags above with value x ,

n = 1, 2, . . . . Note that yQ is a name given for a-,y-i an^L i s n ° t a

member of G . Let p be the congruence generated by p0 and l e t

5 = F/p and U = ( A)p . By construction, U is a band and

Bom(U, S) = S . We show U # S by proving that y p £ y .

We introduce some definitions to facil i tate discussion of the word

problem which now arises.

We say an elementary p -transition puq -»• pvq , where p, q € 1T~ ,

has base u and replacement v . The transitions themselves are

2
classified as follows: those of the form paq •* pa q , a € < A > , or a

reversal of this type are squaring transitions ; a transition of the form

° r Phnq

transition while the corresponding reversal is a downward transition. In

the general zigzag

Z : z = a A] = x a_ ,̂w = a; a ^ ,w = x a_u = x a
m 3m-2 m m yn-2Jm m 3m-1 m m 3/rfm m 3m

with z R , and [a^, x J { j

p a i r s o f p0 ' t h e c o r r e sP o n d i ng

transitions based on a-^z' ayn-£m* xmayn-\ a n d a^m are forward

transitions, while their reversals are backward transitions. Collectively,

the upward and forward transitions are known as positive transitions , while

their reversals are negative transitions.

The number of transitions in a sequence of elementary transitions I ,

is denoted by |j| , and I is said to be positive if it consists entirely

of positive transitions. Given two sequences J , J? of elementary

transitions in which the last word of J coincides with the first of

I , we define their product, J • J? by concatenation.

We say that a generator z € G has index m if it occurs in the

zigzag equations of Z and write ind z = m (note the value of Z does
m v m
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not have index m ] . We say tha t y € Y (respectively x € X ) has the

l e t t e r s a_ „ (respectively a_ ) and a_ .. as associates and the3"?-2 3m 3w-l

l e t t e r a__ (respectively a_ „ ] as annihilator. The l e t t e r s a_ _ ,$n v yn—d • sn-d.
a"3m-X (resPect ; i-vely azim i ' a-3m ) a r e mutual y-companions (respectively

x-companions).

LEMMA 2. If z € G tften there exists a unique shortest sequence

I{z) of elementary transitions l{z) : y -»• . . . -*- w j swch that

z € C(u) . Further I(z) is positive.

Proof. We proceed by induction on m = ind s . If m = 1 we see by

inspection that -T^-J = l{y-.) is t r ivial and that the shortest sequences

which introduce the other letters of index 1 are respectively,

() [^\ , and

We take as our inductive hypothesis that I(v) has been constructed

for all v € G such that 1 2 ind v < m . Consider the unique v € /?

such that there exists an upward transition based on v with replacement

' L e t t n e l a s t word of I(v) be pvq . We assert that

and further that

and that

(a__) = ifi 1 • (px a .1/ o •* px a ,w <7 -̂  px av 3w' l m* ^ m yn-2rrrr e m 3m-l m r m

Since every letter can be introduced by exactly one type of positive

transition, in order to prove the assertion for l{y ) it suffices to show

that if j[y ) is any shortest sequence beginning with a-,y-, that

introduces y , then J\jy J contains no negative transitions. Suppose

that puq -*• pvq is the last transition of such a sequence j[y ) . If
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^W_) contains a negative transition, then i t follows from the inductive

hypothesis that puq •*• pvq is negative. If this transition were backward,

i t would be Pa^JJ "*" Pa-^ 1 » ^ut s i n c e a
r>m

 c a n o nly ^e introduced via

x a_ , and a. , can only be introduced via a. u , i t follows that
m yn—x. yn—l yn—d m

this is not the case, so we may assume that puq •*• pvq is downward.

Consider the le t te r y € Y appearing in u . Since y does not appear

in j[y ) prior to pvq , i t follows that y i tself was introduced in

j[y ) hy a negative transition, and by the same argument as before, we

conclude that y was introduced by a downward transition. Repetition of

this argument yields the conclusion that \j{y ) | is arbitrarily large,

and from this contradiction we conclude that J[y J is positive and thus

J\y ) = l[y ) as given above.

