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Abstract

Let X be a compact Kähler manifold and {θ} be a big cohomology class. We prove

several results about the singularity type of full mass currents, answering a number

of open questions in the field. First, we show that the Lelong numbers and multiplier

ideal sheaves of θ-plurisubharmonic functions with full mass are the same as those of

a current with minimal singularities. Second, given another big and nef class {η}, we

show the inclusion E(X, η) ∩ PSH(X, θ) ⊂ E(X, θ). Third, we characterize big classes

whose full mass currents are ‘additive’. Our techniques make use of a characterization

of full mass currents in terms of the envelope of their singularity type. As an essential

ingredient we also develop the theory of weak geodesics in big cohomology classes.

Numerous applications of our results to complex geometry are also given.

1. Introduction and main results

Since the fundamental work of Aubin [Aub78] and Yau [Yau78], the complex Monge–Ampère

operator has found many important applications in differential geometry. In this vast area of

research, pluripotential theory plays a crucial role, initiated by the seminal work of Bedford and

Taylor [BT76, BT82, BT87] and Ko lodziej [Ko l98], to only mention a few.

Guedj and Zeriahi extended Bedford–Taylor theory to compact Kähler manifolds (X,ω)

[GZ05, GZ07]. Their idea was to extend the definition of the complex Monge–Ampère operator to

much larger sets of potentials, not only bounded ones. As a result, an adequate variational theory

could be devised for global equations of complex Monge–Ampère type [BBGZ13, BBEGZ11] that

has found many striking applications in Kähler geometry.

Additionally, the methods of [GZ07] have proven to be very robust, as they also apply in case

of big cohomology classes that are non-Kähler, as explored in [BEGZ10]. Given a closed smooth

(1, 1)-form θ on X, we say that the class {θ} is big, if there exists a quasi-plurisubharmonic

function u on X such that θ+ ddcu > εω for some ε > 0. Non-Kähler big classes arise naturally

in constructions of algebraic geometry. Given a one point blowup of an arbitrary Kähler manifold,

the simplest such example is given by the sum of the exceptional divisor class and a ‘sufficiently

small’ Kähler class.

When varying Kähler classes, one often has to study degenerate classes as well, and there

has been a lot of work in trying to characterize the degenerate classes that admit special

Kähler metrics [BBEGZ11, Dar16, SSY16]. Recently, the solution to the complex Monge–Ampère
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equation in a big class has been used to show that on a projective manifold the cone of
pseudoeffective classes is dual to the movable cone, solving an important open problem in complex
algebraic geometry [WB16].

In most of the above-mentioned works that study degenerate metrics, finite energy
pluripotential theory plays an important role. Partly motivated by this, and partly by a survey
of open questions [DGZ16], we will investigate further the finite energy pluripotential theory of
big cohomology classes. For a big class {θ}, the class of full mass currents E(X, θ) is of central
interest, as in many ways it is the analog of the classical Sobolev spaces, given the role it plays in
the variational study of complex Monge–Ampère equations (for the precise definition, see § 2.1).
Our first main result clarifies the local/global singular behavior of potentials in E(X, θ) in various
settings of geometric interest.

Theorem 1.1. Let (X,ω) be a Kähler manifold. Assume that θ is a smooth closed (1, 1)-form
such that {θ} is big. Let Vθ be the envelope of θ. Then we have the following.

(i) For any ϕ ∈ E(X, θ) we have

ν(ϕ, x) = ν(Vθ, x) and I(tϕ, x) = I(tVθ, x), ∀x ∈ X, t > 0,

where ν(ϕ, x) is the Lelong number of ϕ at x, and I(tϕ, x) is the germ of the multiplier
ideal sheaf of tϕ at x.

(ii) If {η} is a big and nef class, then

E(X, η) ∩ PSH(X, θ) ⊂ E(X, θ).

In particular, when θ = ω, this last inclusion gives that ν(ϕ, x) = 0 for any x ∈ X, ϕ ∈
E(X, η).

In the above statement Vθ is the ‘least singular’ element of PSH(X, θ) defined as

Vθ := {ϕ θ-psh, ϕ 6 0 on X}.

For a precise definition of all other concepts in the above result we refer to § 2.1. The statement of
part (ii) cannot hold in case {η} is merely big. Indeed, if {η} is big but not nef, the envelope Vη
may have a positive Lelong number at some point x ∈ X, hence its complex Monge–Ampère
measure cannot have full mass with respect to a Kähler form ω > η, as shown in [GZ07,
Corollary 1.8]. Let us also emphasize that the very last statement of Theorem 1.1 also follows
from the statement of part (i) together with the fact that, when {θ} is big and nef, the Lelong
numbers of Vθ are zero thanks to [Bou04, Propositions 3.2 and 3.6].

In the particular case when {θ} is semi-positive and big, Theorem 1.1 answers affirmatively
an open question in [DGZ16, Question 36], saying that potentials in E(X, θ) have zero Lelong
numbers. A very specific instance of this was verified in [BBEGZ11, Theorem 1.1], using
techniques from algebraic geometry.

Our arguments use the envelope construction originally due to Ross and Witt Nyström
[RW14] that we recall now. For an upper semicontinuous function f on X, we let Pθ(f) be the
largest θ-plurisubharmonic (θ-psh) function lying below f , i.e. Pθ(f) = sup{u | θ-psh u 6 f}.
Given ψ,ϕ, two θ-psh functions, we define

P[θ,ψ](ϕ) :=
{

lim
C→+∞

Pθ(min(ψ + C,ϕ))
}∗
. (1)
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In § 2, we prove that whenever ϕ,ψ belong to E(X, θ) then Pθ(min(ϕ,ψ)) also belongs to
E(X, θ). Coincidentally, with the help of this result we can settle a conjecture in [BEGZ10,
Remark 2.16], regarding the convexity of finite energy classes associated to a big cohomology
class (Corollary 2.12).

To familiarize the reader with the flavor of our arguments, we sketch the proof of the
statement involving Lelong numbers in Theorem 1.1(i). If ϕ ∈ E(X, θ) it follows from an
approximation and balayage argument [BT82] that the non-pluripolar Monge–Ampère measure
of P[θ,ϕ](0) vanishes on {P[θ,ϕ](Vθ) < Vθ} (see Proposition 2.14 cf. [RW14, Theorem 4.1]). It
thus follows from the domination principle that P[θ,ϕ](Vθ) = Vθ. A local argument involving the
pluricomplex Green function now implies that the Lelong numbers of ϕ are the same as those of
Vθ (see (21)).

In the case when θ is Kähler a surprising characterization of the class E(X, θ) in terms of
the envelope construction of (1) was obtained in [Dar17a, Theorem 4], [Dar17b, Theorem 3].
Our next result, which is a vital ingredient in our proof of Theorem 1.1(ii), shows that this
characterization holds in the context of big classes as well.

Theorem 1.2. Let {θ} be a big cohomology class and fix ϕ ∈ E(X, θ). Then a function ψ ∈
PSH(X, θ) belongs to E(X, θ) if and only if P[θ,ψ](ϕ) = ϕ.

The implication ‘ψ ∈ E(X, θ) =⇒ P[θ,ψ](ϕ) = ϕ’ follows essentially from the domination
principle, by the arguments of [Dar17b, RW14]. In order to prove the other implication, we
introduce the seemingly unrelated notion of weak geodesics in big cohomology classes, mimicking
Berndtsson’s construction in the Kähler case [Ber15, § 2.2], and we prove that the Monge–Ampère
energy I (sometimes called Aubin–Yau or Aubin–Mabuchi energy) is convex/linear along weak
subgeodesics/geodesics (Theorems 3.8 and 3.12). Compared to the Kähler case, this is a very
subtle issue and it serves as the key technical ingredient in the proof of Theorem 1.2.

When varying big classes, an important question is to understand how the class of full mass
currents changes. Theorem 1.1(ii) already establishes a result in this direction in the particular
case of big and nef classes. Paralleling this, as a consequence of Theorem 1.2, we can characterize
the pairs of big classes that have ‘additive’ full mass currents, greatly generalizing [DiN15,
Theorem B] in the process.

Theorem 1.3. Let {θ1}, {θ2} be big classes on X. The following are equivalent:

(i) Vθ1 + Vθ2 ∈ E(X, θ1 + θ2);

(ii) for any u ∈ PSH(X, θ1), v ∈ PSH(X, θ2) we have

u+ v ∈ E(X, θ1 + θ2)⇐⇒ u ∈ E(X, θ1), v ∈ E(X, θ2).

As it turns out, when {θ1}, {θ2} are big and nef, condition (i) in the above theorem is
automatically satisfied (Corollary 4.2). This result also helps to partially confirm [BEGZ10,
Conjecture 1.23] concerning log concavity of the non-pluripolar complex Monge–Ampère measure
in the case of full mass currents of big and nef classes (see Corollary 5.3).

Organization of the paper. Section 2 mostly reviews background material on the pluripotential
theory of big cohomology classes and we establish some preliminary results. In § 3 we develop
the theory of weak geodesics in big cohomology classes following Berndtsson’s ideas, and then
we prove Theorems 1.2 and 1.3. Theorem 1.1 will be proved in § 4 while some other applications
will be discussed in § 5.
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2. Pluripotential theory in big cohomology classes

2.1 Non-pluripolar Monge–Ampère measures
We recall basic facts concerning pluripotential theory of big cohomology classes. We borrow
notation and terminology from [BEGZ10], and we also refer to this work for further details.

Let (X,ω) be a compact Kähler manifold of dimension n. We fix θ a smooth closed (1, 1)-form
on X such that {θ} is big, i.e., there exists ψ ∈ PSH(X, θ) such that θ + ddcψ > εω for some
small constant ε > 0. Here, d and dc are real differential operators defined as d := ∂ + ∂̄,
dc := (i/2π)(∂̄ − ∂). A function ϕ : X → R ∪ {−∞} is called quasi-plurisubharmonic if it is
locally written as the sum of a plurisubharmonic function and a smooth function. ϕ is called
θ-psh if it is quasi-psh such that θ+ddcϕ> 0 in the sense of currents. We let PSH(X, θ) denote the
set of θ-psh functions which are not identically −∞ (equivalently, it consists of θ-psh functions
which are integrable on X).

A θ-psh function ϕ is said to have analytic singularities if there exists c > 0 such that locally
on X,

ϕ =
c

2
log

N∑
j=1

|fj |2 + u,

where u is smooth and f1, . . . , fN are local holomorphic functions. The ample locus Amp({θ}) of
{θ} is the set of points x ∈ X such that there exists a Kähler current T ∈ {θ} (satisfying T > εω
for some ε > 0) with analytic singularities and smooth in a neighborhood of x. The ample locus
Amp({θ}) is a Zariski open subset, and it is non-empty [Bou04].

Let x ∈ X. Fixing a holomorphic chart x ∈ U ⊂ X, the Lelong number ν(ϕ, x) of ϕ ∈
PSH(X, θ) is defined as follows:

ν(ϕ, x) = sup{γ > 0 | ϕ(z) 6 γ log ‖z − x‖+O(1) on U}. (2)

One can also associate to ϕ a collection of multiplier ideal sheafs I(tϕ), t > 0, whose germs are
defined by

I(tϕ, x) =

{
f ∈ Ox

∣∣∣∣ ∫
V
|f |e−tϕωn <∞ for some open set x ∈ V ⊂ X

}
.

If ϕ and ϕ′ are two θ-psh functions on X, then ϕ′ is said to be less singular than ϕ if they
satisfy ϕ 6 ϕ′ + C for some C ∈ R. A θ-psh function ϕ is said to have minimal singularities if
it is less singular than any other θ-psh function. Such θ-psh functions with minimal singularities
always exist, one can consider for example

Vθ := sup{ϕ θ-psh, ϕ 6 0 on X}.

