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Abstract

In this paper, we give an analogue of Jørgensen’s inequality for nonelementary groups of isometries of
quaternionic hyperbolic space generated by two elements, one of which is elliptic. As an application, we
obtain an analogue of Jørgensen’s inequality in the two-dimensional Möbius group of the above case.
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1. Introduction

Jørgensen’s inequality [8] gives a necessary condition for a nonelementary two-
generator subgroup of PSL(2, C) to be discrete. Viewing PSL(2, R) as the isometry
group of complex hyperbolic 1-space, H1

C, one can seek to generalize Jørgensen’s
inequality to higher-dimensional complex hyperbolic isometries. There has been much
research in this area.

Kamiya [9, 10] and Parker [14, 15] gave generalizations of Jørgensen’s inequality
to the two-generator subgroup of PU(n, 1) when one generator is a Heisenberg
translation. By using the stable basin theorem, Basmajian and Miner [1] generalized
Jørgensen’s inequality to two-generator subgroups of PU(2, 1)when the generators are
loxodromic or boundary elliptic. Several other inequalities are due to Jiang, Kamiya
and Parker [6] using matrix methods rather than purely geometric methods. Jiang [7]
and Kamiya [11] generalized Jørgensen’s inequality to the two-generator subgroups
of PU(2, 1) when one generator is a Heisenberg screw motion. A generalization also
appears in [16] for the case when one generator is a regular elliptic element.

Following research on complex hyperbolic space, Kim and Parker opened up the
study of quaternionic hyperbolic space in [13]. They proved some basic facts about
the discreteness of two-generator subgroups, and the minimal volume of cusped
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quaternionic manifolds, and laid down some basic tools for the study of quaternionic
hyperbolic space.

It is natural to ask whether theorems in complex hyperbolic space can be
generalized to quaternionic hyperbolic space. In one attempt in this area Kim [12]
found analogues in quaternionic hyperbolic space of results in [6, 7].

The purpose of this paper is to provide a condition for the nondiscreteness of
two-generator subgroups of Sp(n, 1) with an elliptic element.

In order to state our theorem, we recall some facts about elliptic elements in
Sp(n, 1). Every eigenvalue of an elliptic element g ∈ Sp(n, 1) has positive or negative
type [4] and its eigenvalues fall into n similarity classes of positive type and one
similarity class of negative type. Let 3i , i = 1, . . . , n, be its positive classes of
eigenvalues and 3n+1 be its negative class. Then any element in 3i has norm 1 and
the fixed point set Fix(g) of g in Hn

H contains only one fixed point if 3n+1 6=3i ,
i = 1, . . . , n, and is a totally geodesic submanifold which is equivalent to Hm

H or Hm
C

(for some m ≤ n) if 3n+1 coincides with exactly m of the classes 3i , i = 1, . . . , n.
We call g a regular elliptic element if Fix(g) contains only one point; otherwise g
is called a boundary elliptic element. We mention here that the definition of regular
elliptic element is slightly different from Goldman’s [5] which requires its eigenvalues
to be distinct in the setting of complex numbers. If g ∈ Sp(n, 1) is elliptic, then g is
conjugate to

diag(λ1, λ2, . . . , λn+1), (1.1)

where λi ∈3i , i = 1, . . . , n + 1. We define

δ(g)=max{|λi − λn+1|
2
: i = 1, . . . , n}. (1.2)

Since similarity classes3i , i = 1, . . . , n + 1, of g are invariant under conjugation, we
have the following proposition.

PROPOSITION 1.1. If g ∈ Sp(n, 1) is elliptic, then δ(g) is invariant under
conjugation.

We now deduce a formula for δ(g) defined by (1.2) for an elliptic element g ∈
Sp(n, 1).

We use [17] as a reference for the properties of quaternions and matrices of
quaternions (see Section 2 for an abbreviated description). Since each similarity
class 3i has a unique complex number with nonnegative imaginary part, let

eiθi ∈3i , for i = 1, . . . , n + 1,

be such complex numbers; that is, 0≤ θi ≤ π for each i . Let

δi,n+1 =max{|λi − λn+1|
2
: λi ∈3i , λn+1 ∈3n+1} for i = 1, . . . , n.

