
J. Fluid Mech. (2022), vol. 942, A46, doi:10.1017/jfm.2022.325

Magnetic buoyancy instability and the anelastic
approximation: regime of validity and
relationship with compressible and Boussinesq
descriptions
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Magnetic buoyancy instability, which is of astrophysical importance, results from the
influence of magnetic pressure variations on the density of a fluid in a gravitational
field. It is inherently a compressible phenomenon and is, as such, fully described
by the equations of compressible magnetohydrodynamics (MHD). For analytical and
computational reasons, it is often convenient to study compressible MHD within simpler,
asymptotically consistent reduced systems; the two most widely used result from the
Boussinesq and anelastic approximations. Within the standard Boussinesq approximation
of MHD, leading to the equations of Boussinesq magnetoconvection, magnetic buoyancy
is excluded. It can, however, be included by a rescaling of the basic-state variables and
by making further assumptions about the perturbation length scales. Within the anelastic
approximation, no special measures are taken to incorporate magnetic buoyancy. It is,
however, a priori unclear as to whether this neglect is justified, particularly in the light
of the Boussinesq results. Our aims here are thus twofold. The first is to formulate the
relationship between descriptions of magnetic buoyancy in the compressible, anelastic and
Boussinesq systems. In so doing, we show that, under both the anelastic and Boussinesq
approximations, magnetic buoyancy can be included either through a combination of a
weak field and strong gradient, or, conversely, a strong field and weak gradient. Each has its
own asymptotically consistent reduction, with dedicated governing equations. Our second
aim is to address, through a linear stability analysis, under which conditions the standard
anelastic system provides a faithful representation of magnetic buoyancy instability. For
completeness, we also formulate the energy principle of ideal MHD within the anelastic
framework, and demonstrate the relation with its fully compressible counterpart.
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1. Introduction

A horizontal magnetic field, stratified with depth, can become unstable to the instability
mechanism known as magnetic buoyancy. This instability is important in an astrophysical
context, being a key component for the clumping of the interstellar medium, where it
promotes molecular cloud formation (Parker 1966), being one of the mechanisms involved
in the disruption of magnetic fields in accretion discs (Stella & Rosner 1984), and being
the primary candidate for the release of magnetic field from the solar interior (see Hughes
2007).

In its simplest form, the instability can be understood via a standard fluid parcel
argument (Acheson 1979). Consider an atmosphere that is initially magnetohydrostatic,
with depth-dependent pressure p, density ρ and horizontal magnetic field B (with B > 0).
Suppose that a fluid parcel – or, more precisely, a magnetic flux tube – is displaced
downwards a small distance dz. (Note that throughout this paper we adopt a Cartesian
coordinate system with z increasing downwards.) We denote variations of flux tube
properties by ‘δ’ and variations in the atmosphere external to the tube by ‘d’. Conservation
of mass and magnetic flux of the displaced tube lead to the relation

δB
B

= δρ

ρ
. (1.1)

In the absence of any dissipative processes, the specific entropy of the tube is conserved,
thus

δp
p

= γ
δρ

ρ
, (1.2)

where γ denotes the ratio of specific heats. Finally, we assume that the tube is moved
sufficiently slowly so as to maintain total pressure equilibrium between the tube and its
surroundings, hence,

δp + BδB
μ0

= dp + B dB
μ0

, (1.3)

where μ0 is the magnetic permeability. Instability will occur if the displaced tube is denser
than its surroundings, i.e. δρ > dρ. Manipulation of expressions (1.1)–(1.3) then leads to
the following instability criterion:(

B2

μ0p

)
d
dz

ln
(

B
ρ

)
> − d

dz
ln
(

p
ργ

)
. (1.4)

Criterion (1.4), which may be regarded as the modification of the Schwarzschild criterion
by a stratified magnetic field, was first derived by Newcomb (1961), who used the
energy principle of ideal (dissipationless) magnetohydrodynamics (MHD) to prove that
a necessary and sufficient condition for instability to interchange modes (i.e. modes that
do not bend field lines) is that (1.4) holds somewhere in the fluid. In addition, Newcomb
(1961) (see also Thomas & Nye 1975) proved that instability to three-dimensional modes
requires the less stringent condition(

B2

μ0p

)
d
dz

ln B > − d
dz

ln
(

p
ργ

)
. (1.5)

The physics underlying this slightly surprising result – namely that three-dimensional
modes are favoured, despite the extra work required to overcome magnetic tension – was
clarified by Hughes & Cattaneo (1987).

942 A46-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

32
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.325


Magnetic buoyancy and the anelastic approximation

The exposition above has focused on magnetic buoyancy instability in its simplest form
– linear instability in the absence of all diffusive effects (ideal MHD). Over the past fifty
years, there have been numerous extensions of the ideas leading to inequalities (1.4) and
(1.5), in both the linear and nonlinear regimes (reviewed by Hughes 2007). Motivated
by astrophysical considerations, in which thermal diffusivity overwhelmingly dominates
viscosity or magnetic diffusion, Gilman (1970) (see also Mizerski, Davies & Hughes
2013) investigated linear instability for the case of infinite thermal diffusivity, in the
absence of the other two diffusivities. The influence of the stabilising sub-adiabatic
gradient, represented by the right-hand sides of inequalities (1.4) and (1.5) is thus nullified.
Acheson (1978, 1979) considered the more general case, when all the diffusivities are
non-zero, as did Hughes (1985a), who showed the existence of a new mode of oscillatory
instability with B (or B/ρ) decreasing with depth. The effects of rotation on the nature
of the linear stability problem have been investigated by Gilman (1970), Roberts &
Stewartson (1977), Acheson (1978, 1979), Schmitt & Rosner (1983) and Hughes (1985b).
A number of numerical investigations of the nonlinear evolution of magnetic buoyancy
instabilities have been motivated by considerations of the break-up of the Sun’s interior
toroidal magnetic field. Cattaneo & Hughes (1988) investigated the nonlinear evolution
of the two-dimensional (interchange) instability of a slab of unidirectional magnetic
field; Cattaneo, Chiueh & Hughes (1990) considered how such instabilities may be
influenced by a sheared field. The three-dimensional evolution of the breakup of a layer
of field was studied by Matthews, Hughes & Proctor (1995) and Wissink et al. (2000),
who demonstrated the formation of arched magnetic structures, reminiscent of the field
emerging through the solar photosphere. Fan (2001) considered a similar problem, but
with a magnetic field profile with depth that was initially Gaussian; these simulations also
showed the formation of arched magnetic structures. The nonlinear studies cited above all
considered ‘run-down’ experiments, in which the potential energy stored in the initial field
configuration is rapidly converted into kinetic energy, which is then slowly dissipated. By
contrast, Kersalé, Hughes & Tobias (2007) considered the nonlinear evolution in a set-up
in which the instability is maintained through the choice of boundary conditions, thereby
demonstrating a new mechanism for the formation of coherent magnetic structures. Vasil &
Brummell (2008) and Silvers et al. (2009) extended the model problem from investigating
the evolution from an initial magnetohydrostatic state to considering the evolution of a
time-dependent state in which a horizontal magnetic field is generated by the shearing of
a vertical field through a depth-dependent horizontal flow. Magnetic buoyancy instability
has also been investigated in terms of the near-surface behaviour of the solar magnetic
field, and how flux may emerge from the photosphere into the overlying corona (see, for
e.g. Shibata et al. (1989), Isobe et al. (2005) and the reviews by Archontis 2012; Cheung
& Isobe 2014). Recently, Hughes & Brummell (2021) have exploited the analogy between
magnetic buoyancy instability and double-diffusive convection – described in detail in
Spiegel & Weiss (1982) and Hughes & Proctor (1988) – to show how, under certain
circumstances, the nonlinear development of the instability can lead to layering, with a
‘staircase’ profile in the magnetic field, entropy and density. Turbulent transport is greatly
enhanced in a layered state and so this finding may be relevant in determining the transport
in stellar radiative zones.