Trivially, a θ-psh function with minimal singularities has locally bounded potential in Amp({θ}).
It follows from Demailly’s approximation theorem that Vθ is continuous in the ample locus
Amp(θ).

More generally, if f is a function on X, we define the Monge–Ampère envelope of f in the
class PSH(X, θ) by

Pθ(f) := (sup{u ∈ PSH(X, θ) | u 6 f})∗,
with the convention that sup ∅ = −∞. Observe that Pθ(f) is a θ-psh function on X if and only
if there exists some u ∈ PSH(X, θ) lying below f . Note also that Vθ = Pθ(0).
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Given T1 := θ1 + ddcϕ1, . . . , Tp := θp + ddcϕp positive (1, 1)-currents, where θj are closed
smooth (1, 1)-forms, following the construction of Bedford and Taylor [BT87] in the local setting,
it has been shown in [BEGZ10] that the sequence of currents

1⋂
j{ϕj>Vθj−k}

(θ1 + ddc max(ϕ1, Vθ1 − k)) ∧ · · · ∧ (θp + ddc max(ϕp, Vθp − k))

is non-decreasing in k and converges weakly to the so called non-pluripolar product

〈T1 ∧ · · · ∧ Tp〉 = 〈θϕ1 ∧ · · · ∧ θϕ1〉.

The resulting positive (p, p)-current does not charge pluripolar sets and it is closed. The particular
case when T1 = · · · = Tp will be important for us in the sequel. For a θ-psh function ϕ, the
non-pluripolar complex Monge–Ampère measure of ϕ is

θnϕ := 〈(θ + ddcϕ)n〉.

The volume of a big class {θ} is defined by

Vol({θ}) :=

∫
X
θnVθ .

Alternatively, by [BEGZ10, Theorem 1.16], in the above expression one can replace Vθ with
any θ-psh function with minimal singularities. A θ-psh function ϕ is said to have full Monge–
Ampère mass if ∫

X
θnϕ = Vol({θ}),

and we then write ϕ ∈ E(X, θ). Let us stress that since the non-pluripolar product does not
charge pluripolar sets, for a general θ-psh function ϕ we only have Vol({θ}) >

∫
X θ

n
ϕ.

By a weight function, we mean a smooth increasing function χ : R → R such that χ(0) = 0
and χ(−∞) = −∞. We say that ϕ ∈ PSH(X, θ) has finite χ-energy if

Eχ(ϕ) :=

∫
X

(−χ)(ϕ− Vθ)θnϕ < +∞.

We denote by Eχ(X, θ) the set of full mass θ-psh potentials having finite χ-energy. IfW− denotes
the set of weights χ that are convex on R−, then by [BEGZ10, Proposition 2.11] we have

E(X, θ) :=
⋃

χ∈W−
Eχ(X, θ).

In the special case when χ = Id we simply denote the space Eχ(X, θ) by E1(X, θ). When ϕ ∈
PSH(X, θ) has minimal singularities, the Monge–Ampère energy (in the class {θ}) is defined by
the formula

I(ϕ) :=
1

(n+ 1) Vol(θ)

n∑
k=0

∫
X

(ϕ− Vθ)〈θkϕ ∧ θn−kVθ
〉.

For general ϕ ∈ PSH(X, θ), using the monotonicity property of I, we have the following definition

I(ϕ) := lim
k→∞

I(max(ϕ, Vθ − k)).

Though the above limit exists, it is possible that I(ϕ) = −∞. It was proved in [BEGZ10] that
ϕ ∈ E1(X, θ) if and only if I(ϕ) is finite. Moreover, I is continuous under monotone and uniform
convergence [BEGZ10, Proposition 2.10, Theorem 2.17].
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2.2 Degenerate complex Monge–Ampère equation
We summarize recent results on the resolution of degenerate complex Monge–Ampère equations
in big cohomology classes. The main sources are [BEGZ10] and [BBGZ13]. Let µ be a non-
pluripolar measure on X, i.e. a positive Borel measure that puts no mass on pluripolar sets. We
want to solve the complex Monge–Amère equation

θnϕ = eβϕµ, ϕ ∈ E1(X,ω), (3)

where β > 0 is a constant. As the treatment is the same for all β, we assume that β = 1. If µ is
a smooth volume form (or it has bounded density with respect to ωn), then one can use a fixed
point argument [BEGZ10, § 6.1] to solve the equation. For the general case we use the variational
method of [BBGZ13] to show existence of a solution ϕ ∈ E1(X, θ). The proof that we give below
is extracted from [BBGZ13], except for the argument of Theorem 2.2, which is inspired from
[LN15]. The main point is to make it clear that the result is independent of [BD12].

2.2.1 The variational method. Let µ be a non-pluripolar positive measure on X. For
convenience we normalize θ so that its volume is 1.

Consider the following functional

F (ϕ) := I(ϕ)− Lµ(ϕ), ϕ ∈ PSH(X,ω),

where Lµ(ϕ) :=
∫
X e

ϕ dµ. It follows from [BEGZ10] that I is upper semicontinuous with respect
to L1-convergence. Assume that ϕj is a sequence of θ-psh functions converging in L1(X,ωn)
to ϕ ∈ PSH(X, θ). Then by Hartogs’ lemma supX ϕj is uniformly bounded, hence the sequence
eϕj stays in PSH(X,Aω) for some positive constant A and eϕj converges to eϕ in L1(X,ωn).
Since µ is non-pluripolar it thus follows from an argument due to Cegrell [Ce98, Lemma 5.2]
(see [BBGZ13, Theorem 3.10] or [GZ17, Lemma 11.5] for a proof in the compact case) that
Lµ(ϕj) → Lµ(ϕ). This means Lµ is continuous with respect to the L1-topology, hence F is
upper semicontinuous on E1(X, θ).

Proposition 2.1. There exists ϕ ∈ E1(X, θ) such that F (ϕ) = supψ∈E1(X,θ) F (ψ).

Proof. Let (ϕj) be a sequence in E1(X, θ) such that limj F (ϕj) = supE1(X,θ) F > −∞. We claim
that supX ϕj is uniformly bounded from above. Indeed, assume that it were not the case. Then by
relabeling the sequence we can assume that supX ϕj increases to +∞. By compactness property
[GZ05, Proposition 2.7] it follows that the sequence ψj := ϕj − supX ϕj converges in L1(X,ωn)
to some ψ ∈ PSH(X, θ) such that supX ψ = 0. In particular

∫
X e

ψ dµ > 0. It thus follows that∫
X
eϕj dµ = esupX ϕj

∫
X
eψj dµ > cesupX ϕj

for some positive constant c. Since I(ϕj) 6 supX ϕj , the above inequality gives that F (ϕj)
converges to −∞, a contradiction. Thus supX ϕj is bounded from above as claimed. Since
F (ϕj) 6 I(ϕj) 6 supX ϕj it follows that I(ϕj) and hence supX ϕj is also bounded from below.
It follows again from [GZ05, Proposition 2.7] that a subsequence of ϕj (still denoted by ϕj)
converges in L1(X,ωn) to some ϕ ∈ PSH(X, θ). Since I is upper semicontinuous it follows that
ϕ ∈ E1(X, θ). Moreover, by continuity of Lµ it follows that F (ϕ) > supE1(X,θ) F completing
the proof. 2
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Next we prove that the maximizer obtained above is actually the solution to the complex
Monge–Ampère equation (3). The proof relies on a differentiability property of the Monge–
Ampère energy functional.

Theorem 2.2. Fix ϕ ∈ E1(X, θ) and let χ be a continuous real valued function X. Set ϕt =
Pθ(ϕ+ tχ), t ∈ R. Then t 7→ I(ϕt) is differentiable and its derivative is given by

d

dt
I(ϕt) =

∫
X
χθnϕt , ∀t ∈ R.

Note that ϕt > ϕ−|t| supX |χ|, hence ϕt ∈ E1(X, θ) for all t ∈ R. This result was first proved
in [BBGZ13, Lemma 4.2] using [BB10]. A simplification of the original argument has been given
in [LN15], and we follow this approach here.

Proof. Let u be a continuous function on X and set ut := Pθ(u+ tχ), t ∈ R. Then for each t ∈ R,
ut is a θ-psh function with minimal singularities. We claim that

d

dt
I(ut) =

∫
X
χθnut , ∀t ∈ R.

It suffices to prove the claim for t = 0. We only prove the equality for the right-derivative since
the same argument can be applied to deal with the left-derivative. We fix t > 0. It follows from
the concavity of I [BEGZ10] that∫

X
(ut − u0)θnut 6 I(ut)− I(u0) 6

∫
X

(ut − u0)θnu0
.

On the other hand, since u + tχ is continuous on X, it follows from a balayage argument
(see [BT82]) that θnut is supported on the contact set {ut = u+ tχ}. It thus follows that∫

X
(ut − u0)θnut =

∫
X

(u+ tχ− u0)θnut > t

∫
X
χθnut .

By a similar argument we also get∫
X

(ut − u0)θnu0
=

∫
X

(ut − u)θnu0
6 t

∫
X
χθnu0

.

We note that ut converges uniformly to u0 as t → 0+, hence by [BEGZ10] we have that θnut
converges weakly to θnu0

. Since χ is continuous, we can divide all of the above estimates with
t > 0, and let t → 0 to finish the proof of the claim.

Now, we come back to the proof of the theorem. We approximate ϕ from above by a sequence
ϕj of continuous functions on X. For each j, we set ϕt,j := Pθ(ϕj+tχ) and note that ϕt,j decreases
pointwise to ϕt as j → +∞. Since χ is continuous on X and ϕt,j converges uniformly to ϕs,j
as t → s it follows from continuity of the complex Monge–Ampère operator together with our
claim that the function t 7→ I(ϕt,j) is of class C1 on R. We thus have that

I(ϕt,j)− I(ϕ0,j) =

∫ t

0

∫
X
χθnϕs,j ds.

Letting j → +∞, and using the dominated convergence theorem we obtain

I(ϕt)− I(ϕ0) =

∫ t

0

∫
X
χθnϕs ds.
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By continuity of the Monge–Ampère operator the function s 7→
∫
X χθ

n
ϕs is continuous on R.

Therefore, from the above equality we see that t 7→ I(ϕt) is differentiable and its derivative is
exactly as in the statement of the theorem. 2

We are now ready to solve (3).

Theorem 2.3. Let µ be a non-pluripolar positive measure on X. Then there exists a unique
ϕ ∈ E1(X, θ) solving (3). Moreover, if µ = fωn for some bounded non-negative function f , then
ϕ has minimal singularities.

Proof. As before we can assume that β = 1. It follows from Proposition 2.1 that there exists
ϕ ∈ E1(X, θ) such that F (ϕ) = supE1(X,θ) F . Fix a continuous function χ and set

g(t) := I(ϕt)−
∫
X
eϕ+tχ dµ, t ∈ R,

where ϕt := Pθ(ϕ+ tχ) ∈ E1(X, θ). Since ϕt 6 ϕ+ tχ and since ϕ maximizes F on E1(X, θ) we
have

g(0) = F (ϕ) > F (ϕt) > g(t), ∀t ∈ R.

Thus g attains its maximum at 0. It follows from Theorem 2.2 and the dominated convergence
theorem that g is differentiable at 0, hence g′(0) = 0 which means∫

X
χθnϕ =

∫
X
χeϕ dµ.

