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A homeomorphism / of a space M is pointwise periodic if for each me M 
there exists an integer k such that fk(m) = m, where fk is the fcth iterate of /. 
Montgomery proves [5] that if M is a connected topological manifold, then / is 
periodic; i.e., there exists an integer n such that f1 = id. Noting this, Weaver [7] 
proves that if M is an orientable 2-manifold of class C1, U^M open and 
C ç U a compact connected set and if g : U -* M of class C1 is such that (i) 
g(C) = C and (ii) whenever the derivative of g at points xeC has rank 2 it is 
orientation preserving, then / = g | c : C —» C periodic implies that all but a 
finite number of points of C have as least period the period of /. In particular, if 
M is a compact manifold, we may take C = M in Weaver's result. This is the 
strongest result the author has seen for periodic maps of arbitrary period (not 
necessarily prime). 

In this paper, the specific case M=T2 and / a periodic homeomorphism 
isotopic to the identity is considered. An isotopy is a homotopy H(x, t) which is 
a homeomorphism for each t. Specifically, it is proven that if / : T2 —» T2 is a 
periodic homeomorphism isotopic to the identity, then every point has the 
same period (Corollary 1.5). 

By discussing periodic homeomorphisms of T2 isotopic to the identity, we 
are in effect studying all non-singular periodic flows <\> on T3 (flows with all 
orbits closed and non-trivial). This is because every non-singular periodic C1 

flow on T3 has a topological T2 cross-section (Proposition 2.6) on which <£> 
induces a homeomorphism / isotopic to the identity. The terminology here is 
made precise at end of this section. For certain cross-sections it seems likely 
that / = id. However, this is generally not true for all toral cross-sections and 
their induced maps /. Naugler [6] has shown that, even under conditions of 
differentiability, about the best that could be expected would be that / is 
isotopic to the identity. 

The following notation is adhered to: </> : T3 x R -> T3 is a C1 flow on T3 

having only closed non-trivial orbits. It has been shown that if cf> is a flow on a 
compact 3-manifold M with boundary having only closed non-trivial orbits, 
then the orbits are also the orbits of an S ̂ action on M [1]. C ^ K ^ X S 1 - » T 3 
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will also be used to denote the corresponding S^action on T3. Consider Tn as 
Un/In. The [R-action <£> on T3 then lifts to an [R-action 0:R3x[R->[R3 satisfying 
<ï>(x-f z, r)-<î>(x, t) + z for all X G R 3 , zel3. Let f:T2->T2 be a periodic 
homeomorphism of T2 isotopic to the identity. / lifts to a map F:(R2-^(R2 of 
the form F(x) = idx + p(x), where p :R 2 -> [R2 is of period 1 in each component 
of x(i.e., see [2]). If m e T2 is a fixed point of /, it can be assumed that zel2 

represents that fixed point and further that F(z) = z. Hence fn = id on T2 

implies that Fn - id on U2. 

0.1. DEFINITION. Given a non-singular flow $ on Mn, a topological cross-
section is an embedded submanifold M n _ 1 such that (i) every trajectory 
through points of M*1-1 intersects M n - 1 for t both positive and negative, (ii) 
{<f>(Mn~\ t) :teR}=Mn, and (hi) there is a neighborhood U of AT"1 in Mn, an 
e > 0 and a homeomorphism h of [/ onto M n - 1 x ( - e , e) such that U G U is 
uniquely expressible as <fi(m,t) for meMn~l and h(<f)(m, t)) = (m, 0 for 

If a non-singular flow c/> of M n has a cross-section, <f> induces a map 
/ : Mn~x —> Af"1 which is a homeomorphism. It is defined by f(m) = 
<f>(m, f(m)), where f(m) = inf{f >0:<f>(m, Ô e M n _ 1 } . 

1. Periodic homeomorphisms of T2 

1.1. LEMMA. Let F be a homeomorphism of U2 isotopic to the identity such 

that F:D2 >D2, where D2 is a fixed disc. Then F|D2 is isotopic in D2 to 

the identity on D2. 