Magnetic buoyancy instability is inherently a compressible phenomenon, as can be
seen from the flux tube argument leading to instability criterion (1.4): as such, its
complete description is encompassed by the equations of compressible MHD. However, in
hydrodynamical problems, for a variety of physical, analytical or computational reasons,
it is often desirable to work not with the full equations of compressible MHD but,
instead, with simplified systems that are valid under certain constraints. Of particular
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relevance here are the simplified systems obtained under the Boussinesq and anelastic
approximations.

The two assumptions underpinning the Boussinesq approximation for a layer of
compressible fluid are that the depth of the fluid d is small compared with any relevant
scale height H, and that motion-induced fluctuations in thermodynamic quantities do not
exceed their static variation. A significant consequence of these assumptions is that the
motions will be highly subsonic. Under these two assumptions, using order of magnitude
arguments, Spiegel & Veronis (1960) developed the resultant governing equations. A
complementary, more formal asymptotic analysis in the two small parameters ε1 = d/H
and ε2 = δρ/ρ0 (where ρ0 is a representative density and δρ is a typical dynamically
induced density variation), was provided by Mihaljan (1962) (see also Malkus 1964). The
upshot is that the density can be regarded as constant everywhere except in the buoyancy
term, that variations in gas pressure are small – and hence density variations result solely
from temperature variations – and that the velocity field can be treated as solenoidal; sound
waves are thus filtered out of the equations.

Although there are many geophysical and astrophysical circumstances in which the flows
are indeed very subsonic and in which sound waves are not of any dynamical significance,
such flows are often stratified, with many scale heights across the region of interest. Under
such conditions, the Boussinesq approximation is thus too restrictive. The aim of the
anelastic approximation is therefore to remove sound waves but to retain the effects of
stratification. Various forms of the anelastic equations have been derived by a number of
authors, under slightly different assumptions (Batchelor 1953; Ogura & Charney 1960;
Ogura & Phillips 1962; Gough 1969; Gilman & Glatzmaier 1981; Lantz & Fan 1999). It
is, however, clear that an asymptotically consistent set of equations follows only from a
derivation that treats the departure from an adiabatic atmosphere as a small parameter.
The Boussinesq equations can be recovered exactly from the anelastic system by taking
the limit of the stratification parameter tending to zero.

Historically, magnetic field was incorporated under the Boussinesq approximation
through the addition of the induction equation, describing the evolution of the field,
together with a straightforward inclusion of the Lorentz force in the momentum equation.
Importantly, inclusion of the magnetic field here has no thermodynamical implications.
The governing equations in this case are those of Boussinesq magnetoconvection
(Thompson 1951; Chandrasekhar 1961; Weiss & Proctor 2014). In this regime, both gas
pressure and magnetic pressure fluctuations are negligibly small and thus, just as in
the non-magnetic case, density variations arise only from temperature variations; the
phenomenon of magnetic buoyancy is thus excluded. To retain the effects of magnetic
buoyancy, clearly magnetic pressure fluctuations must be influential. Incorporating
magnetic buoyancy under the Boussinesq approximation requires an ordering whereby
variations in gas and magnetic pressure are not individually small but are comparable
in magnitude in such a way that they cancel to leading order, resulting in negligible
variations in total pressure (gas + magnetic). Density variations then depend on variations
in both the temperature and the magnetic pressure, and hence magnetic buoyancy
comes into play. The governing equations in this regime – what we shall term the
magneto-Boussinesq equations – were first derived using order of magnitude arguments
by Spiegel & Weiss (1982); derivations using more formal asymptotic analysis were
given by Corfield (1984) and Bowker, Hughes & Kersalé (2014). An important
characteristic of the magneto-Boussinesq approximation is that it imposes an ordering
on the scale of the motions: the length scale of perturbations in the direction of the
imposed horizontal magnetic field is necessarily long in comparison with the transverse
scale.
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Magnetic buoyancy and the anelastic approximation

Similarly to Boussinesq magnetoconvection, incorporating magnetic field under
the anelastic approximation involves the addition of the induction equation and the
straightforward inclusion of the Lorentz force. No special measures are taken to ensure that
magnetic buoyancy is included consistently. However, since at least some compressibility
effects have been excluded, it is by no means clear – particularly given the subtleties of
incorporating magnetic buoyancy into the Boussinesq approximation – that the anelastic
approximation will necessarily provide a faithful description of magnetic buoyancy
instability. Our aim in this paper is to look carefully at this issue. Specifically, we wish
to (a) understand the relationship between descriptions of magnetic buoyancy in the
compressible, anelastic and Boussinesq equations; (b) determine whether the anelastic
system provides a faithful representation of magnetic buoyancy instability.

To address the first point, we will look in detail at the orderings inherent to magnetic
buoyancy. Based on these, we are able to identify and distinguish between the several
asymptotically consistent regimes of the equations of fully compressible MHD. This
then allows us to demonstrate clearly the connections between different reduced systems
(anelastic, Boussinesq) described in the literature. Additionally, we are able to identify
another permitted regime, not previously described. Our analysis also places definitive
constraints on the validity of each reduced system. To address the second issue, we
compare the linear stability of various equilibria governed by the fully compressible
and anelastic equations. Berkoff, Kersalé & Tobias (2010) have previously compared
numerical solutions of linearised compressible and anelastic systems, including the effects
of diffusion, and concluded that, under certain circumstances, there can be significant
differences in the properties of magnetic buoyancy instability even for atmospheres close
to adiabatic. Here, we take a complementary approach and consider linear instabilities
in the absence of diffusion (ideal MHD). This allows us to consider a model problem
that can be solved analytically for both systems, thereby allowing a thorough comparison
between the two. Furthermore, we will compare numerical solutions for more general
magnetohydrostatic atmospheres, for which analytical solutions are not available.