Since χ was chosen arbitrarily it follows that (3) is satisfied in the weak sense of measure.
The uniqueness follows from Lemma 2.5 below. Finally, if µ has bounded density, then the

right-hand side in (3) has bounded density (because ϕ is bounded from above), hence it follows
from [BEGZ10, Thereom 4.1] that ϕ has minimal singularities. 2

2.2.2 The domination principle. The following domination principle was proved in
[BEGZ10, Corollary 2.5] for two θ-psh functions ϕ,ψ with ϕ having minimal singularities.
The argument of Dinew [BL12] gives a generalization of this result to the case when ϕ ∈ E(X, θ)
does not necessarily have minimal singularities.

Proposition 2.4. Let ϕ,ψ be θ-psh functions such that ϕ ∈ E(X, θ). If ψ 6 ϕ almost everywhere
with respect to θnϕ, then ψ 6 ϕ everywhere.

Proof. Fix t > 0. As {ϕ > ψ − t} is plurifine open, it follows from locality of the non-pluripolar
product with respect to the plurifine topology [BEGZ10, Proposition 1.4] that

θnmax(ϕ,ψ−t) > 1{ϕ>ψ−t}θ
n
max(ϕ,ψ−t) = 1{ϕ>ψ−t}θ

n
ϕ = θnϕ,

where in the last identity we used the assumption that θnϕ({ϕ < ψ}) = 0. As max(ϕ,ψ − t) also
has full mass, the above inequality becomes equality. This together with the uniqueness theorem,
proved in [BEGZ10, Theorem A] which is an adaptation of the original proof in the Kähler case
due to Dinew [Din09], gives that max(ϕ,ψ− t) = ϕ+C, for some constant C which can be easily
seen to be zero. Letting t → 0+ we obtain the desired result. 2
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Lemma 2.5. Fix β > 0 and µ a non-pluripolar positive measure on X. Assume that v ∈ E(X, θ)
and u ∈ PSH(X, θ) satisfy

θnu > eβue−φµ; θnv 6 eβve−φµ,

where φ is some Borel measurable function on X. Then u 6 v on X.

Proof. It follows from the comparison principle (see [BEGZ10, Corollary 2.3]) that∫
{v<u}

eβu−φ dµ 6
∫
{v<u}

θnu 6
∫
{v<u}

θnv 6
∫
{v<u}

eβv−φ dµ 6
∫
{v<u}

eβu−φ dµ.

Thus, the inequalities above become equalities and we have in particular that∫
{v<u}

(eβu − eβv)e−φ dµ = 0.

Since φ is bounded from above on X it follows that
∫
{v<u}(e

βu−eβv) dµ = 0. We then deduce that

µ({−∞ < v < u}) = 0. Since µ is non-pluripolar it follows that µ({v < u}) = 0. Consequently
θnv ({v < u}) = 0, and the domination principle (Proposition 2.4) gives that u 6 v on X. 2

2.3 Regularity of quasi-psh envelopes
By a deep result of Berman and Demailly [BD12], the envelope Vθ has locally bounded Laplacian
in the ample locus Amp({θ}) and its complex Monge–Ampère measure satisfies

θnVθ = 1{Vθ=0}θ
n. (4)

In the case when {θ} is integral, this result has been obtained by Berman [Ber09] using different
methods. In [Ber13], Berman introduced a new approximation scheme of the envelope by solving
a suitably chosen family of complex Monge–Ampère equations. In the case when the class {θ} is
big and nef, using this method, he gave a proof of the regularity of Vθ using partial differential
equations. Given the almost C1,1-regularity of Vθ it is classical to obtain (4). In the general case
of a big class Berman’s method gives the following weaker version of (4).

Theorem 2.6. Suppose (X,ω) is Kähler. Let θ be a smooth (1, 1)-form such that {θ} is big.
Then the envelope Vθ satisfies

θnVθ 6 1{Vθ=0}θ
n.

We will use Theorem 2.6 in the construction of the rooftop envelope of two functions in
E(X, θ) (see Theorem 2.10). In the case when {θ} is Kähler a detailed study of this envelope has
been done in [DR16, Dar17a] which has found many interesting applications in Kähler geometry.

For a proof of Theorem 2.6 we refer to [Ber13] (see the paragraph ‘on the proof’ at [Ber13,
p. 6 and Lemma 2.12 in version 3]). An alternative proof using viscosity theory was recently
given in [GLZ17, Proposition 5.2].

2.4 Comparison of capacities
Given a big class {θ}, recall that the θ-capacity of a set E ⊂X is defined as follows (see [BEGZ10,
§ 4.1] for further details):

Capθ(E) := sup

{∫
E
θnu | u ∈ PSH(X, θ) Vθ − 1 6 u 6 Vθ

}
.

388

https://doi.org/10.1112/S0010437X1700759X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1700759X


On the singularity type of full mass currents in big cohomology classes

The global extremal θ-psh function of E is defined as the upper semicontinuous (usc)
regularization of

Vθ,E := sup{u ∈ PSH(X, θ) | u 6 0 on E}.
By the definition of Vθ,E it follows that V ∗θ,E = V ∗θ,F if E = F ∪ P for some pluripolar set P .

To see this it suffices to observe that any pluripolar set is contained in the −∞ locus of some
ϕ ∈ PSH(X, θ). The latter standard fact can be quickly explained as follows. If E is pluripolar,
then by [GZ05, Theorem 7.2] there exists u ∈ PSH(X,ω) such that u(x) = −∞ for all x ∈ E. As
{θ} is big, there exists ψ ∈ PSH(X, θ) such that θ + ddcψ > εω for some small constant ε > 0.
It is clear that the function ϕ := ψ + εu belongs to PSH(X, θ) and takes value −∞ on E as we
claimed.

Denote by Tθ(E) := exp(−Mθ,E) := exp(− supX V
?
θ,E) the Alexander–Taylor capacity of E.

We recall the following useful relation between the θ-capacity and the Alexander–Taylor capacity
(see [DiN15, Proposition 5.4] and [BEGZ10, Lemma 4.2]).

Proposition 2.7. There exists A > 0 such that for all Borel subsets E ⊂ X,

exp

[
− A

Capθ(E)

]
6 Tθ(E) 6 e · exp

[
−
(

Vol({θ})
Capθ(E)

)1/n]
.

The second inequality was proved in [BEGZ10] while the first one was proved in [DiN15,
Proposition 5.4] using the main result of [BD12]. But, what was actually used in the proof of
[DiN15, Proposition 5.4] is the inequality in Theorem 2.6. Thus Proposition 2.7 is independent
of [BD12].

Using Proposition 2.7 and a sharp analysis in the ample locus we get the following comparison
between two θ-capacities. Let us emphasize that this result significantly extends [DiN15,
Theorem 5.6] where an extra assumption is required (see [DiN15, Definition 4.2]).

Theorem 2.8. Suppose {θ1} and {θ2} are big. Then there exists C = C(θ1, θ2) > 0 such that

C−1 Capnθ1(E) 6 Capθ2(E) 6 C Cap
1/n
θ1

(E),

for all Borel subsets E ⊂ X.

Proof. Since {θ2} is big we can find ψ ∈ PSH(X, θ2) that is smooth in Amp({θ2}), ψ has analytic
singularities such that θ2 +ddcψ > εω > εθ1 for some ε > 0 [Bou04]. Normalize ψ by supX ψ = 0
and denote by U = {ψ >−1} which is a non-empty open subset ofX, henceMθ1,U = supX Vθ1,U <
+∞. Now, the function u = ψ + εV ∗θ1,E is θ2-psh and satisfies u 6 0 on E (modulo a pluripolar
set). Thus by definition we have u 6 V ∗θ2,E . It follows that

Mθ2,E > sup
U
u > ε sup

U
V ∗θ1,E − 1.

On the other hand V ∗θ1,E− supU V
∗
θ1,E

is θ1-psh and takes non-positive values on U , hence V ∗θ1,E−
supU V

∗
θ1,E

6 Vθ1,U . This together with the above inequality yields

Mθ2,E > ε(Mθ1,E −Mθ1,U )− 1,

giving that, for some C > 0 fixed we have Tθ2(E) 6 CTθ1(E)ε. An elementary calculation using
the double estimate of Proposition 2.7 finishes the proof. 2
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From this comparison of capacities and standard arguments in pluripotential theory we
immediately get the following convergence result.

Corollary 2.9. Assume that {θ} is big and {ϕij}j , i = 1, . . . , n are sequences of θ-psh functions

with minimal singularities that converge decreasingly (or uniformly) to ϕi, i = 1, . . . , n (also
with minimal singularities). If fj is a sequence of uniformly bounded quasi-continuous functions
converging monotonically to f (also quasi-continuous), then∫

X
fjθϕ1

j
∧ · · · ∧ θϕnj →

∫
X
fθϕ1 ∧ · · · ∧ θϕn .

Proof. Let ω be a Kähler form on X. By the definition of quasi-continuity, for any ε > 0 one
can find an open set U ⊂ X such that all fj are continuous in X\U and Capω(U) 6 ε. Using
Theorem 2.8, a standard argument now gives that∫

U
θϕ1

j
∧ · · · ∧ θϕnj 6 Cε1/n,

∫
U
θϕ1 ∧ · · · ∧ θϕn 6 Cε1/n. (5)

Now we can use Tietze’s theorem to extend each fj |X\U , f |X\U to a continuous functions f̃j , f̃
on X whose L∞ norm is controlled. It follows from [BEGZ10, Theorem 2.17] that for j0 fixed
we have∫

X
f̃j0θϕ1

j
∧ · · · ∧ θϕnj →

∫
X
f̃j0θϕ1 ∧ · · · ∧ θϕn ,

∫
X
f̃ θϕ1

j
∧ · · · ∧ θϕnj →

∫
X
f̃ θϕ1 ∧ · · · ∧ θϕn .

Using (5) and the uniform boundedness of fj , f̃j , f, f̃ , we can subsequently write that∫
X
fj0θϕ1

j
∧ · · · ∧ θϕnj →

∫
X
fj0θϕ1 ∧ · · · ∧ θϕn ,

∫
X
fθϕ1

j
∧ · · · ∧ θϕnj →

∫
X
fθϕ1 ∧ · · · ∧ θϕn .

Finally, using the above and the monotonicity of fj we can write that

lim
j0→∞

∫
X
fj0θϕ1 ∧ · · · ∧ θϕn > lim

j→∞

∫
X
fjθϕ1

j
∧ · · · ∧ θϕnj >

∫
X
fθϕ1 ∧ · · · ∧ θϕn .

After invoking the dominated convergence theorem, the proof is finished. 2

2.5 The operator P (ϕ,ψ)
Consider X a compact Kähler manifold and {θ} a big cohomology class. Given a usc function
f on X, it is natural to ask whether there exists u ∈ PSH(X, θ) lying below f . We will pay
particular attention to the case when f = min(ϕ,ψ), where ϕ,ψ ∈ PSH(X, θ), in which case
more can be said. Indeed, when {θ} is Kähler and ϕ,ψ ∈ E(X, θ), it was shown in [Dar17a] that
Pθ(ϕ,ψ) ∈ E(X, θ). The analogue of this result holds in the big case as well.

Theorem 2.10. Let χ ∈ W−, i.e., χ is convex increasing with χ(0) = 0 and χ(−∞) = −∞. If
ϕ,ψ ∈ Eχ(X, θ), then Pθ(ϕ,ψ) := Pθ(min(ϕ,ψ)) ∈ Eχ(X, θ). In particular, if ϕ,ψ ∈ E(X, θ), then
Pθ(ϕ,ψ) ∈ E(X, θ), thus P[θ,ψ](ϕ) ∈ E(X, θ).