Proof. Let G(x, f) :IR2xI-*R2 be the isotopy id-F. Consider the map 
(G, id):D2xI-*M2xI defined by (x, t)->(G(x, f), f). The image of D2xl 
under (G, id) is homeomorphic to D2xl since G(x, f) is an isotopy. Further
more, D2xl and its image have the same base and top, D2x{0} and D 2 x{ l} 
respectively and [(G, id)](D2 x I) is homeomorphic to D2 x I Let ft be a 
homeomorphism h:[(G, id)](D2xI)-^ D2xl which is the identity on 
D 2 x{0}UD 2 x{ l} . Let p:D2xI->D2 be the projection onto the first factor. 
The map p°h°{G, id):D2xI->D2 is the desired isotopy. 

Note that H(x, t) is invariant on 3D2, the boundary of D 2 . 

1.2. LEMMA. Let F:D2-J>D2 be isotopic to the identity. Suppose that F has a 
fixed point p on dD2. If F" = id for some n, then every point on dD2 is a fixed 
point for F. 

Proof. Orient dD2. This induces an order < for points on y = dD2 — {p}. 
Since F is isotopic to the identity on dD2, it preserves the order on 7. Let x e 7. 
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If F (x )^x , we may suppose that x < F ( x ) and hence x < F ( x ) < F 2 ( x ) < - • •< 
F"(x), contradicting the fact that F" = id. Q.E.D. 

1.3. LEMMA. Let f be a periodic map of T2 (i.e., there exists n such that 
fn = id) isotopic to the identity. If f has a fixed point p, then F has another fixed 
point. 

Proof. Let F:M2->M2be the lift of / satisfying F(z) = z, zel2 described in 
the introduction. Let 7 = {(0, y ) : 0 < y < l } joining two representatives of the 
fixed point p. Consider the set of curves Fk(y), k = 0,1,..., n — 1. Let ft0 

denote the collection of components of the interior of the region bounded by 
the totality of curves {Fk(y)}. Let II denote the closures of the elements ft0. 

Every element of ft intersects 7. If not, then some element COG ft has no 
intersection with 7. Let |3 = FJ(y) be one of the curves having an arc forming 
part of the boundary of co. Order the points on FJ(y) according to the order 
that their preimages occur on 7; i.e., P i<p 2 , for p1? p 2eF J (7) , if y i < y 2 where 
F~J(Pi) = (0, yt). Let pl = inf F (7) PI <O and p2 = sup Fi(y) Pl co. Since co Pi 7 = <£, 
p1? p2 do not lie on 7. But P ( 0 , 0) - (0, 0) G 7 and F'(0, 1) = (0, 1) G 7, hence, 
qx = supjq G F1 (7) Pl 7 : q < p j and q2 = inf {q eFJ(y)f)y:q> p2} exist and are 
on 7. 7 U {q G FJ (7) : qx < q < q2} bounds a region <o0 whose closure intersects 7. 
Furthermore, since FJ(7) has an arc {x :p x <x a < x < x 2 < p 2 , x e F ( 7 ) } in co, 
there is a neighborhood of any point x, xt<x<x2 contained in co Uco0. Hence 
co0Uco properly contains co and is all contained in a single element of H 
contradicting the fact that co G ft. 

The elements of ft can now be ordered as follows. For each coa G ft, let 
ya = sup{y : (0, y) G coa Pl 7}. Say coa < co3 if ya < y3. It is possible that not every 
point x of 7 is not contained in some element of ft. In that case, such points x 
are contained in intervals la D{Fi(y)}^1. Let A denote the collection of such 
line segments. For each la G A, define ya = sup{y : (0, y) G la}. Let II denote the 
ordered set of ya as defined above. F(y a )eI I for all y« G I I . Define a chain cra 

to be the union of elements of ft U A such that y3 < ya. Denote the set of such 
chains by 2 . 