Then

δi,n+1 = max
u,w∈H

{|ueiθi u−1
− weiθn+1w−1

|
2
} = max
|w|=1
{|eiθi − weiθn+1w−1

|
2
}.
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Let
T (w)= eiθiw−1e−iθn+1w̄ + weiθn+1w−1e−iθi .

Then |eiθi − weiθn+1w−1
|
2
= 2− T (w) and

δi,n+1 = 2− min
|w|=1

T (w).

We take the complex representation of the quaternion w with norm 1 to be

w = w1 + w2j where w1, w2 ∈ C.

Then w−1
= w̄ = w1 − w2j. Note that

z j= j z̄ for z ∈ C.

By direct computation

T (w)= 2(|w1|
2 cos(θi − θn+1)+ |w2|

2 cos(θi + θn+1)).

Hence

min
|w|=1

T (w)=

{
2 cos(θi + θn+1) if cos(θi − θn+1)≥ cos(θi + θn+1)

2 cos(θi − θn+1) if cos(θi − θn+1) < cos(θi + θn+1).

Therefore

δ(g)=max
{

4 sin2 θi ± θn+1

2
: i = 1, . . . , n

}
. (1.3)

The following is our main theorem.

THEOREM 1.2. Let g and h be elements of Sp(n, 1). Suppose that g is an elliptic
element with fixed point set Fix(g) ∈ Hn

H. If

inf
q∈Fix(g)

cosh2 ρ(q, h(q))

2
δ(g) < 1, (1.4)

then the group 〈g, h〉 generated by g and h is either elementary or not discrete.

Applying Theorem 1.2 to the subgroup PU(2, 1) of Sp(2, 1)with g a regular elliptic
element, we obtain the following corollary.

COROLLARY 1.3 (See [16, Theorem 3.4]). Let g and h be elements of PU(2, 1) such
that g is a regular elliptic element with unique fixed point q. If

cosh2 ρ(q, h(q))

2
δ(g) < 1,

then the group 〈g, h〉 is either elementary or not discrete.
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Let

g =

(
eiθ 0
0 e−iθ

)
, h =

(
a b
c d

)
∈ SL(2, C). (1.5)

As an application, by embedding SL(2, C) in Sp(1, 1) as in (3.8) of Section 3, we
obtain the following theorem.

THEOREM 1.4. Let g and h be elements of SL(2, C) given by (1.5). If 〈g, h〉 is discrete
and nonelementary, then

inf
|t |<1,t∈C

4 f (t) sin2 θ ≥ 1, (1.6)

where

f (t)=
|1− t2

|
2(|a|2 + |d|2)+ |1+ t |4|c|2 + |1− t |4|b|2 + 2(t̄ − t)2

4(1− |t |2)2
+

1
2
. (1.7)

Choosing t = 0 in the above theorem, we obtain the following corollary.

COROLLARY 1.5. Let g and h be elements of SL(2, C) given by (1.5). If 〈g, h〉 is
discrete and nonelementary, then

sin2 θ(‖h‖2 + 2)≥ 1, (1.8)

where ‖h‖2 = |a|2 + |b|2 + |c|2 + |d|2.

REMARK 1.6. Jørgensen’s inequality [8] gives that

|tr(g)2 − 4| + |tr(ghg−1h−1)− 2| = 4 sin2 θ(1+ |bc|)≥ 1

in the above case.
Let

h =

(
−3/2 2i

2i 2

)
.

Then 16 1
4 = (‖h‖

2
+ 2) < 4(1+ |bc|)= 20, which implies that Corollary 1.5 is better

than Jørgensen’s inequality in such a case. While the case

h =

(
1
√

2
√

2 3

)
with

f (t)=
7+ 14t2

1 t2
2 + 2t2

1 + 10t2
2 + 7(t4

1 + t4
2 )

2(1− t2
1 − t2

2 )
2

+
1
2
> 4> 1+ |bc| = 3

implies that Theorem 1.4 is weaker than Jørgensen’s inequality in such a case.
It follows from the above comparison of Theorem 1.4 with Jørgensen’s inequality,

that neither theorem is a consequence of the other.
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2. Preliminaries

In this section, we give some necessary background material on quaternionic
hyperbolic geometry. More details can be found in [4, 5, 13].