Proof. Without loss of generality we can assume that ϕ,ψ 6 0. Let ϕj := max(ϕ, Vθ − j), ψj :=
max(ψ, Vθ− j) be the canonical approximants. For each j > 0, it follows from Lemma 2.11 below
that there exists a unique uj ∈ PSH(X, θ) with minimal singularities such that

θnuj = euj−ϕjθnϕj + euj−ψjθnψj . (6)
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Additionally, it follows from Lemma 2.5 (see also the proof of the uniqueness part in Lemma 2.11)
that uj 6 min(ϕj , ψj). Consequently uj 6 Pθ(ϕj , ψj).

Next we claim that

inf
j

∫
X
χ(uj − Vθ)θnuj > −∞.

To prove the claim, in view of (6) it suffices to prove that

inf
j

∫
X
χ(uj − Vθ)euj−ϕjθnϕj > −∞. (7)

By convexity of χ it follows that χ(t+ s) > χ(t) +χ(s), and also χ(t)et > −C, for all t, s 6 0 for
some C > 0. Thus to prove (7) it suffices to check that

inf
j

∫
X
χ(ϕj − Vθ)euj−ϕjθnϕj > −∞.

But this holds since uj 6 ϕj and ϕ ∈ Eχ(X, θ). Thus the claim is proved.
Since χ(−∞) = −∞, the claim implies that supX uj is uniformly bounded. It thus follows

from [BEGZ10, Proposition 2.19] that some subsequence of uj converges in L1(X,ωn) to some
u ∈ Eχ(X, θ). Since uj 6 Pθ(ϕj , ψj) it follows that u 6 Pθ(min(ϕ,ψ)). Now, it follows from
[BEGZ10, Proposition 2.14] that Pθ(ϕ,ψ) ∈ E(X, θ) and so is P[θ,ψ](ϕ). 2

Lemma 2.11. Assume that u, v ∈ PSH(X, θ) with minimal singularities. Then there exists a
unique ϕ ∈ PSH(X, θ) with minimal singularities such that

θnϕ = eϕ−uθnu + eϕ−vθnv .

Proof. The uniqueness follows from the Lemma 2.5. Indeed, assume that ψ ∈ E(X, θ) is another
solution, i.e.

θnψ = eψ−uθnu + eψ−vθnv .

Set µ = euθnv + evθnu and φ := u + v. Then we can write θnϕ = eϕ−φµ and θnψ = eψ−φµ. It thus
follows from Lemma 2.5 that ϕ = ψ.

To prove the existence we approximate u by uj := max(u,−j) and note that these are
bounded functions. Observe that, for each j,

µj := e−ujθnu + e−vjθnv

is a non-pluripolar positive measure on X. For each j > 0 it follows from Theorem 2.3 that there
exists ϕj ∈ PSH(X, θ) with minimal singularities such that

θnϕj = eϕjµj .

Let C > 0 be a constant such that supX |u − v| 6 2C. This is possible because u and v have
minimal singularities. The function φ := (u+ v)/2−C−n log 2 is θ-psh with minimal singularities
and it satisfies

θnφ > eφµj .

It thus follows from Lemma 2.5 that ϕj > φ for all j. It also follows from Lemma 2.5 that
ϕj is decreasing in j, the pointwise limit ϕ := limj→+∞ ϕj has minimal singularities. By
continuity of the Monge–Ampère operator (see [BEGZ10]) it follows that ϕ is the solution we are
looking for. 2
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As a simple consequence of the above result, we can settle the conjecture of [BEGZ10,
Remark 2.16] about the convexity of the classes Eχ(X, θ). A similar result in the Kähler case was
obtained in [Dar17a].

Corollary 2.12. Suppose χ ∈ W−. Then Eχ(X, θ) is convex.

Proof. Given u0, u1 ∈ Eχ(X, θ) it follows that Pθ(u0, u1) 6 tu0 + (1 − t)u1, t ∈ [0, 1]. By the
above result Pθ(u0, u1) ∈ Eχ(X, θ). Now [BEGZ10, Proposition 2.14] implies that tu0 +(1−t)u1 ∈
Eχ(X, θ). 2

If f is smooth, it follows from a balayage argument that θnPθ(f) is concentrated on the contact

set {Pθ(f) = f}. Using the capacity theory developed in the previous subsection, the result also
holds for more general functions f .

Proposition 2.13. Assume that {θ} is big, Pθ(f) 6= −∞ and f is quasi-continuous and usc on
X. Then θnPθ(f) does not charge {Pθ(f) < f}.

Proof. Without loss of generality we can assume that f 6 0. If f is smooth, then the result
follows from a balayage argument (or directly from Theorem 2.6). To treat the general case, we
approximate f from above (by semicontinuity) by a sequence of smooth functions (fj). We can
also assume that fj 6 0. Set ϕj := Pθ(fj), ϕ := Pθ(f) and note that ϕj ↘ ϕ. For each j ∈ N the
measure θnϕj vanishes in the set {ϕj < fj}. Now, we want to pass to the limit as j → +∞. We
first fix k, l ∈ N and set

Uk,l = {ϕk < f} ∩ {ϕ > Vθ − l}.
For any j > k, note that on Uk,l we have ϕj > ϕ > Vθ − l and {ϕk < f} ⊂ {ϕj < fj}. It thus
follows from definition of the non-pluripolar product (see [BEGZ10]) that for any j > k, the
measure θnmax(ϕj ,Vθ−l) = θnϕj vanishes on Uk,l. By assumption f is quasi-continuous, hence Uk,l
is quasi open. More precisely, for any fixed ε > 0 there exists an open set Vε such that the
set Gε := (Vε\Uk,l ∪ Uk,l\Vε) satisfies Capω(Gε) 6 ε. Observe that for fixed l all the functions
max(ϕj , Vθ − l) are sandwiched between Vθ − l and Vθ. It then follows that

sup
j∈N

∫
Gε

θnmax(ϕj ,Vθ−l) 6 ACapθ(Gε) 6 A′Cap1/n
ω (Gε) 6 A′ε1/n,

where the last inequality follows from the comparison of capacities in Theorem 2.8. Consequently,
supj∈N

∫
Vε
θnmax(ϕj ,Vθ−l) 6 A′ε1/n, and the continuity of the Monge–Ampère operator allows to

take the limit, and we ultimately obtain∫
Uk,l

θnmax(ϕ,Vθ−l) 6 Cε1/n,

for some positive constant C independent of ε (but dependent on l). Now letting ε → 0 we see
that θnmax(ϕ,Vθ−l) vanishes in Uk,l. Letting l → +∞, and using the definition of the non-pluripolar

product, we see that θnϕ vanishes in {ϕk < f}. Now, letting k → +∞ we obtain the result. 2

With the previous result in hands, we can prove that the non-pluripolar Monge–Ampère
measure of P[θ,ϕ](ψ) is supported on the contact set {P[θ,ϕ](ψ) = ψ}. The latter was already
proved in [RW14, Lemma 4.9] when {θ} is a Kähler class and ψ is continuous.
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Proposition 2.14. Let {θ} be a big class. Assume that ϕ,ψ, P (ϕ,ψ) ∈ PSH(X, θ). Then

θnP[θ,ϕ](ψ) does not charge {P[θ,ϕ](ψ) < ψ}.

Proof. For each t > 0, since min(ϕ + t, ψ) is usc and quasi-continuous, it follows from

Proposition 2.13 that θnψt vanishes on {ψt < min(ϕ + t, ψ)}, where ψt := Pθ(min(ϕ + t, ψ)).

Because {ψt < ψ < ϕ+ t} ⊂ {ψt < min(ϕ+ t, ψ)} it thus follows that∫
{ψt<ψ<ϕ+t}

θnψt = 0.

Fix s > 0, j > 0 and set v := P[θ,ϕ](ψ) = (limt→+∞ ψt)
∗, ψt,j := max(ψt, Vθ − j), vj :=

max(v, Vθ − j). It is clear that ψt,j ↗ vj almost everywhere as t↗∞. By the plurifine property

of the non-pluripolar Monge–Ampère measure it follows that∫
{Vθ−j<ψt<ψ<ϕ+t}

θnψt,j = 0.

For t > s, we have ψs 6 ψt 6 v 6 ψ. Consequently, {Vθ − j < ψs 6 v < ψ < ϕ+ s} ⊂ {Vθ − j <
ψt < ψ < ϕ+ t} and we have ∫

{Vθ−j<ψs6v<ψ<ϕ+s}
θnψt,j = 0.

Now, using the same trick as in the proof of Proposition 2.13 we let t → +∞ and arrive at∫
{Vθ−j<ψs6v<ψ<ϕ+s}

θnvj = 0.

Letting s→ +∞, then j → +∞, and noting that θnv is a non-pluripolar measure, we can conclude

that θnv vanishes on {v < ψ}. This concludes the proof. 2

Theorem 2.15. Assume that ψ,ϕ ∈ E(X, θ). Then P[θ,ϕ](ψ) = ψ.

Proof. It follows from Theorem 2.10 that P[θ,ϕ](ψ) ∈ E(X, θ). The conclusion then follows from

Proposition 2.14 and the domination principle (Proposition 2.4). 2

3. Weak geodesics in big cohomology classes

3.1 Berndtsson’s construction

We introduce a notion of weak geodesics in big cohomology classes mimicking Berndtsson’s

construction in [Ber15, § 2.2]. Fix θ a smooth closed (1, 1)-form such that {θ} is big and also fix

ϕ0, ϕ1 ∈ PSH(X, θ) with minimal singularities. A subgeodesic of ϕ0, ϕ1 is a curve [0, 1] 3 t 7→
ut ∈ PSH(X, θ) such that:

(i) for each t ∈ [0, 1], the function ut has minimal singularities;

(ii) u0,1 = limt→0,1 ut 6 ϕ0,1 pointwise;

(iii) the complexification X × D 3 (x, z) 7→ U(x, z) := ulog |z|(x) is π∗θ-psh on X × D, where

D := {z ∈ C | 1 < |z| < e} is the annulus in C and π : X ×D → X is the trivial projection.
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Let us mention that a curve (α, β) ∈ t → ut ∈ PSH(X, θ) is a (general) subgeodesic if it
satisfies only the appropriate version of (iii) above. In this case α, β may even take ±∞ as a
value. We will not make a difference between the curve t → ut and its complexification U .

The weak geodesic [0, 1] 3 t → ϕt ∈ PSH(X, θ) with minimal singularities joining ϕ0 to ϕ1 is
defined as the envelope of all subgeodesics, i.e.,

ϕl(x) := sup{ul(x),where t → ut is a subgeodesic of ϕ0, ϕ1}, l ∈ [0, 1], x ∈ X. (8)

Lemma 3.1. Let t → ϕt be the weak geodesic joining ϕ0, ϕ1 ∈ PSH(X, θ) with minimal
singularities, constructed as above. Then there exists C = C(ϕ0, ϕ1) > 0 such that

|ϕt − ϕt′ | 6 C|t− t′|, t, t′ ∈ [0, 1]. (9)

Additionally, for the complexification Φ(x, z) := ϕlog |z|(x) we have

(π∗θ + ddcΦ)n+1 = 0 on Amp({θ})×D, (10)

where equality is understood in the weak sense of measures.

Proof. The proof is essentially the same as in [Ber15, § 2.2], so we only point out the ideas.
Consider the following (barrier) subgeodesic of ϕ0, ϕ1:

ut(x) := max(ϕ0 − Ct, ϕ1 + C(t− 1)),

where C is a positive constant such that ϕ1 − C 6 ϕ0 6 ϕ1 + C. It is clear that [0, 1] 3 t →

ut ∈ PSH(X, θ) is a subgeodesic of ϕ0, ϕ1, and by t-convexity of t → ϕt we can write ut 6 ϕt 6
(1− t)ϕ0 + tϕ1, hence the conclusion about Lipschitz continuity of t → ϕt follows.