Next, since the backward transition which introduces <2_ involves
yn—d

y , i t follows that for any j[a. „) (where ^(2) now denotes anm * \ yn-d'

arbitrary shortest sequence introducing z and beginning at a-\\i-\ ) w e

have j[a~ „) = I\y 1 = -[a~ „) • By a very similar argument to thatv 3^-2- vnr 3m-2J

used in the Jvu ) case, i t follows that any J[x ) = jfx ) . Since a_v rrr ^ m' • tn' yn

can only be introduced via the base xJ1r>m i > ̂  follows that any

j[a 1 = -̂ (<2_̂  ,) - By list ing all possibilities, i t can be seen that

the shortest sequence introducing the word x a-D™_i

from which i t follows that any j[arj_\ = l[a ) as given above, and this

completes the proof.

Lemma 2 allows us to make the following definitions. For any 2 € G

define the sets X{z) c X , Y(z) c Y to consist of those members of X

and Y respectively which occur as bases of upward transitions of I(z) ,

together with z i tself (s € ^(3) or ^(2) according as z d X or

2 € Y ) , and denote X(z) u y(z) by R{z) . A let ter z is derivable

from another le t te r 2 (we write 2 5 2 ) if there exists a sequence
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I : z ->-... -*• w , containing no downward transition, such that z € C(w) .

We consider a letter to be derivable from itself by a trivial sequence of

no transitions. Since z S z implies ind s 5 ind z and no two letters

of the same index are mutually derivable from one another, it follows that

derivability does indeed define a partial order on the members of G .

Observe that the only letter derivable from any a o m _ 1
 i s itself, and that

each member of R covers its annihilator with respect to the partial order

5 . It follows from the proof of Lemma 2 that for any z € G the members

of i?(s) form a chain (with respect to 2 ) , beginning with x or y

and ending with z . In fact for z , s, € R , z 5 z if and only if

s1 € R(z) .

We may now state and prove the main lemma.

LEMMA 3. Let wpy . Then w admits the following factorization

w = wxuxw2u2 .. . V A + i n + 2 " f c + l V 3 V 2 • • • WU\Ufl+2

where each w. € r , z € R , I = \R(z)\ , each u^ is an associate of a

member of R(z) , and precisely one associate of each member of R(z)

occurs in the list u -. , uo, ..., w, . If r € c{u.w. ... z) or

r € c{zwh „ ... u.) for some u. then r > u for some letter u such

that ind u = ind u. . However, for any x € X(s) (respectively
If

y € Y(s) )j the annihilator of x {respectively y ) , a , p [respectively

a ) is not a member of C[zw-, _ . . . u ) respectively

C[u . . . w. -,) ) where u , u are the unique associates of x and yy /c+±' x y

respectively in the list u , Up, ..., u, .

REMARK. This lemma says in particular that y p fi U so that U ± S .

Proof. We proceed by induction on \l\ , where

I : <z 2/ •*•...-*• w' -*• w is a sequence from j/- to w . If |j| = 0 then

the statements of the lemma are evidently satisfied. Consider an arbitrary

such sequence I , and take as our inductive hypothesis that the lemma
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h o l d s f o r t h e i n i t i a l s u b s e q u e n c e J : a y •*•...-*• w' , w i t h

W = t ^ ... # £ ' £ £

a factorization of w' satisfying the requirements of the lemma.

Before proceeding note that i t follows from our inductive hypothesis

that i f a' and b' are associates of two distinct members of X(B')

occurring after z' , and ind a' > ind b' , then the f i rs t appearance of

a' , or i t s x-companion, occurring after z' , is before the f i rs t

appearance of b' , or i t s x-companion, after s ' . Therefore, without

loss we may assume that for any i > fc+1 , c{z' . . . w'. ) does not

contain u' , nor the x-companion of u'. . The preceding two sentences

have duals which, of course, also hold.

We now consider the transition V>' •*• w which may be

(i) a squaring transition,

(ii) an upward transition,

(iii) a downward transition,

(iv) a forward transition based on some a_ „ or its
3m- 2

reversal,

(v) a forward transition based on some a., ~y or its

reversal,

(vi) a forward transition based on some x a_ ., or its
m 3m-l

reversal, or
(vii) a forward transition based on some a.-_y or its

yrrm
reversal.