Let H denote the division ring of real quaternions. Elements of H have the form
z = z1 + z2i+ z3j+ z4k ∈H where zi ∈ R and

i2 = j2
= k2

= ijk=−1.

Let z = z1 − z2i− z3j− z4k be the conjugate of z, and let

|z| =
√

zz =
√

z2
1 + z2

2 + z2
3 + z2

4

be the modulus of z. Define <(z)= (z + z)/2 to be the real part of z, and =(z)=
(z − z)/2 to be the imaginary part of z. Also z−1

= z|z|−2 is the inverse of z. Observe
that <(wzw−1)=<(z) and |wzw−1

| = |z| for all z and w in H. Two quaternions z
and w are similar if there exists nonzero q ∈H such that z = qwq−1. The similarity
class of z is the set {qzq−1

: q ∈H− {0}}.
Let Hn,1 be the vector space of dimension n + 1 over H with the unitary structure

defined by the Hermitian form

〈z,w〉 = w∗ Jz= w1z1 + · · · + wnzn − wn+1zn+1,

where z and w are the column vectors in V with entries (z1, . . . , zn+1) and
(w1, . . . , wn+1) respectively, w∗ denotes the conjugate transpose of w and J is the
Hermitian matrix

J =

(
In 0
0 −1

)
.

We define a unitary transformation g to be an automorphism of Hn,1, that is, a linear
bijection such that 〈g(z), g(w)〉 = 〈z,w〉 for all z and w in V . We denote the group of
all unitary transformations by Sp(n, 1).

Following [4, Section 2], let

V0 =
{
z ∈ V − {0} : 〈z,z〉 = 0

}
,

V− =
{
z ∈ V : 〈z,z〉< 0

}
.

It is obvious that V0 and V− are invariant under Sp(n, 1). We define V s to be
V s
= V− ∪ V0. Let P : V s

→ P(V s)⊂Hn be the projection map defined by

P(z1, . . . , zn, zn+1)
t
= (z1z−1

n+1, . . . , znz−1
n+1)

t ,

where ( )t denotes the transpose.
We define Hn

H = P(V−) and ∂Hn
H = P(V0). The Bergman metric on Hn

H is given
by the distance formula

cosh2 ρ(z, w)

2
=
〈z,w〉〈w,z〉
〈z,z〉〈w,w〉

where z ∈ P−1(z), w ∈ P−1(w). (2.1)
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The holomorphic isometry group of Hn
H with respect to the Bergman metric is the

projective unitary group PSp(n, 1) and acts on P(Hn,1) by matrix multiplication.
If g ∈ Sp(n, 1), by definition, g preserves the Hermitian form. Hence

w∗ Jz= 〈z,w〉 = 〈gz,gw〉 = w∗g∗ Jgz

for all z and w in V . Letting z and w vary over a basis for V , we see that J = g∗ Jg.
From this we find g−1

= J−1g∗ J . That is,

g−1
=

(
A∗ −β∗

−α∗ an+1,n+1

)
for g = (ai j )i, j=1,...,n+1 =

(
A α

β an+1,n+1

)
.

Using the identities gg−1
= g−1g = I we obtain:

AA∗ − αα∗ = In, −Aβ∗ + αan+1,n+1 = 0, −|β|2 + |an+1,n+1|
2
= 1; (2.2)

A∗A − β∗β = In, A∗α − β∗an+1,n+1 = 0, −|α|2 + |an+1,n+1|
2
= 1. (2.3)

For a nontrivial element g of Sp(n, 1), we say that g is parabolic if it has exactly
one fixed point and this lies on ∂Hn

H, g is loxodromic if it has exactly two fixed points
and they lie on ∂Hn

H, and g is elliptic if it has a fixed point in Hn
H. In particular, if g

has fixed point q0 = (0, . . . , 0)t ∈ Hn
H, then g has the form

g = diag(A, a),

where A ∈ U(n;H) and a ∈ U(1;H).
A subgroup G of Sp(n, 1) is called nonelementary if it contains two nonelliptic

elements of infinite order with distinct fixed points; otherwise G is called elementary.
As in complex hyperbolic n-space, we have the following proposition classifying

elementary subgroups of Sp(n, 1).