The proof of (10) follows from a standard balayage argument and we refer the interested
reader to [Ber15, § 2.2], to see how the ideas from there generalize to our setting. 2

Next we prove a version of the comparison principle.

Proposition 3.2. Assume that u, v ∈ PSH(X×D,π∗θ) satisfies Vθ−C 6 us, vs, s ∈ D for some
C > 0. If lim inf(x,z)→X×∂D(u− v) > 0, then∫

{u<v}∩Amp({θ})×D
(π∗θ + ddcv)n+1 6

∫
{u<v}∩Amp({θ})×D

(π∗θ + ddcu)n+1.

Proof. Fix ε > 0, δ > 0. As θ is big we can find ψ ∈ PSH(X, θ), supX ψ = 0, with analytic
singularities such that X\Amp({θ}) = {ψ = −∞} and ψ 6 us, vs, s ∈ D, such that θ + ddcψ
dominates a Kähler form. Consider

uε := max(u, vε), vε := (1− δ)v + δλψ − ε,

for some constant λ > 1. If λ− 1 is small enough we have

θ + ddcλψ = λ(θ + ddcψ) + (1− λ)θ > λω + (1− λ)θ > 0,

where ω is a Kähler form on X. Thus vε is π∗θ-psh on X × D. Observe that for some open
relatively compact Ω′ b Amp({θ}) (Ω′ depends on λ), K b D, we have uε ≡ u in a neighborhood
containing (X\Ω′) × (D\K). It follows that

∫
Y (π∗θ + ddcu)n+1 =

∫
Y (π∗θ + ddcuε)

n+1, where
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Y := Ω′ × K. Indeed, for any test function 0 6 χ ∈ C∞(Y ) which is identically 1 in an open
neighborhood U inside Y such that {u < uε} ⊂ U we have∫

Y
χ[(π∗θ + ddcu)n+1 − (π∗θ + ddcuε)

n+1] =

∫
Y

(u− uε)ddcχ ∧ T = 0,

where T is a positive (n, n)-current.
Recall that for locally bounded π∗θ-psh functions ϕ,ψ, the maximum principle for the

complex Monge–Ampère operator yields

1{ϕ<ψ}(π
∗θ + ddc max(ϕ,ψ))n+1 = 1{ϕ<ψ}(π

∗θ + ddcψ)n+1.

Using the above facts we can write∫
{u<vε}∩Amp({θ})×D

(π∗θ + ddcvε)
n+1 =

∫
{u<vε}∩Amp({θ})×D

(π∗θ + ddcuε)
n+1

=

∫
Y

(π∗θ + ddcuε)
n+1 −

∫
{u>vε}∩Y

(π∗θ + ddcuε)
n+1

6
∫
Y

(π∗θ + ddcu)n+1 −
∫
{u>vε}∩Y

(π∗θ + ddcuε)
n+1

=

∫
Y

(π∗θ + ddcu)n+1 −
∫
{u>vε}∩Y

(π∗θ + ddcu)n+1

6
∫
{u<(1−δ)v+δλψ−ε}∩Amp({θ})×D

(π∗θ + ddcu)n+1.

The left-hand side in the above estimate can be further estimated in the following way:∫
{u<vε}∩Amp({θ})×D

(π∗θ + ddcvε)
n+1 > (1− δ)n

∫
{u<vε}∩Amp({θ})×D

(π∗θ + ddcv)n+1.

Letting δ, ε → 0, the proof is finished. 2

Proposition 3.3. Let ϕ0, ϕ1 ∈ PSH(X, θ) with minimal singularities and [0, 1] 3 t → ut
be a subgeodesic of ϕ0, ϕ1 with minimal singularities satisfying (9) and u0,1 = ϕ0,1. If the
complexification satisfies (π∗θ + ddcU)n+1 = 0 on Amp({θ}) × D, then t → ut is the weak
geodesic connecting ϕ0 to ϕ1.

Proof. Let t → ϕt be the weak geodesic connecting ϕ0, ϕ1. It suffices to show that Φ 6 U .
Fix ρ a smooth function in D such that ρ = 0 on the boundary and ddcρ =

√
−1 dz ∧ dz̄. Fix

also τ ∈ PSH(X, θ) with minimal singularities such that (θ + ddcτ)n = cωn, for some positive
normalization constant c and some fixed Kähler form ω on X. Observe that such a potential
exists thanks to [BEGZ10, Theorem 4.1]. We normalize τ so that τ 6 min(ϕ0, ϕ1). Applying the
comparison principle (Proposition 3.2) for Φε := (1− ε)Φ + ε(ρ+ τ) and U we get∫

{U<Φε}∩Amp({θ})×D
(π∗θ + ddcΦε)

n+1 6
∫
{U<Φε}∩Amp({θ})×D

(π∗θ + ddcU)n+1 = 0.

By expanding (π∗θ+ddcΦε)
n+1 > εn(θ+ddcτ)n∧ddcρ = εncωn∧ddcρ > 0, the inequality above

gives that U > Φε almost everywhere, hence everywhere in X × D. Letting ε → 0 we get the
desired result. 2
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In the Kähler case, geodesics joining smooth potentials are C1,1̄-smooth and the Monge–
Ampère energy is linear along these geodesics. When θ is also nef, by adapting the proof of
Chen [Che00] (see [Bou12]), we expect that a similar regularity result still holds in the ample
locus of {θ}.

Recall that for potentials with minimal singularities the Monge–Ampère energy is defined by
the following expression:

I(u) :=
1

(n+ 1) Vol(θ)

n∑
j=0

∫
X

(u− Vθ)θju ∧ θn−jVθ
.

We proceed now to show that, as perhaps expected, the Monge–Ampère energy is linear/convex
along geodesics/subgeodesics with minimal singularities. However to argue this, we will need to
use a careful mollification argument for subgeodesics in the time variable that will be detailed
in the next subsection.

3.2 Approximation of subgeodesics
Unless specified otherwise, assume for this subsection that (0, 1) 3 t → ϕt ∈ PSH(X, θ) is a
subgeodesic with minimal singularities such that |ϕt−ϕt′ | 6 C|t− t′|, for some positive constant
C. Consider a smoothing kernel χ : R → [0, 1] supported in [−1, 1] with

∫
R χ(t) dt = 1 and χ(t) =

χ(−t). We then set χε(t) := (1/ε)χ(t/ε), so that the support of χε is [−ε, ε] and
∫
R χε(t) dt = 1.

For each ε > 0 we consider

ϕε,t(x) :=

∫ 1

0
ϕs(x)χε(t− s) ds, (11)

which is well defined for t ∈ (ε, 1− ε).

Lemma 3.4. For each ε > 0, (ε, 1− ε) 3 t → ϕε,t ∈ PSH(X, θ) is a t-Lipschitz subgeodesic with
minimal singularities.

Proof. The fact that t → ϕε,t is a subgeodesic is trivial. Because t → ϕt is t-Lipschitz, it follows
that ϕε,t has minimal singularities for all t ∈ [ε, 1 − ε]. Working directly with (11) we obtain
|ϕε,t − ϕε,t′ | 6 C|t− t′|. 2

The next observation is simple but will be crucial for our approximation procedure.

Lemma 3.5. There exists Aε, Bε > 0 (that may blow up as ε → 0) such that ϕ̇ε,t/Aε, ϕ̈ε,t/Bε
can be written as a difference of θ-psh functions with minimal singularities t ∈ (ε, 1− ε).

Proof. Write χ′ε(t) = ρ+
ε (t) − ρ−ε (t), where ρ+

ε , ρ
−
ε are the positive and negative parts of χ′ε(t).

They are clearly bounded (but the bound blows up as ε → 0). Now, let

u±ε,t(x) :=

∫ 1

0
ϕs(x)ρ±ε (t− s) ds.

It follows that

ddcu±ε,t =

∫ 1

0
(ddcϕs)ρ

±
ε (t− s) ds > −Aεθ,
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where Aε =
∫ ε
−ε ρ

+
ε =

∫ ε
−ε ρ

−
ε . Observe indeed that

∫ ε
−ε ρ

+
ε − ρ−ε =

∫ ε
−ε χ

′
ε = 0. To see that u±ε,t/Aε

has minimal singularities we note that |ϕt − ϕt′ | 6 C|t− t′|, hence

u±ε,t(x) :=

∫ ε

−ε
ϕt−s(x)ρ±ε (s) ds 6

∫ ε

−ε
ϕt′−s(x)ρ±ε (s) ds+ CAε|t− t′|.

For ϕ̈ε,t, a similar argument works with the choice Bε :=
∫ ε
−ε max(χ′′ε(t), 0) dt. 2

Lemma 3.6. The Monge–Ampère energy is twice differentiable along t→ ϕε,t and the derivatives
are given by

d

dt
I(ϕε,t) =

∫
X
ϕ̇ε,tθ

n
ϕε,t ,

d2

dt2
I(ϕε,t) =

∫
X
ϕ̈ε,tθ

n
ϕε,t − n

∫
X
dϕ̇ε,t ∧ dcϕ̇ε,t ∧ θn−1

ϕt . (12)

Proof. For notational convenience we remove the subscript ε. By basic properties of the I
functional (see [BEGZ10, BB10]) we have, for t ∈ (ε, 1− ε), s > 0,∫

X
(ϕt+s − ϕt)θnϕt+s 6 I(ϕt+s)− I(ϕt) 6

∫
X

(ϕt+s − ϕt)θnϕt .

Dividing by s > 0 the right-hand side then converges (as s → 0) to
∫
X ϕ̇tθ

n
ϕt . The left-hand side

can be estimated by
1

s

∫
X

(ϕt+s − ϕt)θnϕt+s >
∫
X
ϕ̇tθ

n
ϕt+s .

As ϕ̇t is bounded and quasi-continuous (with respect to the Monge–Ampère capacity Capω),
Corollary 2.9 allows to pass to the limit as s → 0 and the differentiability of I(ϕt) follows.

To prove the formula for the second derivative we fix t ∈ (ε, 1 − ε) and s > 0 small enough
and prove that

lim
s→0+

d(s) := lim
s→0+

1

s

(∫
X
ϕ̇t+sθ

n
ϕt+s − ϕ̇tθnϕt

)
equals to the right-hand side of (12). The same formula for the left limit will then follow
automatically, as we can always ‘reverse’ the time direction of a subgeodesic. Setting Ts :=∑n−1

j=1 θ
j
ϕt ∧ θn−1−j

ϕt+s , we can write

d(s) =
1

s

(∫
X
ϕ̇t+sdd

c(ϕt+s − ϕt) ∧ Ts +

∫
X

(ϕ̇t+s − ϕ̇t)θnϕt
)
.

Thanks to [BEGZ10, Theorem 1.14] we can integrate by parts in the first term and obtain

d(s) =
1

s

(∫
X

(ϕt+s − ϕt)ddcϕ̇t+s ∧ Ts +

∫
X

(ϕ̇t+s − ϕ̇t)θnϕt
)
. (13)

As s → 0, (ϕt+s − ϕt)/s decreases to ϕ̇t, all of them being quasi-continuous and uniformly
bounded. On the other hand, by Lemma 3.5 we can write ϕ̇t+s/Aε = u+

t+s − u−t+s, where u±t+s
are θ-psh functions with minimal singularities that converge uniformly to u±t as s → 0. By using
Corollary 2.9, the first term in the right-hand side of (13) converges to n

∫
X ϕ̇tdd

cϕ̇t ∧ θn−1
ϕt .