The outline of the paper is as follows. In § 2 we discuss the equations governing
compressible MHD, together with the details of the various simplified systems that can be
obtained by asymptotic reduction of the compressible equations. In § 3 we formulate the
linear eigenvalue problem for the compressible and anelastic systems. In § 4 we consider
the special case of an isothermal, constant Alfvén speed atmosphere, which allows us to
obtain analytically the dispersion relations for both the compressible and anelastic systems.
This allows for a thorough comparison between the two systems, which will serve as a
foundation for the analysis in § 5, where we consider numerical solutions for more general
atmospheres. Section 6 contains a brief discussion of the energy principle for anelastic
MHD. Our conclusions are summarised in § 7.

2. MHD described on different levels

2.1. Equations of compressible MHD
In standard notation, the governing equations for a perfect gas in the absence of viscous,
thermal and magnetic diffusivities are given by

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ρg + 1
μ0

(∇ × B) × B, (2.2)
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∂B
∂t

+ (u · ∇) B = (B · ∇) u − B (∇ · u) , (2.3)

∂p
∂t

+ u · ∇p + γ p∇ · u = 0, (2.4)

p = RρT, (2.5)

where R = cp − cv is the specific gas constant; cp and cv are the specific heats at
constant pressure and volume, respectively; γ = cp/cv is the ratio of specific heats; μ0
is the magnetic permeability of free space; g is the gravitational acceleration. Throughout
this paper, the geometry under consideration consists of a plane layer of fluid bounded
by horizontal planes located at z = 0 and z = d, with the z-axis pointing downwards
(g = gêz). In Cartesian coordinates, we write the fluid velocity as u = (u, v, w). Note
that in the above system, which has no dissipation, the dynamics is described completely
through (2.1)–(2.4), which involve only the thermodynamic variables p and ρ. It is,
however, helpful also to introduce the temperature through the perfect gas equation of
state (2.5).

The governing equations (2.1)–(2.5) can be written in dimensionless form by scaling
magnetic field, mass density, temperature and pressure with their values at the top of
the layer (z = 0): Br, ρr, Tr and pr = RρrTr, respectively. (The subscript ‘r’ is used
throughout to denote representative values of quantities.) Furthermore, we scale lengths
with the layer depth d, time with the acoustic time scale d/

√RTr and velocities with√RTr. Representative values for the square of the isothermal sound speed and the square
of the Alfvén speed are, respectively, c2

s,r = pr/ρr, c2
A,r = B2

r /(μ0ρr). A representative
pressure scale height in a hydrostatically balanced atmosphere is Hr = pr/(ρrg). This
implies the following relation:

c2
s,r = pr

ρr
= RTr = gHr. (2.6)

The dimensionless equations of compressible MHD then take the form

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.7)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + λρ êz + M2
A (∇ × B) × B, (2.8)

∂B
∂t

+ (u · ∇) B = (B · ∇) u − B (∇ · u) , (2.9)

∂p
∂t

+ u · ∇p + γ p∇ · u = 0, (2.10)

p = ρT, (2.11)

where

λ = d
Hr

, M2
A = B2

r /μ0

pr
. (2.12a,b)

Here, λ is the ratio of the depth of the fluid to the hydrostatic pressure scale height; as such,
it is a measure of atmospheric stratification, with small (large) λ indicating weak (strong)
stratification. The parameter MA is the Alfvén Mach number – the ratio of Alfvén speed to
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isothermal sound speed. Note that M2
A = 2/βp, where βp – the plasma beta – is the ratio

of gas pressure to magnetic pressure.
The equations of compressible MHD (2.7)–(2.11) form the most general set of equations

describing MHD behaviour in a stratified, electrically conducting, diffusionless, perfect
gas, allowing the description of phenomena that occur on a range of distinct time scales.
Of particular note is that the equations describe sound waves (or fast magneto-acoustic
waves), the time scale for which is often much shorter than that of other waves or
instabilities. Furthermore, in scenarios in which the flows are highly subsonic, the
high-frequency sound waves often play no dynamically significant role. It is therefore
useful to have a system of equations that filter out sound waves and home in on the
dynamics evolving on the slower time scale. Such slow-time dynamics is described by
the anelastic approximation.

2.2. The anelastic approximation
The anelastic approximation posits an atmosphere that is almost neutrally buoyant –
the reference state – and considers the evolution of perturbations on top of that state.
Convective instability is governed by the well-known Schwarzschild criterion, which
dictates that instability depends on the gradient of specific entropy s = cv ln( pρ−γ ):
an unstable configuration is one in which specific entropy increases with depth, i.e.
ds/dz > 0. The reference state for the anelastic approximation is thus taken to be one of
hydrostatic balance in which entropy is nearly constant (also referred to as near-adiabatic
stratification), but with significant variations individually in pressure and density. The
small departure from adiabatic stratification induces convection if ds/dz > 0, or gravity
waves if ds/dz < 0, each of which engenders small perturbations to the reference state.

By treating the departure from adiabatic stratification as a small parameter, one can
conduct a formal asymptotic expansion of the compressible equations to extract equations
– the anelastic equations – that describe how the perturbations evolve on top of the fixed
thermodynamic background. We thus introduce the quantity �∇, a measure of departure
from adiabaticity, defined by

�∇ = − d
Hp

(
d ln ρ

d ln p
−
(

d ln ρ

d ln p

)
ad

)
, (2.13)

where

Hp =
(

d ln p
dz

)−1

and
(

d ln ρ

d ln p

)
ad

= 1/γ (2.14a,b)

are, respectively, the pressure scale height and the adiabatic gradient. The stratification
is superadiabatic (convectively unstable) in regions where �∇ > 0, and subadiabatic
(convectively stable) where �∇ < 0. The departure from adiabaticity �∇ is essentially the
dimensionless gradient of specific entropy

ds
dz

≡ cp

d
�∇. (2.15)

Given that the fundamental requirement of the anelastic approximation is that the
atmospheric stratification is close to adiabatic, this allows us to define a small parameter ε

by
ε = |�∇r| � 1. (2.16)

Specific entropy is thus constant to the lowest (zeroth) order: ds/dz = O(ε). Since the
entropy gradient is the central quantity in the anelastic formulation, it is more convenient
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to use the entropy formulation of the conservation of internal energy (2.4),

ρT
(

∂s
∂t

+ u · ∇s
)

= 0. (2.17)