We show that in a l l cases the statements of the lemma continue to hold,

for convenience, we will sometimes write the factorization given for w'

in the abbreviated form w' = v'z'v' where v' = w'u' ... uJwJ and

2
Case (i) . First suppose w' •> w has the form paq •* pa q ,
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p, q € lr , a € < A > , and suppose V' is a subword of p . There are no

difficulties here; we consider the second 'a ' to be inserted after the

f i rs t and take v = v' in the required factorization of u . The dual

comment applies if v' is a subword of q . Next consider the reverse

squaring transit ion, and suppose v' i s a subword of p . As explained

above, we may assume without loss that the second 'a' contains no u'.

which occurs in the canonical factorization of w' , and thus no

difficulties accompany i t s deletion. Again the dual comment applies if v'

is a subword of q . This concludes case ( i ) .

Case ( i i ) . Suppose w' •+ w has the form px q •*• par

suppose v' is a proper subword of p . The only difficulty which might

conceivably arise is the introduction of an unwanted annihilator. However,

<2g a n n i h i l a t e s x , a n d i f x € X(z') a l l a s s o c i a t e s o f x m u s t

occur in p , because ind x < ind x^ . Therefore we may indeed take

v = v' in the required factorization for w . If y ' = p , so that

z' = x , then we factorize w as {v{ac. olH? vo anc* t a k e

v = v'ds , v = v' . I f v' is a proper subword of q there are no

diff icul t ies . We may take v = v' in the factorization of w . The

arguments used when u ' •>• U is an upward transition based on some member

of Y are the same as those above, thus completing case ( i i ) .

Case ( i i i ) . Suppose w' -*• W has the form pa, z/ q -*• px q and

suppose u ' is a subword of p . We may again take y = v' • The only

apparent difficulty is that if x_ € X(z') and the f i r s t associate of

Xg after z' is in q , then the derivability hypothesis of the lemma

would be violated (as x is not derivable from a l e t t e r of index 2n

although <Zg _„ and y are). However, since a, annihilates x

then a required factorization of w is w = y x v , where V = p ,
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V = q . If v' is a proper subword of q then we may take i>2 = i>' ,

except in case the a, appearing in pa, A) q is one of the u'.

appearing in the factorization of w' . We show that we can then factorize

w' as w' = v"ynv£ with u" = pa, , v" = q and s t i l l satisfy the

conditions demanded by the inductive hypothesis. We have

w' = w'u' . . . w'.u'.w' . . . uJw'. z'w,' . . . W. M'AJ' . . . u'wl
1 1 t- ^ ^+l AC t+1 /c+2 j+1 j j+2 I Z

and p = w'u' ... w'. , u\ = a, o , « ! , = « „ « . , for some W.r 1 1 t ^ 6n-2 ' t+1 32n t+1 ^

u'. is the first of the u's after 3 of index less than 2n . If no
3

such u'. occurs the following argument requires slight modification. We
3

now factorize w' , taking w'u' ... w'.u'. as before, followed by

X ' Z" = y2n ' Ui +2 =
 5i+i

Mi+i •••
 Wi-+l '

 followed ^
W'OJ'. ... w,w' as before (although we rename this last product as

M" wV+ ... u"w' where l' = l-j + i+l). Observe that the

inductive hypotheses still hold with this new factorization of w' , the

only one causing some complication is the statement that the annihilator of

u" is not a member of C(z" ... z' ... u") for all x € X(z") . However,

by the inductive hypothesis , the annihilator of u" is not a member of

C[z' ... u") vhile all members of C(z" ... z') have index > ind u" , so

are certainly not annihilators of u" . Hence we have reduced this case to

the case where v' = pa^ „ . The arguments above also deal with the case

where w' ->• W is a downward transition with replacement a member of Y ,

this completing the proof for case (iii).