Moreover, using dominated convergence for the second term we obtain

lim
s→0+

1

s

∫
X

(ϕ̇t+s − ϕ̇t)θnϕt =

∫
X
ϕ̈tθ

n
ϕt .

Observe in fact that ϕ̈t is uniformly bounded from above as it can be written as the difference
of two quasi-plurisubharmonic functions. Finally, an integration by parts gives

lim
s→0+

d(s) = −n
∫
X
dϕ̇t ∧ dcϕ̇t ∧ θn−1

ϕt +

∫
X
ϕ̈tθ

n
ϕt . 2
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Corollary 3.7. The Monge–Ampère energy is convex along t → ϕε,t.

Proof. We again drop the ε subscript and fix t ∈ (ε, 1− ε) for the duration of the proof. In view
of Lemma 3.6 it is enough to prove that

−ndϕ̇t ∧ dcϕ̇t ∧ θn−1
ϕt + ϕ̈tθ

n
ϕt > 0 (14)

in the weak sense of measures in Amp({θ}). This property is local, hence we can work in
relatively compact open subset K of Amp({θ}), and approximate ϕt(x) using a convolution
in the space variable x. As we show now, since ϕ̇t, ϕ̈t are bounded in K and can be written
as the difference of two quasi-psh functions with minimal singularities, the convergence of
the appropriate approximating measures to the left-hand side in (14) follows from standard
pluripotential theory. Indeed, fix a coordinate ball B ⊂ K. We will show that (14) holds in B in
the weak sense of measures.

We can assume existence of a smooth local potential τ ∈ C∞(B) such that θ = ddcτ . Let
ρ̃δ(x) be a smoothing kernel in Cn and consider

ϕ̃δt (x) :=

∫
B

(τ(x− ζ) + ϕt(x− ζ))ρ̃δ(ζ) dV (ζ)− τ(x).

Since the complexification of ϕ̃δt is smooth and π∗θ-psh in Bδ ×Dε, it follows that (14) holds for
ϕ̃δt and ϕ̃δt ↘ ϕt.

By Lemma 3.5 we can write ϕ̇t := u+ − u−, where u+, u− are bounded quasi psh functions
on Bδ. Then the corresponding smooth quasi psh functions vδ±, defined by

vδ±(x) :=

∫ 1

0

∫
B

(τ(x− ζ) + ϕs(x− ζ))ρ̃δ(ζ) ρ±ε (t− s) ds dV (ζ),

converge decreasingly to u± and we have ˙̃ϕδt = vδ+ − vδ−. A similar thing is true for the second
derivatives ϕ̈t, ¨̃ϕδt as well. As all the functions involved are quasi psh and bounded on Bδ, by
Bedford–Taylor theory, positivity in (14) is preserved as we take the limit δ → 0, and (14) holds
restricted to Bδ, finishing the proof. 2

Theorem 3.8. Assume that {θ} is big and (0, 1) 3 t → ϕt ∈ PSH(X, θ) is a subgeodesic with
minimal singularities. Then the Monge–Ampère energy I is convex along t → ϕt.

Proof. Fix ε > 0 for the moment. As it suffices to show convexity of t → I(ϕt) on (ε, 1− ε), and
t → ϕt has minimal singularity potentials, without loss of generality we can assume that t → ϕt
is Lipschitz in t and let C > 0 be such that |ϕt − ϕt′ | 6 C|t − t′|. Let ϕε,t be the subgeodesics
approximating t→ ϕt constructed above. Since I(ϕε,t) → I(ϕt) as ε→ 0 [BB10, Proposition 4.3],
it suffices to prove the convexity of t → I(ϕε,t). But this follows from Corollary 3.7. 2

3.3 Linearity of the Monge–Ampère energy along geodesics
The regularization technique in § 3.2 can also be used to prove linearity of Monge–Ampère energy
along geodesics in big classes. Although this result is not essentially used in this paper (in the
proof of the important direction in Lemma 3.15 one only needs Theorem 3.8), we think it will
be useful in the future.

Assume θ is a smooth closed (1, 1)-form whose cohomology class is big. Fix ϕ0, ϕ1 two θ-psh
functions on X with minimal singularities. The complex plane C is now viewed as a piece of CP1
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(so that CP1 = C∪H∞) equipped with the Fubini–Study metric ωFS . Accordingly, the product
M := X × CP1 is equipped with a smooth (1, 1)-form Θ := π∗1θ + π∗2ωFS . We use the following
change of coordinates between CP1 and C:

CP1\H∞ 3 [z1 : z2] 7→ z1

z2
∈ C,

where H∞ := {z2 = 0}.

Lemma 3.9. One has VΘ(x, z) := Vθ(x) for all z ∈ CP1.

Proof. By definition
VΘ(x, z) := sup{U(x, z)Θ-psh : U 6 0 on M}.

Clearly VΘ(x, z) > Vθ(x) since Vθ(x) is a candidate in the envelope. Moreover, we observe that
for each z ∈ CP1, VΘ(x, z) is a θ-psh function and VΘ(x, z) 6 0 on X, thus VΘ(x, z) 6 Vθ(x).
Hence the conclusion. 2

Lemma 3.10. Let F ∈ C∞(M,R) be a smooth function on M which is S1-invariant when
restricted to X × C. Denote by Φ := PΘ(F ) the Monge–Ampère envelope on M of F with
respect to Θ. Then the function CP1 3 z 7→ G(z) := I(Φ(·, z)) satisfies

ωFS + ddczG = (π2)?(Θ + ddcx,zΦ)n+1, (15)

in the sense of currents.

Proof. AsH∞ is pluripolar in CP1 it suffices to prove (15) in C. As F is S1-invariant it follows that
Φ(x, z) is also S1-invariant in z. Using convolution as in § 3.2 we denote by Φε the approximants,
i.e.

Φε(x, z) :=

∫
C

Φ(x, ζ)χε(|z − ζ|2) dV (ζ),

where χε is a family of smoothing kernels. For each ε > 0, Φε is Θε-psh on M where Θε :=
π∗1θ + γεπ

∗
2ωFS , with γε > 1 decreasing to 1. Indeed,

ddcx,zΦ ? χε = ddcΦ ? χε > (−θ − ωFS) ? χε > −θ − ωFS ? χε.

Moreover, since ωFS is smooth on CP1, we have

|ωFS − ωFS ? χε| 6
∫
C
|ωFS(z)− ωFS(z − ζ)|χε(|ζ|2) dV (ζ) 6 C

∫
C
|ζ|χε(|z′|2) dV (z′) 6 Cε.

This means that we can find γε decreasing to 1 such that ωFS ? χε 6 γεωFS . It can be shown in
the same way as in § 3.2 that Gε(z) := I(Φε(·, z)) is smooth and its complex Hessian is given by

γεωFS + ddczGε(z) = (π2)?(Θε + ddcx,zΦε)
n+1. (16)

To prove this we first explain how to compute all the second-order partial derivatives of Gε. Fix
ξ ∈ C = R2 a unit vector and denote by ∂ξf(z) := limh→0+(f(z + hξ) − f(z))/h the derivative
of f in the direction ξ. Note that

1

h
[χε(|z + hξ|2)− χε(|z|2)] → ∂ξ(χε(|z|2))
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as h → 0 uniformly in z. It follows that

1

h
[Φε(x, z + hξ)− Φε(x, z)] → ∂ξΦε(z)

as h → 0 uniformly in x, z. By the same arguments as in § 3.2 the first and second partial
derivatives of z 7→ Φε(x, z) can be written as Cε(u

+ − u−) where u± are θ-psh functions with
minimal singularities. They are thus uniformly bounded by a constant C ′ε (which blows up as
ε → 0). Thus the same arguments as in § 3.2 show that z 7→ Gε(z) is twice differentiable (even
smooth). Set gε = γε log(1+ |z|2), where g = log(1+ |z|2) is the potential of ωFS in C. The second
derivative ∂z∂z̄ of Gε + gε is given by

∂z∂z̄(Gε+gε) =

∫
X
∂z∂z̄(Φε+gε)(θ+ddcxΦε)

n−ndx∂z(Φε+gε)∧dcx∂z̄(Φε+gε)∧ (θ+ddcxΦε)
n−1.

Let H(z) denote the integrand in the right-hand side which is a positive measure on X.
Indeed, since it is a local property we can argue locally and use an approximation technique as
in the proof of Corollary 3.7. Moreover, we infer that (

√
−1/π)H(z) dz∧dz̄ is the Monge–Ampère

measure of Φε+ gε with respect to the form π∗1θ, i.e. (π∗1θ+ddc(Φε+ gε))
n+1. This together with

γεωFS + ddczGε(z) = ddcz(gε +Gε) = ddczI(Φε(·, z) + gε(z))

justify the formula (16).
Fix χ : C → R a smooth function with compact support in C. We want to prove that∫

C
χ(ωFS + ddcG) =

∫
M
χ(Θ + ddcΦ)n+1.

The above formula is true for the approximants Gε and Θε as we discussed above. Now we explain
how we can insure the convergence when we take the limit in (16) as ε → 0. To deal with the
left-hand side we prove that Gε converge pointwise to G. For fixed z ∈ C we can find constants cε
converging to 0 such that Φε+cε decreases to Φ. Then Gε(z) converges to G(z) by basic properties
of the I functional [BB10, Proposition 4.3]. As Gε is uniformly bounded independent of ε, the
convergence of the current ddcGε follows. Now we treat the convergence of the right-hand side of
(16). Fix a Kähler form ωM on M and δ > 0. Let U be an open neighborhood of the pluripolar
set E = (X\Amp({θ}))×H∞ such that CapωM (U) < δ. Note that Theorem 2.8 gives that

CapΘε(U) 6 C CapωM (U)1/n = O(δ1/n),

where C is independent of ε. And, by Bedford–Taylor theory [BT82] the Monge–Ampère measure
(Θε + ddcΦε)

n+1 converges to (Θ + ddcΦ)n+1 in M\U . Letting ε → 0 and then δ → 0 we arrive
at the conclusion. 2

We move forward to proving the linearity of the I functional. Consider (M,Θ) as above and
let ρ : D → R be a smooth potential of ωFS in D ⊂ CP1 with zero boundary values.

Lemma 3.11. Assume that F is a smooth function on M which is S1-invariant in X × C in
the variable z. Let ϕt be the geodesic connecting ϕ0 = Pθ(F (·, 1)) to ϕ1 = Pθ(F (·, e)). Let Φ
be the envelope on M of F with respect to Θ. If F (x, z) + ρ(z) > ϕlog |z|(x) in X × D, then
z 7→ I(Φ(·, z) + ρ(z)) is harmonic in D.
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Proof. When restricted to X ×D, we have Φ + ρ is π∗1θ-psh and has boundary values ϕ0,1, thus
by definition, Φ 6 ϕt − ρ < F . It follows from [BT82] that (Θ + ddcΦ)n+1 = 0 in X ×D, which
in turn implies that I(Φ(·, z) + ρ(z)) is harmonic in D thanks to Lemma 3.10. 2

Theorem 3.12. The I energy is linear along weak geodesics with minimal singularities.

Proof. Fix f0, f1 two smooth functions in X and denote by ϕi = Pθ(fi), i = 0, 1 the envelopes of
f0, f1 respectively. Let ϕt be the geodesic connecting ϕ0, ϕ1. Observe also that by approximating
any two given potentials with minimal singularities with a sequence of smooth functions, it
suffices to prove linearity of I along ϕt.