The assumed small departure from adiabaticity sets the scale for all thermodynamic
perturbations, allowing a decomposition of the thermodynamic variables into z-dependent
steady reference states, denoted by overbars, and dynamically induced time-dependent
fluctuations, denoted by asterisks:

p = pr(p̄ + εp∗), ρ = ρr(ρ̄ + ερ∗),

T = Tr(T̄ + εT∗), s = sr + cpε(s̄ + s∗),

}
(2.18)

where p̄, p∗, etc. are dimensionless quantities. The scaling for velocity follows from the
physical picture that fluid motions arise owing to buoyancy variations; thus, balancing
inertia against buoyancy perturbations implies that u2

r ∼ εgd. This, in turn, dictates that the
time scale is long (slow evolution), with t ∼ d/ur ∼ ε−1/2√d/g. Note that the ordering of
velocity means that the flow Mach number (the ratio of flow speed to sound speed) is small,
i.e. from (2.6), M = ur/cs,r ∼ ε1/2, provided that λ is O(1). In the standard formulation
of the anelastic equations, it is assumed that the Lorentz force does not contribute to the
hydrostatic balance at lowest order; this implies that the magnetic field must also scale with
ε. Balancing the Lorentz force with pressure perturbations yields B2

r /μ0 ∼ εpr: thus the
Alfvén Mach number is small, i.e. MA = cA,r/cs,r ∼ ε1/2. Based on these considerations,
it is useful to introduce scaled parameters, defined by Br = ε1/2B̃r, cA,r = ε1/2c̃A,r, MA =
ε1/2M̃A, where tilde variables and parameters are O(1). In terms of the ordering with ε,
the natural scalings of length, time, velocity and magnetic field are therefore as follows:

x = dx′, t = ε−1/2
(

d
cs,r

)
t∗, u = ε1/2cs,ru∗, B = ε1/2B̃rB∗, (2.19a–d)

where, as earlier, we use asterisks to denote (dimensionless) variables that have been scaled
with a power of ε. The formulation proceeds by substituting expressions (2.19a–d) into the
compressible MHD equations (2.7)–(2.11) (dropping ′ superscripts on length variables)
and equating terms at successive powers of ε. At O(ε0) we obtain non-trivial expressions
only from the z-component of (2.8) and from (2.11); these define the reference state by

dp̄
dz

= λρ̄, (2.20)

p̄ = ρ̄T̄. (2.21)

At O(ε1) we obtain the following evolution equations governing the perturbations:

∇ · (ρ̄u∗) = 0, (2.22)

ρ̄

(
∂u∗

∂t∗
+ u∗ · ∇u∗

)
= −∇p∗ + λρ∗êz + M̃2

A
(∇ × B∗)× B∗, (2.23)

∂B∗

∂t∗
+ (

u∗ · ∇)B∗ = (
B∗ · ∇)u∗ − B∗ (∇ · u∗) , (2.24)

∂s∗

∂t∗
+ u∗ · ∇s∗ + w∗ ds̄

dz
= 0, (2.25)
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p∗

p̄
= ρ∗

ρ̄
+ T∗

T̄
, (2.26)

s∗ = T∗

T̄
− (γ − 1)

γ

p∗

p̄
, (2.27)

where u∗ = (u∗, v∗, w∗). The reference state entropy gradient, of O(ε), is

ε
ds̄
dz

= 1
γ

d
dz

(
ln p̄ρ̄−γ

)
. (2.28)

Equations (2.22)–(2.27) constitute the equations of anelastic MHD in dimensionless form.
A further simplification of the anelastic momentum equation may be realised by

subsuming the reference state density into the pressure gradient term and also by using
(2.26), (2.27) to eliminate the density perturbation in the buoyancy term in favour of s∗
and p∗. Thus we obtain

− 1
ρ̄

∇p∗ + λρ
∗

ρ̄
êz = −∇

(
p∗

ρ̄

)
− λs∗êz − p∗

ρ̄

[
1
ρ̄

dρ̄

dz
− λρ̄

γ p̄

]
êz. (2.29)

For a near-adiabatic reference state,

d
dz

(
1
γ

ln p̄ρ̄−γ

)
= 1

γ p̄
dp̄
dz

− 1
ρ̄

dρ̄

dz
= O(ε). (2.30)

On using the equation of hydrostatic balance (2.20), it therefore follows that

1
ρ̄

dρ̄

dz
= λρ̄

γ p̄
+ O(ε). (2.31)

The term in the square brackets on the right-hand side of (2.29) is thus formally smaller
than the other two terms; the momentum equation (2.23) therefore becomes

∂u∗

∂t∗
+ u∗ · ∇u∗ = −∇

(
p∗

ρ̄

)
− λs∗êz + M̃2

A
ρ̄

(∇ × B∗)× B∗. (2.32)

This simplification of the momentum equation was demonstrated by Lantz (1992) and
Braginsky & Roberts (1995). It is important to note that it requires no additional
approximation, but follows immediately from the original assumption of a near-adiabatic
reference state; i.e. (2.23) and (2.32) are asymptotically equivalent leading-order
expressions.

In the course of the following analysis it will sometimes be advantageous to work
with the governing equations in their dimensional form, which we therefore state
here for completeness. Equations (2.22), (2.24), (2.25) and (2.26) are unchanged. In
dimensional form, the two versions of the momentum equation (2.23) and (2.32), and
the thermodynamic relation (2.27) read as

ρ̄

(
∂u∗

∂t∗
+ u∗ · ∇u∗

)
= −∇p∗ + ρ∗gêz + 1

μ0

(∇ × B∗)× B∗, (2.33)

∂u∗

∂t∗
+ u∗ · ∇u∗ = −∇

(
p∗

ρ̄

)
− s∗

cp
gêz + 1

μ0ρ̄

(∇ × B∗)× B∗. (2.34)

s∗ = cp
T∗

T̄
− (cp − cv)

p∗

p̄
. (2.35)
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The dimensional equations governing the reference state are
dp̄
dz

= ρ̄g, p̄ = Rρ̄T̄, ε
ds̄
dz

= cv

d
dz

ln p̄ρ̄−γ . (2.36a–c)

2.3. The subtle ordering for magnetic buoyancy
As can be seen from the formulation above, the magnetic field is incorporated into the
anelastic approximation in a straightforward way, with the only requirement being that the
field is sufficiently weak. On the other hand, including the effects of magnetic buoyancy
in the Boussinesq approximation is a subtle procedure, which, inter alia, involves
consideration of the length scale characteristic of magnetic buoyancy perturbations
(Spiegel & Weiss 1982; Corfield 1984; Bowker et al. 2014). Specifically, the requirement
that the length scale of motions in the direction of the imposed horizontal magnetic field
be long in comparison with the transverse scale has to be built into the approximation.
In the anelastic system, however, no such special measures are taken to ensure that
magnetic buoyancy is included consistently. The question thus arises as to whether the
anelastic equations do indeed retain the effects of magnetic buoyancy, and, if so, why
are no special measures required governing the length scale of the perturbation? Here,
we seek to elucidate this matter by examining the fundamental ordering of the physical
quantities necessary for magnetic buoyancy instability, thus clarifying the relationship
between the descriptions of magnetic buoyancy in the full (compressible) and reduced
(anelastic, Boussinesq) systems. By striking the appropriate balances between terms in the
governing equations, we derive the general scalings necessary to account for the effects of
magnetic buoyancy in the reduced equations. The resulting scalings allow us to identify,
and distinguish between, different reduced systems (or regimes) of the full compressible
MHD equations.