PROPOSITION 2.1 (See [2, Lemma 2.4]).

(i) If G contains a parabolic element but no loxodromic element, then G is
elementary if and only if it fixes a point in ∂Hn

H.
(ii) If G contains a loxodromic element, then G is elementary if and only if it fixes a

point in ∂Hn
C or a point-pair {x, y} ⊂ ∂Hn

H.
(iii) G is purely elliptic, that is, each nontrivial element of G is elliptic, then G is

elementary and fixes a point in Hn
H.

3. Proofs

PROOF OF THEOREM 1.2. For any fixed point q ∈ Fix(g), since cosh2(ρ(q, h(q))/2)
δ(g) is invariant under conjugation, we may assume that g is of the form (1.1) having
fixed point q = (0, . . . , 0)t ∈ Hn

H and

h = (ai j )i, j=1,...,n+1 =

(
A α

β an+1,n+1

)
.
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Then

cosh2 ρ(q, h(q))

2
= |an+1,n+1|

2, δ(g)=max{|λi − λn+1|
2
: i = 1, . . . , n}.

In what follows, we will show that if

|an+1,n+1|
2δ(g) < 1, (3.1)

then the group 〈g, h〉 is either elementary or not discrete.
Let h0 = h and hk+1 = hk gh−1

k . We write

hk = (a
(k)
i j )i, j=1,...,n+1 =

(
A(k) α(k)

β(k) a(k)n+1,n+1

)
.

Then

hk+1 =

(
A(k+1) α(k+1)

β(k+1) a(k+1)
n+1,n+1

)

=

(
A(k) α(k)

β(k) a(k)n+1,n+1

) (
L 0
0 λn+1

) (
(A(k))∗ −(β(k))∗

−(α(k))∗ a(k)n+1,n+1

)
,

where L = diag(λ1, λ2, . . . , λn).
Therefore

a(k+1)
n+1,n+1 = a(k)n+1,n+1λn+1a(k)n+1,n+1 − β

(k)L(β(k))∗ (3.2)

and

|a(k+1)
n+1,n+1|

2
= (a(k)n+1,n+1λn+1a(k)n+1,n+1 − β

(k)L(β(k))∗)

× (a(k)n+1,n+1λn+1a(k)n+1,n+1 − β
(k)L∗(β(k))∗)

= |a(k)n+1,n+1|
4
+ β(k)L(β(k))∗β(k)L∗(β(k))∗

− a(k)n+1,n+1λn+1a(k)n+1,n+1β
(k)L∗(β(k))∗

− β(k)L(β(k))∗a(k)n+1,n+1λn+1a(k)n+1,n+1. (3.3)

If there exists some k such that β(k) = 0, then by (2.2) and (2.3),

|a(k)n+1,n+1| = 1 and α(k) = 0,

which implies that q is a fixed point of hk = hk−1gh−1
k−1. We deduce that q is a fixed

point of hk−1 and |an+1,n+1| = 1 by induction. Thus q is a fixed point of h, which
implies that 〈g, h〉 is elementary.
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In what follows, we may assume that β(k) 6= 0.
We first consider the case when all the elements of β(k) are nonzero, that is,

a(k)n+1,i 6= 0 for i = 1, . . . , n.

In this case, noting that

β(k)L(β(k))∗β(k)L∗(β(k))∗ ≤ |β(k)|4,

we have

|a(k+1)
n+1,n+1|

2
≤ |a(k)n+1,n+1|

4
+ |β(k)|4

− a(k)n+1,n+1λn+1a(k)n+1,n+1

( n∑
i=1

a(k)n+1,iλi a
(k)
n+1,i

)

−

( n∑
i=1

a(k)n+1,iλi a
(k)
n+1,i

)
a(k)n+1,n+1λn+1a(k)n+1,n+1. (3.4)

Let
ui = a(k)n+1,i

−1λi a
(k)
n+1,i , i = 1, . . . , n + 1.