Case (iv) . Suppose w' •*• w has the form P<^-^ fl "*" Px aom_p^? •

Since a_ _ < x there are no difficulties. For the reverse transition,
sn—Z m

the only case which would cause a problem is that in which v' = p ; but

this contradicts the inductive hypothesis as it says that z' = x is

immediately followed by its annihilator. This concludes case (iv) and the

dual argument to this disposes of case (vii).
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Case (v) . Suppose w' •* w has the form P^ AJ q -*• Pa-^_-,y <7 and

that v' i s a subword of p . Again a d i f f icu l ty could only ar i se i f

x € X(z') and the f i r s t associate of x af ter z' were in q ; but

t h i s i s impossible as a_ „ annihi la tes x . I f v' = pa so tha t
3m-2 m 1 3m-2

P2 2 = pw! , the role of M! is filled by taking Pa-^n_1
 = Pu- i n u •

Similarly there is no problem if v' is a proper subword of q ; if

necessary the role previously played by aim_n
 i s n o w Playe<i by <2-3m_i •

Consider now that the reverse transition wf -»• u has the form

P2-, •,£/ 0. •* P«-, ^ 3 • Ihe only difficult case arises when x' € X(z')
sn—L m sn—2r m m

and pa- . = pu'. where u'. is an associate of x . We assert that we
3w-l i % m

may then factorize w' as u' = y"w u" with v" = pa_ and obtain a
1 m 2 1 3^—1

factorization satisfying the inductive hypotheses. The argument involved

is similar to that employed in case (iii) and is omitted. We may now take

v = P<2_ o ^n w ' an(^ thus dispose of case (v).

Case (vi) , in which u' -»• u is a forward transition based on some

x a_ or its reversal, is dealt with using arguments dual to those of
m yn—l

case (v), thus completing the proof of the lemma.

COROLLARY 4. There exists a band which is not saturated.

Further progress towards solving the problem of the determination of

all the saturated varieties of semigroups would be made if we knew whether

or not the variety defined by the identity xy = xyx was saturated. If

this variety is not saturated it follows that the same is true of the

corresponding variety of bands. Since every non-normal band variety

contains either this variety or its dual, it would follow that the

saturated band varieties are exactly the normal varieties. Furthermore, a

negative answer would allow a determination of all saturated varieties of

monoids.

https://doi.org/10.1017/S0004972700025715 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700025715


242 Peter M. Hi ggi ns

References

[7] A.H. Clifford and G.B. Preston, The algebra-La theory of semigroups,

Volume I (Mathematical Surveys, 7. American Mathematical

Society, Providence, Rhode Island, 196l).

[2] A.H. Clifford and G.B. Preston, The algebraic theory of semigroups,

Volume II (Mathematical Surveys, 7. American Mathematical

Society, Providence, Rhode Island, 1967).

[3] B.J. Gardner, "Epimorphisms of regular rings", Comment Math. Univ.

Carolin. 16 (1975), 151-160.

[4] T.E. Hall, "Epimorphisms and dominions", Semigroup Forum 24 (1982) ,

271-283.

[5] T.E. Hall and P.R. Jones, "Epis are onto for finite regular semi-

groups", Proa. Edinburgh Math. Soo. (to appear).

[6] P.M. Higgins, "Epis are onto for generalised inverse semigroups",

Semigroup Forum 23 (1981), 255-259-

[7] Peter M. Higgins, "The varieties of commutative semigroups for which

epis are onto", Proa. Edinburgh Math. Soo. (to appear).

[S] P.M. Higgins, "Saturated and epimorphically closed varieties of

semigroups", J. Austral. Math. Soa. Ser. A (to appear).

[9] J.M. Howie, An introduction to semigroup theory (London Mathematical

Society Monographs, 7. Academic Press, London, New York, San

Francisco, 1976).

[70] J.M. Howie and J.R. Isbell, "Epimorphisms and dominions. II", J-

Algebra 6 (1967), 7-21.

[71] John R. Isbell, "Epimorphisms and dominions", Proceedings of the

conference on categorical algebra, La Jolla, 1965, 232-2U6

(Springer-Verlag, Berlin, Heidelberg, New York, 1966).

[72] N.M. Khan, "Epimorphisms, dominions and varieties of semigroups",

Semigroup Forum (to appear).

Monash University,

Clayton, Victoria 3168,

AustraIia.

https://doi.org/10.1017/S0004972700025715 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700025715