As above, we consider an atmosphere of depth d and pressure scale height Hp =
pr/(ρrg). In the basic state, we assume an imposed horizontal magnetic field, stratified in
the vertical direction with scale height HB. When the system is perturbed, and motions
ensue, the presence of the imposed horizontal field introduces a length scale in the
direction of the field that may be distinct from both d and HB: we denote this length scale
by LB. For any variable f , we define fr and δf to be, respectively, representative values of
f in equilibrium and of the magnitude of fluctuations of f . For vector fields, it is necessary
to distinguish between components aligned with, and those perpendicular to, the imposed
magnetic field. We denote the magnitudes of the components of the fluctuations parallel
and perpendicular to the imposed field by subscripts ‖ and ⊥, respectively.

By considering the magnitudes of the fluctuating quantities in the dimensional
compressible equations (2.1)–(2.5), we will establish the relation that must be obeyed
between the various length scales of the problem if magnetic buoyancy is to be of
significance. We will pursue, in a slightly more general fashion, the line of argument
expounded by Bowker et al. (2014). First, from the momentum equation (2.2), balancing
the inertia term with those of total pressure fluctuations, buoyancy and magnetic tension
gives

ρrδu2
⊥ ∼ δΠ ∼ δρgd ∼ BrδB⊥

μ0

(
d

LB

)
. (2.37)

With our focus on buoyancy-driven instabilities, the time scale is determined by the
balance of vertical acceleration and buoyancy, thus giving the scaling

∂

∂t
∼ δu⊥

d
. (2.38)
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Magnetic buoyancy and the anelastic approximation

From the balance between inertia and buoyancy in (2.37), we may express the kinetic
energy of the transverse flow in terms of the density variation as

δu2
⊥ ∼ δρ

ρr
gd ∼ δρ

ρr

(
d

Hp

)
c2

s , (2.39)

where c2
s = pr/ρr. The scaling for total pressure fluctuations, δΠ = δp + δpm, results

from balancing the gradient of total pressure fluctuations with the inertia terms, and hence
with the buoyancy, thus,

δΠ ∼ ρrδu2
⊥ ∼ δρ

ρr

d
Hp

pr. (2.40)

Balancing advection and stretching terms in the parallel and perpendicular components of
the induction equation (2.3) results in the following relations:

δB‖∼
(

d
HB

)
Br, δB⊥∼

(
d

LB

)
Br, δu‖∼

(
LB

HB

)
δu⊥. (2.41a–c)

From the balance between buoyancy and magnetic tension in (2.37), together with (2.41b),
the density variation may be expressed in terms of the representative field strength as

δρ

ρr
∼
(

B2
r

μ0pr

)(
Hp

d

)(
d

LB

)2

. (2.42)

It should be noted that (2.42) expresses the contribution to the density variation arising
from the magnetic field, which is of particular interest here. There will of course also be a
contribution arising from entropy variations, which is present even in the absence of field.
From (2.41a) and (2.42), the magnetic pressure variation may be expressed as

δpm ∼ BrδB‖
μ0

∼ δρ

ρr

(
d

Hp

)(
d

HB

)(
LB

d

)2

pr. (2.43)

The above orderings are quite general, insofar as they arise simply from balancing terms in
the governing equations, but with no assumptions having been made about the magnitude
of the density fluctuation δρ relative to the background ρr, nor of the relative magnitudes
of the length scales d, Hp, HB and LB.

Note that both the anelastic and Boussinesq approximations assume that the size of
thermodynamic fluctuations is small compared with their background values: δρ/ρr � 1.
The anelastic approximation is valid for stratified atmospheres whose vertical extent
can span many pressure scale heights: d � Hp. The Boussinesq approximation is more
restrictive as it applies only to weakly stratified atmospheres – ones whose depth is much
smaller than the pressure scale height: d � Hp.

For magnetic pressure fluctuations to be influential – a necessary condition for magnetic
buoyancy instability – they must be comparable in magnitude to density fluctuations:
δpm/pr ∼ δρ/ρr. From (2.43), we deduce that this requirement imposes the following
important relation between length scales:

L2
B ∼ HBHp. (2.44)

To establish the consistency of the above argument, it is instructive to substitute for L2
B

from (2.44) into (2.42), which gives the density variation due to the magnetic field as

δρ

ρr
∼
(

d
HB

)(
B2

r

μ0pr

)
. (2.45)
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Thus, for a fixed HB, the field will not influence the density if Br is sufficiently weak;
conversely, the influence of the field is accentuated by very small values of HB.

From the relation (2.44), we are able to identify four distinct regimes in which magnetic
buoyancy is faithfully described – two in the anelastic approximation and two in the
Boussinesq approximation – together with a further Boussinesq regime in which the effects
of magnetic buoyancy are explicitly excluded. These distinct regimes, or reduced systems,
are explained in more detail in the following subsection. Furthermore, each reduced system
has its own distinctive set of governing equations, which are provided in the Appendix.

2.4. Distinguished regimes of the anelastic and Boussinesq approximations
In order to categorise the five possible regimes, we define the following ordering
parameters:

ε1 = d
Hp

, ε2 = δρ

ρr
, εB = d

HB
. (2.46a–c)

The definitions of ε1 and ε2 are in accordance with the notation used in Corfield (1984)
and Bowker et al. (2014). Note also that ε2 is equivalent to the parameter ε used to
derive the anelastic equations in § 2.2. For all the various approximations, thermodynamic
fluctuations are considered small: ε2 � 1.

It is important to consider how the entropy gradient comes into this ordering. The
background entropy gradient must be of the size of thermodynamic fluctuations (at most);
otherwise, the assumption that δρ/ρr � 1 would not be justified. Indeed, this is an explicit
requirement of the anelastic approximation. Likewise, the same ordering of the entropy
gradient (ds/dz ∼ ε2) pertains to the Boussinesq approximation (Spiegel & Weiss 1982).