Then ui ∈3i , i = 1, . . . , n + 1, and

ui un+1 + un+1ui = 2− |ui − un+1|
2.

We can rewrite (3.4) as

|a(k+1)
n+1,n+1|

2
≤ |a(k)n+1,n+1|

4
+ |β(k)|4 −

n∑
i=1

|a(k)n+1,n+1|
2
|a(k)n+1,i |

2(2− |ui − un+1|
2).

(3.5)
Noting that −|β(k)|2 + |a(k)n+1,n+1|

2
= 1, by (3.5) we have

|a(k+1)
n+1,n+1|

2
− 1≤ |a(k)n+1,n+1|

2
n∑

i=1

|a(k)n+1,i |
2
|ui − un+1|

2.

Therefore
|a(k+1)

n+1,n+1|
2
− 1≤ (|a(k)n+1,n+1|

2
− 1)|a(k)n+1,n+1|

2δ(g). (3.6)

We remark that the case β(k) 6= 0 with some a(k)n+1,t = 0 for t ∈ {1, . . . , n} also leads
to the above inequality.

Noting (3.1), we obtain by induction

|a(k+1)
n+1,n+1|< |a

(k)
n+1,n+1|

and
|a(k+1)

n+1,n+1|
2
− 1< (|an+1,n+1|

2
− 1)(|an+1,n+1|

2δ(g))k+1. (3.7)
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Thus |a(k)n+1,n+1| → 1 and {hk} is a sequence with distinct elements. By (2.2) and (2.3),

β(k)→ 0, α(k)→ 0

and

A(k)(A(k))∗→ In.

By passing to its subsequence, we may assume that

A(kt )→ A∞, a(kt )
n+1,n+1→ a∞.

Thus hk+1 converges to

h∞ =

(
A∞ 0
0 a∞

)
∈ Sp(n, 1),

which implies that 〈h, g〉 is not discrete. This concludes the proof. 2

PROOF OF THEOREM 1.4. As in [3, 4], we can regard Sp(1, 1) as the isometries of
hyperbolic 4-space H4, whose model is the unit ball in the quaternions H. SL(2, C),
the isometries of hyperbolic 3-space H3, can be embedded as a subgroup of Sp(1, 1)
as follows:

f ∈ SL(2, C) ↪→ T f T−1
∈ Sp(1, 1), (3.8)

where

T =
1
√

2

(
1 −j
−j 1

)
.

Let g and h be as in (1.5) and ĝ = T gT−1, ĥ = T hT−1. Then

ĝ =

(
eiθ 0
0 e−iθ

)
, ĥ =

1
2

(
1 −j
−j 1

) (
a b
c d

) (
1 j
j 1

)
∈ Sp(1, 1). (3.9)

That ĝ and ĥ belong to Sp(1, 1) can be verified directly from [3, Lemma 1.1].
Applying the formula (1.3) to ĝ in which θ1 = θ2 = θ , we have

δ(ĝ)= 4 sin2 θ.

It is easy to show that the fixed point set of ĝ is {tj | t ∈ C with |t |< 1}.
Let z= ( tj

1 ) and w= ĥz. Then

〈w,z〉 =
1
2
(−tj, 1)

(
1 −j
j −1

) (
a b
c d

) (
1 j
j 1

) (
tj
1

)
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and

|〈w,z〉|2 =
1
4
((1− t)j,−1− t)

(
a b
c d

)
×

(
|t |2 + 1+ t̄ + t (1+ t − t̄ − |t |2)j

(−1− t + t̄ + |t |2)j |t |2 + 1− t̄ − t

)
×

(
ā c̄
b̄ d̄

) (
(t − 1)j
−1− t̄

)
.

Since 〈z,z〉 = 〈w,w〉 = |t |2 − 1, by direct computation, we have

cosh2 ρ(tj, ĥ(tj))
2

=
〈z,w〉〈w,z〉
〈z,z〉〈w,w〉

= f (t),

where f (t) is given by (1.7).
Applying Theorem 1.2 to ĝ, ĥ ∈ Sp(1, 1) given by (3.9) concludes the proof. 2
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