Let F be a function on M which is S1-invariant in X × C in the variable z and such that
F = f0,1 on X × ∂D and +∞ elsewhere. Consider a sequence (Fj)j of smooth functions Fj ↑ F ,
which are also S1-invariant in X×C in the variable z and such that Fj +ρ > ϕlog |z|(x) in X×D.
Let Φj be the envelope on M of Fj with respect to Θ. Then (Θ + ddcΦj)

n+1 is supported on
{Φj = Fj}. As X × ∂D is non-pluripolar in M it follows that Φj is uniformly bounded from
above. Thus Φj converges increasingly (almost everywhere) to Φ a Θ-psh function with minimal
singularities. We claim that ∫

{Φ<PΘ(F )}
(Θ + ddcΦ)n+1 = 0. (17)

To see this we observe that the Monge–Ampère measure of Φ is concentrated on X × ∂D and
that {Φ < PΘ(F )} ⊂ X × (CP1\∂D) since Φ = PΘ(F ) = ϕ0,1 on X × ∂D. Indeed, on any open
relatively compact subset K of X× (CP1\∂D) one has that Φj < Fj for j large enough (since Fj
increases to +∞ uniformly in K and Φj is uniformly bounded from above). By the continuity
property of the complex Monge–Ampère operator we get that (Θ + ddcΦ)n+1(K) = 0. It follows
from (17) and the domination principle [BEGZ10, Corollary 2.5] that Φ = PΘ(F ).

Now, we claim that Φ + ρ = ϕlog |z| in X ×D. Indeed, consider{
U0(x, z) := ϕ0(x) +A(log(|z|2 + 3)− log(|z|2 + 1)− log 2);

U1(x, z) := ϕ1(x) +A(log |z|2 − log(|z|2 + 1) + log(e2 + 1)− 2).

For A > 0 big enough U := max(U0, U1) = ϕ0,1 on ∂D and it is ΘA-psh, where θA := π∗1θ +
Aπ∗2ωFS . So we can apply our previous analysis with this (1, 1)-form ΘA instead of Θ. By
definition of envelope we have Φ > U and in particular Φ > ϕ0,1 on X × ∂D. Moreover, for each
z ∈ ∂D, Φ(·, z) is θ-psh and dominated by F = f0,1. It then follows that Φ 6 ϕ0,1 on X × ∂D,
giving the equality on the boundary. Furthermore, it follows from the proof of Lemma 3.11 and
the continuity of the Monge–Ampère operator that the Monge–Ampère measure (π∗1θ + ddcρ +
ddcΦ)n+1 vanishes in X×D. Proposition 3.3 thus insures that Φ +ρ is the unique weak geodesic
with minimal singularities joining ϕ0, ϕ1. Hence the claim.

Now, thanks to Lemma 3.11 and [BB10, Proposition 4.3], we know that I(Φ(·, z) + ρ(z)) =
I(ϕlog |z|) is harmonic in D (and S1-invariant!). Hence, I is linear along ϕt, with t = log |z|. This
is what we wanted. 2

3.4 Geodesic rays and the proof of Theorem 1.2
Given ϕ > ψ two θ-psh functions such that ϕ has minimal singularities, we define the weak
geodesic ray attached to ϕ,ψ in the following way (see [Dar17b] for the Kähler case). For fixed
l > 0, we denote by [0, l] 3 t → ult ∈ PSH(X, θ) the weak geodesic segment joining ϕ and
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max(ϕ− l, ψ). The same argument as in [Dar17b, Lemma 4.2] shows that ul forms an increasing
family of weak geodesics and we can then define the limit subgeodesic ray:

v(ϕ,ψ)t :=
(

lim
l→+∞

ult

)∗
, t ∈ [0,+∞). (18)

Lemma 3.13. Assume that θ is big. The subgeodesic ray [0,∞) 3 t → v(ϕ,ψ)t ∈ PSH(X, θ) is a
weak geodesic ray.

Proof. As all complexifications U l ∈ PSH(X ×Dl, π
∗θ) satisfy the appropriate complex Monge–

Ampère equation on the domains Amp({θ}) × Dl and are locally bounded there, it follows
from continuity property of the complex Monge–Ampère operator that the complexification of
t → v(ϕ,ψ)t satisfies the homogeneous Monge–Ampère equation on Amp({θ}) × D∞ as well.
Since all the curves t → ult are uniformly t-Lipschitz continuous, so is their limit t → v(ϕ,ψ)t,
hence Proposition 3.3 gives that t → v(ϕ,ψ)t must be a weak geodesic ray, i.e., for any closed
interval I ⊂ [0,∞), the restriction I 3 t → v(ϕ,ψ)t ∈ PSH(X, θ) is the weak geodesic joining the
potentials corresponding to the endpoints of I. 2

Now we introduce an invariant of ψ. It is clear that [0,∞) 3 t → max(ϕ − t, ψ) is a
subgeodesic ray with minimal singularities. Thus t → I(max(ϕ− t, ψ)) is convex by Theorem 3.8
and decreasing by [BEGZ10, Proposition 2.8]. This implies that the following limit is well defined:

cψ := lim
t→∞

I(max(ϕ− t, ψ))− I(ϕ)

t
6 0.

Recall the cocycle formula of [BB10, Corollary 3.2]:

I(u)− I(v) =
1

Vol(θ)(n+ 1)

n∑
j=0

∫
X

(u− v)θju ∧ θn−jv , (19)

where u, v ∈ PSH(X, θ) have minimal singularities. From this formula it follows that cψ is
independent of the choice of potential with minimal singularities ϕ satisfying ϕ > ψ. Finally, the
following result gives an attractive characterization of potentials ψ for which cψ = 0.

Proposition 3.14. Given ψ ∈ PSH(X, θ), we have cψ = 0 if and only if ψ ∈ E(X, θ).

Proof. The proof is an adaptation of the arguments of [Dar17b, Theorem 2.5] to our more
general setting. As cψ only depends on ψ it is enough to work with the special subgeodesic ray
t → ψt := max(Vθ − t, ψ). The cocycle formula (19) implies that cψ = cψ+c, thus we can assume
that ψ 6 Vθ 6 0. By [BBGZ13, Proposition 2.8]∫

X
(ψt − Vθ) θnψt 6 I(ψt) 6 (n+ 1)−1

∫
X

(ψt − Vθ) θnψt

so our claim is equivalent to showing that

ψ ∈ E(X, θ)⇐⇒ t−1

∫
X

(ψt − Vθ)θnψt → 0.

Fix s ∈ (0, 1). Note that on {ψ > Vθ − t}, the two measures θnψt and θnψ coincide. Additionally,
using that X = {ψ 6 Vθ − t} ∪ {Vθ − t < ψ 6 Vθ − st} ∪ {Vθ − st < ψ} we can estimate the
right-hand side above as follows:

0 >
∫
X

ψt − Vθ
t

θnψt > −
∫
{ψ6Vθ−t}

θnψt −
∫
{ψ6Vθ−ts}

θnψ − sVol(θ).
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By [GZ07, Lemma 1.2], ψ ∈ E(X, θ) if and only if
∫
{ψ6Vθ−t} θ

n
ψt

→ 0 as t → +∞. Hence, the
above estimates give the conclusion. 2

Lemma 3.15. Suppose ψ ∈ PSH(X, θ) satisfies ψ 6 Vθ. Let t → v(Vθ, ψ) be the geodesic ray
constructed in (18). Then

I(v(Vθ, ψ)t) = tcψ. (20)

In particular, t → v(Vθ, ψ)t is constant if and only if ψ ∈ E(X, θ).

Proof. We go back to the construction of t → v(Vθ, ψ)t in (18). By Theorem 3.12, for each l
fixed, the function t → I(ult) is linear, and hence we can write

I(ult) = I(Vθ) +
t

l
(I(max(ψ, Vθ − l))− I(Vθ)) =

t

l
(I(max(ψ, Vθ − l))− I(Vθ)).

Letting l → +∞, by [BB10, Proposition 3.3] we obtain (20). If t → v(Vθ, ψ)t is constant equal to
Vθ, it follows that cψ = 0, thus by Proposition 3.14 we get ψ ∈ E(X, θ). Conversely, if ψ ∈ E(X, θ),
then Proposition 3.14 yields that cψ = 0, hence I is constant along v(Vθ, ψ), and thus v(Vθ, ψ) is
constant. 2

Remark 3.16. To show that if t → v(Vθ, ψ)t is constant then ψ ∈ E(X, θ), we only need to prove
the estimate I(v(Vθ, ψ)t) 6 tcψ. This last inequality is a simple consequence of the convexity of
the Monge–Ampère energy (Theorem 3.8) and the construction of the ray t → v(Vθ, ψ)t (18).

Lemma 3.17. Given a weak geodesic ray [0,+∞) 3 t → φt ∈ PSH(X, θ), its Legendre transform
R 3 τ → φ∗τ = inft∈[0,+∞)(φt − tτ) satisfies

φ∗τ = Pθ(φ
∗
τ + C, φ0), τ ∈ R, C > 0.

In particular, P[θ,φ∗τ ](φ0) = φ∗τ .

Proof. One can repeat the argument in [Dar17b, Theorem 5.3]. Fix τ ∈ R. The fact that φ∗τ is
θ-psh follows from Kiselman’s minimum principle [Kis78]. Suppose that φ∗τ 6= −∞ and fix C > 0.
Since φ∗τ 6 φ0, it results that Pθ(φ

∗
τ + C, φ0) > φ∗τ . Hence we only have to argue that

Pθ(φ
∗
τ + C, φ0) 6 φ∗τ .

Let [0, 1] 3 t → glt, ht ∈ PSH(X, θ), l > 0, be the weak geodesic segments defined by the formulas

glt = φtl − tlτ,
ht = Pθ(φ

∗
τ + C, φ0)− Ct.

Then we have h0 6 φ0 = limt→0 g
l
t = gl0 and h1 6 φ∗τ 6 gl1 for any l > 0. Hence, by definition

of weak geodesics (8) we have

ht 6 glt, t ∈ [0, 1], l > 0.

Taking the infimum in the above estimate over l ∈ [0,+∞) and then taking the supremum
over t ∈ [0, 1], we obtain

Pθ(φ
∗
τ + C, φ0) 6 φ∗τ .

Letting C → +∞ we obtain the last statement of the proposition. 2
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Proof of Theorem 1.2
Theorem 1.2 is a consequence of the following result.

Theorem 3.18. Let θ be a smooth closed (1, 1)-form whose cohomology class is big. For any
ψ ∈ PSH(X, θ), the following are equivalent:

(i) ψ ∈ E(X, θ);

(ii) P[θ,ψ](ϕ) ∈ E(X, θ) for all ϕ ∈ E(X, θ);

(iii) P[θ,ψ](ϕ) = ϕ for all ϕ ∈ E(X, θ);

(iv) P[θ,ψ](Vθ) ∈ E(X, θ);

(v) P[θ,ψ](Vθ) = Vθ.

Proof. We can assume without loss of generality that ψ 6 0. The implication (i) =⇒ (iii) follows
from Theorem 2.15 while the implications (iii) =⇒ (ii) =⇒ (iv) and (iii) =⇒ (v) are trivial.
The implication (iv) =⇒ (v) simply follows from Proposition 2.14 and the domination principle
(Proposition 2.4).

We now prove that (v) =⇒ (i). Suppose that P[θ,ψ](Vθ) = Vθ. From the construction of
the ray t → v(Vθ, ψ)t in (18) it automatically follows that v(Vθ, ψ)t > ψ. This trivially gives
v∗0 = inft∈[0,∞) v(Vθ, ψ)t > ψ. By definition of envelope we have Vθ > P[θ,v∗0 ](Vθ) > P[θ,ψ](Vθ) = Vθ.
Combining this with Lemma 3.17 we obtain that v∗0 = P[θ,v∗0 ](Vθ) = Vθ. As the ray t → v(Vθ, ψ)t
is decreasing in t, this automatically gives that Vθ = v(Vθ, ψ)0 > v(Vθ, ψ)t > v∗0 = Vθ, hence
t → v(Vθ, ψ)t is constant. Invoking Lemma 3.15 we obtain that ψ ∈ E(X, θ). 2

Theorem 1.3 follows directly from Theorem 1.2.