The proof may now be completed. There are two cases; (i) S contains more 
than one element and (ii) 2 contains exactly one element. Case (i): Consider an 
element aa G S and let ya be the largest element of II contained in cra. Suppose 
y3 =F(y0i)<y(X. Then the chain o-a is mapped onto the chain c73 properly 
contained aa. Hence y« > F ( y a ) > F 2 ( y a ) > F 2 ( y a ) > - • •>F n (y a ) , contradicting 
the fact that F" = id. A similar contradiction holds if F(ya) > ya. Thus F(ya) = 
ya proving the lemma in this case. Case (ii): if 2 has one element, it is either a 
line joining the fixed points (0, 0) and (0,1) and hence is a line of fixed points 
by the now familiar argument or it is the sole element COG ft. In this last 
eventuality we note that dft is non-self intersecting and does not intersect 7 in 
points other than (0, 0) and (0,1). Thus 6ft forms a closed non-self-intersecting 
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curve bonding a topological disc. An application of Lemma 1.2 yields the 
additional required fixed point. Q.E.D. 

1.4. PROPOSITION. If f is a periodic map of period n of T2 isotopic to the 
identity, then the fixed point set of f is either empty or all of T2. 

Proof, Suppose that the fixed point set is not empty and not all of T2; i.e., 
the fixed point set & of the lift F is not all of R2. & is closed so that R2-& is 
open. Let U be a component of R2-^ and let 7 be a curve in U joining two 
boundary points of U (which are of course fixed points). If 7 C\F(y) # c£>, then 
the construction of Lemma 3 yields a fixed point in U. If y H F (y) = <f>, y and 
F(y) may go through different components but then, yUF(y) is a closed curve 
bounding a topological disc and an application of Lemma 1.2 yields fixed 
points in U. In either case, there is a contradiction so that either 3F = <t> or 
&=T2. Q.E.D. 

1.5. COROLLARY. If f is a periodic map of T2 isotopic to the identity, then 
every point has the same least period. 

Proof. Let p be a point of least period k. let g = fk. g(p) = p and g is a 
periodic map of T2 isotopic to the identity. Apply Proposition 1.4 to 
g. Q.E.D. 

2. Periodic flows on T 3 

2.1. DEFINITION. If ^ is a flow on M, <f> :MxR —» M, the orbit space M/<f> is 
the space obtained by identifying points <f>(m, t) that lie on the same orbit and 
imposing the quotient topology. 

2.2. DEFINITION. A flow </> on M will be said to have no séparatrices if M/<f> 
is Hausdorff. 

2.3. DEFINITION. A flow <f> on Un will be called completely unstable if <f>(x, t) 
is unbounded as f—x» and t—»— 00. 

These notions are discussed in [4]. 

2.4. LEMMA. Let <f> be a completely unstable flow with no séparatrices on Rn, 
n = 2 or 3. If <fr is differentiable, then </> differentiably equivalent to the flow of 
x 1 = l , xt = 0 2 < i < n . Differentiably equivalent means that there is a 
diffeomorphism h :Un -*Rn mapping trajectories of one system onto trajectories of 
the other. 

2.5. LEMMA. If c/> : T 3 x S1-^ T3 is a non-singular S1-action of T3, then 
<£(p, S1) is non-null-homotopic for all pe T3. 

Proof. If <f>(p, S1) is null-homotopic for some p, then 4>(p, S1) is null-
homotopic for all p, since pxS1 represents the same homotopy generator of 

https://doi.org/10.4153/CMB-1981-003-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1981-003-0


1981] PERIODIC FLOWS 27 

^xS1 whatever the p. <£(p, S1) is null-homo topic on T3 if and only if its lift to 
U3 is a closed curve, since <&(x + z, t) - $(JC, f) + z ; i.e., <ï>(x, f) is a closed curve 
for every x. Since the closed cube C : 0 < x , y, z < l projects onto T3 and 
4>(x 4- z, 0 = <ï>(x, f ) + z and O is a periodic flow, the orbits of <I> on the region 
generated by translating C along trajectories can be considered the orbits of an 
S1-action in such a way that this can be extended throughout (R3 by the 
periodicity relation <ï> satisfies. Hence <E> may be regarded as a non-singular 
S^action, # :(R3 x S1 -> (R3. But it is known that any S^action on U3 must have 
singular points [3, pg. 50 ex. 1]. This contradiction completes the proof. 