2.4.1. Standard anelastic approximation
The derivation of the anelastic equations in § 2.2 involved no special consideration of
the magnetic scale height HB, de facto treating it as on a par with the layer depth:
d ∼ HB. Likewise, making no distinction between the parallel and perpendicular directions
amounts to an implicit assumption that LB ∼ d. With d/Hp = O(1), it follows that all the
length scales stand on an equal footing, i.e.

d ∼ Hp ∼ HB ∼ LB. (2.47)

Crucially, such an ordering satisfies (2.44), the essential length scale relation for magnetic
buoyancy. Thus, possibly fortuitously, no special measures need to be taken to incorporate
magnetic buoyancy into the standard anelastic approximation. Total pressure variations
(2.40) and magnetic pressure variations (2.43) are of the same order of magnitude, with

δΠ

pr
∼ δpm

pr
= O(ε2). (2.48)

With the ordering of length scales (2.47), the relation (2.42) requires that the magnetic
field strength, expressed through the parameter M2

A = B2
r /μ0pr, is O(ε2).

2.4.2. Weak field-gradient anelastic approximation
For the case of weak magnetic stratification, i.e. HB � d, it turns out that there is
another possible regime within the anelastic framework. In this case, the parallel length
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scale LB is necessarily larger than d in order to satisfy the crucial relation for magnetic
buoyancy (2.44). More precisely,

d ∼ Hp, d � HB, LB ∼
√

dHB. (2.49a–c)

As for the ordering (2.47), variations in total and magnetic pressure obey (2.48). However,
with a weak field gradient (HB � d), the magnetic field needs to be stronger than in
§ 2.4.1 in order to compensate for the weak gradient; thus here, again using (2.42),
M2

A = O(ε2/εB), with the requirement that ε2/εB � 1, so that the Alfvén speed remains
much slower that the sound speed.

2.4.3. Standard magneto-Boussinesq approximation
The length scales in the standard magneto-Boussinesq equations of Spiegel & Weiss
(1982) obey the ordering

d � Hp, HB ∼ LB ∼ Hp. (2.50a,b)

The magnitudes of total and magnetic pressure fluctuations are given by

δΠ

pr
= O(ε1ε2),

δpm

pr
= O(ε2). (2.51a,b)

Thus,
δp
pr

= −δpm

pr
+ O(ε1ε2), (2.52)

thereby guaranteeing that magnetic pressure variations enter the equation of state to
produce density variations. The field strength is given by M2

A = O(ε2/ε1), subject to
ε2 � ε1, so that the Alfvén speed is much smaller than the sound speed.

2.4.4. Strong field-gradient magneto-Boussinesq approximation
The magneto-Boussinesq orderings, which lead to (2.51a,b) and (2.52), can also be obeyed
if the field gradient is much stronger than the pressure gradient (Bowker et al. 2014). The
precise ordering required is

d � Hp, HB ∼ d, LB ∼ √
dHp. (2.53a–c)

Here, the field is weaker than in § 2.4.3, with M2
A = O(ε2).

2.4.5. Boussinesq magnetoconvection
Under the Boussinesq orderings, it is also possible to include the effects of magnetic
tension, but neglect the dynamical influence of magnetic pressure. This gives the
well-studied system of Boussinesq magnetoconvection (e.g. Weiss & Proctor 2014), in
which the length scales obey the following ordering:

d � Hp, LB ∼ d, HB � d. (2.54a–c)

As expected, the necessary scaling for the inclusion of magnetic buoyancy, (2.44), is
not now satisfied. The key feature of the Boussinesq magnetoconvection ordering is that
the variations of both total and magnetic pressure are smaller than density variations
(δρ/ρr = O(ε2)), with

δΠ

pr
∼ δpm

pr
= O(ε1ε2). (2.55)
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It thus follows that thermodynamic pressure fluctuations δp/pr are, at most, O(ε1ε2);
hence, to leading order, density variations arise on account only of temperature variations.
In this regime the magnetic field is also very weak, with M2

A = O(ε1ε2).

2.4.6. Summarising the five systems
We have described how, within each of the anelastic and magneto-Boussinesq
approximations, there are two distinct orderings of the length scales of the problem that
allow for the consistent inclusion of the effects of magnetic buoyancy. In addition to that
of the standard anelastic system, there is a further distinct ordering with a weaker field
gradient, a stronger field and a longer characteristic length scale of the perturbations.
Similarly, in addition to the standard magneto-Boussinesq system, there is a distinct
ordering with a stronger field gradient, a weaker field and a shorter characteristic length
scale of the perturbations. Within the Boussinesq approximation, there is also the ordering
that leads to the system of Boussinesq magnetoconvection, in which magnetic buoyancy is
excluded.

It is important to note also that the relative magnitudes of d, HB and LB determine
the relative sizes of the perpendicular and parallel components of the velocity and
magnetic fluctuations. Naturally, the ordering of length scales also has implications for
the scalings of spatial derivatives parallel and perpendicular to the field: ∇ = ∇⊥ +
(d/LB)∇‖. The scalings of all quantities for each regime are summarised in table 1. On
applying the orderings in table 1 to the governing compressible equations, we obtain
five distinct reduced systems; these are described in detail in the Appendix. As a final
point, we should note why there are three reductions possible under the Boussinesq
approximation, but only two under the anelastic approximation. Within the assumptions
of the Boussinesq approximation, it is possible to obtain an asymptotically consistent set
of equations that includes the effects of magnetic tension but not of magnetic buoyancy
– namely, the equations of Boussinesq magnetoconvection. However, within the anelastic
approximation, such a reduction is not possible; the influence of the magnetic field is felt
both via tension and buoyancy.

3. Formulation of the linear problem

The upshot of the analysis in the preceding section is that we expect magnetic buoyancy
to be well represented by the anelastic equations within the described regime of validity
(i.e. with a near-adiabatic stratification and a weak magnetic field). Now, we will put those
ideas to the test, quantitatively, by comparing the solutions of the linearised compressible
and (standard) anelastic systems. In this section, we formulate the linear eigenvalue
problems, for both the compressible and the anelastic systems, which we will solve in §§ 4
and 5. In these later sections, we will actually make use of the linearised equations in both
their dimensional and dimensionless forms; since the underlying form of the equations is,
of course, the same for both, we will here describe just the dimensionless formulation.
We restrict our attention to cases in which the atmospheric stratification is sub-adiabatic,
so that the fluid layer is stable to convection and thus magnetic buoyancy is the only
destabilising agent. The equilibrium magnetic field is a function of depth and aligned with
the y-direction: B(z)êy.