Theorem 3.19. Let {θ1}, {θ2} be big classes. The following are equivalent:

(i) Vθ1 + Vθ2 ∈ E(X, θ1 + θ2);

(ii) for any u ∈ PSH(X, θ1), v ∈ PSH(X, θ2) we have

u+ v ∈ E(X, θ1 + θ2)⇐⇒ u ∈ E(X, θ1), v ∈ E(X, θ2).

Proof. Since Vθj ∈ E(X, θj), j = 1, 2, the implication (ii) =⇒ (i) is trivial. Assume (i) holds. The
implication (=⇒) in (ii) follows from [DiN15, Theorem B]. Assume that ϕj ∈ E(X, θj), j = 1, 2.
We want to show that ϕ := ϕ1 + ϕ2 ∈ E(X, θ1 + θ2). By assumption that (i) holds we get that
Vθ1 + Vθ2 ∈ E(X, θ1 + θ2). Hence, by definition of envelopes we can write

P[θ1+θ2,ϕ](Vθ1 + Vθ2) > P[θ1,u](Vθ1) + P[θ2,v](Vθ2) = Vθ1 + Vθ2 .

Ultimately, it follows from Theorem 1.2 that ϕ ∈ E(X, θ1 + θ2). 2

4. Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1 and discuss some immediate consequences.

Proof of Theorem 1.1. We first argue the equality of Lelong numbers in part (i) of Theorem 1.1. If
ϕ ∈ E(X, θ), then, as follows from Theorem 2.15, P[θ,ϕ](Vθ) = Vθ. For any fixed x ∈X one trivially
has ν(ϕ, x) > ν(Vθ, x). Assume, for the sake of seeking a contradiction, that ν(ϕ, x) > ν(Vθ, x).
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Fix a holomorphic coordinate around x so that we identify x with 0 ∈ B ⊂ Cn where B is the
unit ball in Cn. By definition of the Lelong numbers (2) we have

ϕ(z) 6 γ log ‖z‖+O(1),

where γ = ν(ϕ, x) > 0. Let g be a smooth local potential for θ in B and observe that if ψ ∈
PSH(X, θ) then g + ψ is psh in B. Furthermore, without loss of generality we can assume that
g + ϕ, g + Vθ 6 0 in B. By the definition of the envelope we have the inequality

Vθ + g = P[θ,ϕ](Vθ) + g 6 sup{v ∈ PSH(B) | v 6 0, v 6 γ log ‖z‖+O(1)},
in B. The right-hand side is the pluricomplex Green function GB(z, 0) of B with a logarithmic
pole at 0 of order γ. By [Kli91, Proposition 6.1] we have that

GB(z, 0) = γ log ‖z‖+O(1). (21)

But this contradicts with the assumption that ν(Vθ, x) < γ.
Now we argue the equality of multiplier ideal sheafs in part (i). This will be an application

of Theorem 1.2 and the resolution of the strong openness conjecture of Guan and Zhou [GZ15],
in the specific form provided by Lempert [Lem14]. Indeed, from Theorem 1.2 it follows that

Pθ(ϕ+ c, Vθ)(x)↗ Vθ(x) as c →∞, for a.e. x ∈ X. (22)

As ϕ 6 Vθ + c′ for some c′ ∈ R, we note that ϕ and Pθ(ϕ+ c, Vθ) have the same singularity type
for any c ∈ R, ultimately giving I(tPθ(ϕ+ c, Vθ), x) = I(tϕ, x), x ∈ X, t > 0.

Finally, (22) and [Lem14, Theorem 1.1] imply that I(tPθ(ϕ+ c, Vθ), x) = I(tVθ, x) for large
enough c, proving that I(tϕ, x) = I(tVθ, x).

Now we turn to part (ii). Fix ω a Kähler form on X. We can suppose that θ, η 6 ω̃ := η+ω and
ω̃ is Kähler. Assume that ϕ ∈ E(X, η)∩PSH(X, θ). By Theorem 1.2 we get that P[η,ϕ](Vη) = Vη.
This implies P[ω̃,ϕ](Vη) = Vη since P[η,ϕ](Vη) 6 P[ω̃,ϕ](Vη) 6 Vη.

Furthermore, we claim that Vη ∈ E(X, ω̃), i.e.,
∫
X ω̃

n
Vη

= Vol(ω̃). Indeed, as θ is nef, expanding

the sum of Kähler classes (η + (1 + ε)ω)n gives

Vol({η + (1 + ε)ω})n =

n∑
k=0

(
n

k

)
{η + εω}k · {ω}n−k.

It follows from the comments after [BEGZ10, Definition 1.17] and [BFJ09, Proposition 2.9] that
the left-hand side converges to Vol(ω̃) while the right-hand side converges to

∑n
k=0

(
n
k

)
{η}k ·

{ω}n−k, ultimately giving

Vol({ω̃}) = Vol({η + ω}) =

n∑
k=0

(
n

k

)
{η}k · {ω}n−k.

On the other hand, by multilinearity of the non-pluripolar product we get∫
X
ω̃nVη =

∫
X

(η + ω + ddcVη)
n =

n∑
k=0

(
n

k

)∫
X

(η + ddcVη)
k ∧ ωn−k,

and moreover {(η+ddcVη)
k} = {η}k for each 0 6 k 6 n−1 thanks to [BEGZ10, Definition 1.17],

proving the claim.
Given that P[ω̃,ϕ](Vη) = Vη and Vη ∈ E(X, ω̃), we can use [Dar17a, Theorem 4] to conclude

that ϕ ∈ E(X, ω̃). Because θ 6 ω̃ and ϕ ∈ PSH(X, θ), we get ϕ ∈ E(X, θ), as follows from [DiN15,
Theorem B]. 2
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Remark 4.1. Observe that Theorem 1.1(ii) is in general false for classes {η} that are big but not
nef. Indeed, if {η} is only big, it may happen that Vη has a non-zero Lelong number at some
point, and then [GZ07, Corollary 2.18] would give us that Vη does not have full mass with respect
to any Kähler class {θ} satisfying η 6 θ, contradicting E(X, η) ∩ PSH(X, θ) ⊂ E(X, θ).

As a direct consequence we obtain the following additivity property of the set of full mass
currents of big and nef cohomology classes, effectively proving that condition (i) in Theorem 1.3
is automatically satisfied.

Corollary 4.2. Let {θ1}, {θ2} be big and nef classes. Then for any ϕ1 ∈ PSH(X, θ1) and
ϕ2 ∈ PSH(X, θ2) we have

ϕ1 + ϕ2 ∈ E(X, θ1 + θ2)⇐⇒ ϕ1 ∈ E(X, θ1), ϕ2 ∈ E(X, θ2).

Proof. Fix a Kähler form ω such that θj 6 ω, j = 1, 2. It follows from part (ii) of Theorem 1.1 that
ϕj ∈ E(X,ω),∀j = 1, 2. By the convexity of E(X,ω) proved in [GZ07, Proposition 1.6] it follows
that ϕ1 +ϕ2 belongs to E(X, 2ω). Now, [DiN15, Theorem B] gives that ϕ1 +ϕ2 ∈ E(X, θ1 + θ2),
and hence the result follows. 2

5. Further applications

5.1 Invariance of finite energy classes
The following result says that finite energy classes are invariant under bimeromorphic maps as
soon as the volume is preserved. The result was recently obtained in [DFT17]. As an application
of Theorem 1.1 we give a slightly different proof of the ‘baby case’, i.e. when f is a blow-up along
a smooth center.

Proposition 5.1. Let π : X → Y be a blow up with smooth center Z between Kähler manifolds
and E be the exceptional divisor. Let α ∈H1,1(X,R) be a big class. Then the following conditions
are equivalent:

(i) Vol(α) = Vol(π?α);

(ii) given a positive (1, 1)-current T in π?α, then S = π?T + γ[E], where γ is a cohomological
factor, is a positive (1, 1)-current on X;

(iii) π?(E(X, θ)) = E(Y, f?θ);

(iv) π?(Eχ(X, θ)) = Eχ(Y, f?θ) for any weight χ.

Proof. Recall that, given a smooth representative θ of the class α, it follows from ∂∂̄-lemma
that any positive (1, 1)-current can be written as T = θ+ ddcϕ where the global potential ϕ is a
θ-psh function, i.e. θ+ ddcϕ > 0. The implications (iii)⇒ (i) and (iv)⇒ (i) are trivial while the
fact that (ii) implies (i), (iii) and (iv) are [DiN15, Proposition 3.3]. We want to prove (i)⇒ (ii).
it suffices to show that for any positive (1, 1)-current T we have γ > −ν(T,Z). Let Smin be a
positive current with minimal singularities in α, then it writes as

Smin = π?TY + γ[E],

where γ > −ν(TY ,Z). It easy to check that TY ∈ E(Y, π?α). Indeed,

Vol(π?α) = Vol(α) =

∫
X
〈Snmin〉 =

∫
Y
〈TnY 〉.

Thus, it follows from Theorem 1.1 that ν(TY , y) = ν(Tmin, y) for any y ∈ Y and for any Tmin

current with minimal singularities on Y . Hence ν(Tmin,Z) + γ > 0. Furthermore any positive
current T ∈ π?α is such that ν(Tmin,Z) 6 ν(T,Z), and thus ν(T,Z) + γ > 0. 2
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5.2 Log concavity of non-pluripolar product
It was conjectured in [BEGZ10, Conjecture 1.23] that∫

X
〈T1 ∧ · · · ∧ Tn〉 >

(∫
X
〈Tn1 〉

)1/n

· · ·
(∫

X
〈Tnn 〉

)1/n

, (23)

for all positive currents T1, . . . , Tn. The result holds for currents with analytic singularities as
mentioned in [BEGZ10]. In this subsection we confirm this conjecture in the case of full mass
currents in big and nef classes.

With the help of Corollary 4.2, we can make obvious adjustments in the proof of [BEGZ10,
Corollary 2.15] to get the following result.

Proposition 5.2. Let αi, i = 1, . . . , n be big and nef cohomology classes and let Ti ∈ E(X,αi).
Then we have ∫

X
〈T1 ∧ · · · ∧ Tn〉 =

∫
X
〈T1,min ∧ · · · ∧ Tn,min〉.

Using this we can prove the log concavity of full mass currents in the big and nef case.

Corollary 5.3. If Tj , j = 1, . . . , n, are full mass currents in big and nef cohomology classes,
then (23) holds.

Proof. Let µ denote the non-pluripolar measure µ := 〈T1 ∧ · · · ∧ Tn〉 and let λj , j = 1, . . . , n be
positive constants such that

λjµ(X) =

∫
X
〈Tnj 〉. (24)

For each j, using [BEGZ10, Theorem A] there exists a positive full mass current Sj ∈ {Tj}
such that

〈Snj 〉 = λjµ.

By [BEGZ10, Proposition 1.11] we have that

〈S1 ∧ · · · ∧ Sn〉 > (λ1 · · ·λn)1/nµ.

Proposition 5.2 gives that
∫
X〈S1 ∧ · · · ∧ Sn〉 =

∫
X〈T1 ∧ · · · ∧ Tn〉. Hence after integrating the

above inequality, due to (24), the result follows. 2
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