Q.E.D. 

2.6. PROPOSITION. If $ is a non-singular periodic flow on T3, then <f> has a 
topological cross-section homeomorphic to T2. 

Proof. Lift 4> to !R3, <ï>:IR3x[R-^!R3. <ï> is completely unstable. If not, there 
would be a bounded orbit y and since 7 must project onto a closed orbit it 
would itself be closed, thus projecting onto a null-homo topic orbit; a contradic
tion of Lemma 2.5. Also, <ï> has no séparatrices, a fact which follows im
mediately from the fact that the orbits of O project onto closed orbits on T3. 
Hence, we may apply Lemma 2.4. 

Taking the inverse image of the x2x3-plane under the difïerentiable equival
ence of Lemma 2.4, we get a surface 2 in U3 transverse to the flow <I>, that 
every orbit of 4> intersects exactly once. Consider the unit square D = 
{(x, y, z) : 0 < x, y < 1, z = 0}. Let / : D —» 2 denote the map obtained by trans
lating D to 2 along trajectories. Although trajectories may intersect D more 
than once, /(D) is a topological square transverse to the trajectories through it, 
that intersects each trajectory exactly once. We translate /(D) along trajec
tories so that its translate projects onto a topological torus T2 c: T3 that is 
topologically transverse to </>. 

Let r l5 r2, r3, T4 be the unique times that it takes trajectories through 
Pi = (0, 0, 0), p2(l, 0, 0), p3 = (1 ,1 , 0), p4(0,1, 0) respectively to reach 2 . Define 
4 = - T , . Thus *(/(pf), 0 = A. Let 

Yi = { / ( * , y , 0 ) : 0 < x < l , y = 0}, 72 = {/(x, y , 0 ) :0<y < l , x = 0}, 

0i = tf(*,y,O):O<x<l,y = l}, 02 = {/(x, y, 0 ) : 0 < y < 1 , x = 1}. 

There is a continuous map t(q) q^JiUy2 that extends tt,i = 1,2, 4. Let 
ax = {<£(q, t (q)):qey1Uy2}. Let a2 be the curve congruent to ax going through 
the points p2,p3,p4. Because <&(x +z,t) = <$>(x,t) +z, and trajectories of $ 
intersect a1 exactly once, trajectories of <É> intersect a2 exactly once. Hence t(q) 
on Yi U 72 can be extended to a continuous function t(q) on yx U 72 U j3x U |32 

such that {<ï>(q, *(q)) :qe0iU|32}= «2- Now extend t(q) over all of /(D) as a 
continuous function. Because of the congruence of ar with a2 the surface 
5 = {4>(q, f(q)) : q s /(D)} projects onto a torus T 2 c :T 3 and the topological 
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transversality to <I> of S insures the topological transversality of T2 to 
cf). Q.E.D. 
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Note added in the proof. Subsequent to the acceptance of this manuscript, 
Professor David Naugler discovered that lemma 1.3 was known to L. E. J. 
Brouwer [Aufzahlung der periodischen Transformationen des Torus, Konink-
lijke Nederlandse Akademie van Wetenschappen, Proc. 21 (1919), pp. 1352-
1356]. The result, however, appears to have been "lost" over the years (we 
have found no subsequent reference to it). Furthermore, complete proofs are 
not given by Brouwer and the proofs indicated take place on branched 
covering spaces for T 2 and are inherently more complicated than the one 
offered here. 
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