3.1. Compressible MHD
In the absence of fluid motion, the (dimensionless) compressible equations admit a steady
z-dependent basic-state solution. The basic-state variables (denoted by subscript ‘b’)
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Anelastic Magneto-Boussinesq
Boussinesq

Magnetoconvection

Strong gradient
(standard)

Weak
gradient

Weak gradient
(standard)

Strong
gradient

§ 2.4.1 § 2.4.2 § 2.4.3 § 2.4.4 § 2.4.5

d/Hp 1 1 ε1 ε1 ε1
d/HB 1 εB ε1 1 1
d/LB 1 ε

1/2
B ε1 ε

1/2
1 1

L2
B ∼ HpHB � � � � ✗

M2
A ε2 ε2/εB ε2/ε1 ε2 ε1ε2

δpm/pr ε2 ε2 ε2 ε2 ε1ε2
δp/pr ε2 ε2 ε2 ε2 ε1ε2
δΠ/pr ε2 ε2 ε1ε2 ε1ε2 ε1ε2

δu⊥/cs ε
1/2
2 ε

1/2
2 (ε1ε2)

1/2 (ε1ε2)
1/2 (ε1ε2)

1/2

δu‖/cs ε
1/2
2 (ε2εB)1/2 (ε1ε2)

1/2 ε
1/2
2 (ε1ε2)

1/2

(d/cs)∂t ε
1/2
2 ε

1/2
2 (ε1ε2)

1/2 (ε1ε2)
1/2 (ε1ε2)

1/2

δb‖/Br 1 εB ε1 1 1
δb⊥/Br 1 ε

1/2
B ε1 ε

1/2
1 1

∇ ∇ ∇⊥ + ε
1/2
B ∇‖ ∇⊥ + ε1∇‖ ∇⊥ + ε

1/2
1 ∇‖ ∇

Table 1. Summary of orderings in different regimes.

satisfy the well-known relations for a magnetohydrostatic perfect gas,

dpb

dz
= λρb − 1

2
M2

A
dB2

b
dz

, pb = ρbTb. (3.1a,b)

Elimination of pb between the two equations in (3.1a,b) results in the ordinary differential
equation (ODE) for ρb,

dρb

dz
+ ρbΓ (z) = −1

2
M2

A
1
Tb

dB2
b

dz
, where Γ (z) = d ln Tb

dz
− λ

Tb
. (3.2)

On applying the boundary condition ρb(z = 0) = 1, (3.2) can be integrated to give

ρb(z) = exp
[
−
∫ z

0
Γ (z) dz

]{
1 − 1

2
M2

A

∫ z

0

1
Tb

dB2
b

dz
exp

[∫ z

0
Γ (z) dz

]
dz

}
. (3.3)

We consider perturbations to the basic state, expressing velocity, magnetic field and
thermodynamic variables in the perturbed state as δu, Bb + δb, pb + δp, etc., respectively.
On assuming that the perturbations are small, and hence that nonlinear terms may be
neglected, we can express all disturbances in the following form:

δp = p̂(z) exp(iωt + ikxx + ikyy), etc., (3.4)

where ω is the (complex) oscillation frequency and kx and ky are the wavenumbers in the
x and y horizontal directions. Substituting into the governing equations (2.1)–(2.4) and
retaining only the lowest-order terms in the perturbations leads to the following linear
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system for the perturbations:

iωR̂ = −ikxû − ikyv̂ −
(

d
dz

+ 1
Hρ(z)

)
ŵ, (3.5)

iωû = −ikxP̂ + M2
A

Bb(z)2

ρb(z)

(
ikyF̂x − ikxF̂y

)
, (3.6)

iωv̂ = −ikyP̂ + M2
A

Bb(z)2

ρb(z)HB(z)
F̂z, (3.7)

iωŵ = −
(

d
dz

+ 1
Hρ(z)

)
P̂ + λR̂ + M2

A
Bb(z)2

ρb(z)

{
−
(

d
dz

+ 2
HB(z)

)
F̂y + ikyF̂z

}
, (3.8)

iωF̂x = ikyû, (3.9)

iωF̂y = −ikxû −
(

d
dz

+ 1
HB(z)

)
ŵ, (3.10)

iωF̂z = ikyŵ, (3.11)

iωP̂ = −γ pb(z)
ρb(z)

{
ikxû + ikyv̂ +

(
d
dz

+ 1
γ Hp(z)

)
ŵ
}

, (3.12)

where R̂ = ρ̂/ρb, P̂ = p̂/ρb, F̂x = b̂x/Bb, F̂y = b̂y/Bb, F̂z = b̂z/Bb and

1
Hρ

= 1
ρb

dρb

dz
,

1
Hp

= 1
pb

dpb

dz
,

1
HB

= 1
Bb

dBb

dz
. (3.13a–c)

Equations (3.5)–(3.12), together with the boundary conditions ŵ = 0 at z = 0, 1, constitute
an eigenvalue problem for the frequency ω. In general, this set of equations requires a
numerical solution, which we obtain using Chebyshev differentiation matrices (Trefethen
2000).

3.2. Anelastic MHD
In the absence of motion, the (dimensional) anelastic equations admit a steady z-dependent
basic-state solution (denoted by index ‘0’), which satisfies

d
dz

(
p0 + M̃2

A
2

B2
0

)
= λρ0, (3.14)

p0

p̄
= ρ0

ρ̄
+ T0

T̄
, s0 = T0

T̄
− (γ − 1)

γ

p0

p̄
. (3.15a,b)

Note that, since we are considering an ideal system with no diffusivity, we have three
equations for the four variables ρ0, p0, T0, s0. If the thermal and magnetic diffusivity
were non-zero, the balance between thermal diffusion and Ohmic heating in the energy
equation would provide a relation between T0 and B0. In the ideal case, however, we have
the freedom to set T0 = 0. In other words, the imposed field B0 influences the density and
pressure stratification (through (3.14)), but does not affect the (steady state) temperature
distribution. The basic-state entropy gradient can thus be expressed solely in terms of p̄
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and B0 as
ds0

dz
= (γ − 1)

γ
M̃2

A
B0

p̄
dB0

dz
. (3.16)

We express velocity, magnetic field and thermodynamic variables in the perturbed state
as δu∗, B0 + δb∗, s0 + δs∗, etc., respectively. As for the full compressible equations, we
now consider small perturbations to the basic state, allowing us to express all disturbances
as

δs∗ = ŝ∗(z) exp(iω̃t + ikxx + ikyy), etc., (3.17)

where the tilde notation on the eigenvalue reflects the different time scaling between the
compressible and anelastic systems (cf. (3.4))). Substituting expressions (3.17) into the
governing equations (2.22), (2.32), (2.24), (2.25), and retaining only the lowest-order terms
in the perturbations, leads to the following set of (dimensionless) perturbation equations:

0 = ikxû∗ + ikyv̂
∗ +

(
d
dz

+ 1
H̄ρ(z)

)
ŵ∗, (3.18)

iω̃û∗ = −ikxP̂∗ + M̃2
A

B0(z)2

ρ̄(z)

(
ikyF̂∗

x − ikxF̂∗
y

)
, (3.19)

iω̃v̂∗ = −ikyP̂∗ + M̃2
A

B0(z)2

ρ̄(z)HB(z)
F̂∗

z , (3.20)

iω̃ŵ∗ = −dP̂∗

dz
− λŝ∗ + M̃2

A
B0(z)2

ρ̄(z)

{
−
(

d
dz

+ 2
HB(z)

)
F̂∗

y + ikyF̂∗
z

}
, (3.21)

iω̃F̂∗
x = ikyû∗, (3.22)

iω̃F̂∗
y = ikyv̂

∗ +
(

1
H̄ρ(z)

− 1
HB(z)

)
ŵ∗, (3.23)

iω̃F̂∗
z = ikyŵ∗, (3.24)

iω̃ŝ∗ = −ŵ∗
(

ds̄
dz

+ ds0

dz

)
, (3.25)

where P̂∗ = p̂∗/ρ̄, F̂∗
x = b̂∗

x/B0, F̂∗
y = b̂∗

y/B0, F̂∗
z = b̂∗

z /B0 and

1
H̄ρ

= 1
ρ̄

dρ̄

dz
,

1
HB

= 1
B0

dB0

dz
. (3.26a,b)

As for the compressible system, the general solution of the eigenvalue problem defined by
(3.18)–(3.25) requires numerical treatment.

3.3. Comparing solutions to the compressible and anelastic systems
Before proceeding to the analysis of the solutions of the compressible and anelastic
systems, it is important to explain the relations between the parameters and variables
pertaining to the two systems. The two systems differ in terms of time and velocity
scales; by design, the anelastic system governs the dynamics of slow motions evolving
on a long time scale. Thus, comparing the velocities and eigenvalues of the compressible
system with those of the anelastic system requires the following scaling: |u| = ε1/2|u∗|,
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ω = ε1/2ω̃. Since we have used the same scaling for the magnetic field (Br) for the two
systems, no re-scaling is needed when comparing magnetic field perturbations. Note,
however, that M2

A = εM̃2
A.

In the compressible system, the basic-state density and pressure correspond to the
sum of the reference and basic states of the anelastic system; thus, ρb = ρ̄ + ερ0 and
pb = p̄ + εp0. For the temperature, however, Tb = T̄ since, in ideal MHD, we have
the freedom to impose one of the equilibrium thermodynamic quantities. An important
difference between the two systems is that, in the anelastic case, the background reference
state is strictly adiabatic (i.e. the static solution profiles ρ̄, p̄, T̄ are such that the departure
from adiabaticity �∇ is strictly zero); the asymptotically small entropy gradient enters
only into the prognostic equations, but not the background state. The basic state entropy
gradient in the compressible system is given by

dsb

dz
= d

dz

(
1
γ

ln

(
pb

ρ
γ

b

))
=
(

dTb

dz
− (γ − 1)

γ
λ

)
1
Tb

+ (γ − 1)

γ
M2

A

(
Bb

pb

)
dBb

dz
; (3.27)

this is related to the reference and basic-state entropy gradients of the anelastic system as
follows:

dsb

dz
= ε

ds̄
dz

+ ε
ds0

dz
+ O(ε2). (3.28)

4. Instabilities of a constant Alfvén speed atmosphere

As noted above, the linear eigenvalue problem resulting from a small perturbation of
a magnetohydrostatic atmosphere typically requires a numerical solution – for both the
compressible and anelastic systems. However, for the special case where the basic-state
atmosphere is isothermal with a constant Alfvén speed, the perturbation equations possess
a simple analytical solution, allowing the dispersion relation to be written explicitly. This is
extremely illuminating, since it allows a rigorous comparison between the two systems. For
the compressible MHD equations, the dispersion relation was derived by Yu (1965) and
Chen & Lykoudis (1972); we will derive presently the dispersion relation for the anelastic
system.

It is illustrative to begin with the dimensional equations since the various speeds that
arise then appear explicitly in the dispersion relations. However, the ensuing comparison
between the two systems will require suitable rescaling.

4.1. Compressible case
The equilibrium state is given by

ρb = ρr exp
( z

H

)
, pb = pr exp

( z
H

)
, Tb = Tr, Bb = Br exp

( z
2H

)
, (4.1a–d)

where the (magnetohydrostatic) scale height H satisfies

1
H

= 1
ρb

dρb

dz
= 1

pb

dpb

dz
= 2

Bb

dBb

dz
= g

c2
s + 1

2 c2
A

. (4.2)
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Magnetic buoyancy and the anelastic approximation

The linearised equations of compressible MHD (the dimensional versions of (3.5)–(3.11))
can be combined to give the following single second-order ODE for ŵ:

(
c2

Aω2 + γ c2
s (ω

2 − c2
Ak2

y)
) (

ω2 − c2
Ak2

y

)(d2ŵ
dz2 + 1

H
dŵ
dz

)

+
{
ω6 −

(
γ c2

s k2
H + c2

A(k2
x + 2k2

y)
)

ω4

+
(

c2
Ak2

yk2
H(2γ c2

s + c2
A) − g

(
g − γ c2

s

H

)
k2

H + g
H

c2
Ak2

x

)
ω2

−c2
Ak2

yk2
H

(
γ c2

s c2
Ak2

y − g
(

g − γ c2
s

H

))}
ŵ = 0, (4.3)

where k2
H = k2

x + k2
y . Subject to the impermeable boundary conditions ŵ = 0 on z = 0 and

z = d, the ODE (4.3) admits a solution ŵ ∝ exp (−z/2H) sin (kzz), with kz = nπ/d (where
mode n = 1 is the most readily destabilised). Substituting the ansatz for ŵ into (4.3) yields
the dispersion relation

ω6 −
(
(γ c2

s +c2
A)k′2+c2

Ak2
y

)
ω4+

(
c2

Ak2
yk′2(2γ c2

s +c2
A)−g

(
g − γ c2

s

H

)
k2

H + g
H

c2
Ak2

x

)
ω2

−c2
Ak2

y

(
γ c2

s c2
Ak2

yk′2 − g
(

g − γ c2
s

H

)
k2

H

)
= 0, (4.4)

where k′2 = k2
x + k2

y + k2
z + (4H2)−1. Expression (4.4), which is a cubic in ω2, describes

three different wave modes: the acoustic and gravity modes found in the non-magnetic
case, modified owing to the presence of the magnetic field, together with the slow
magneto-acoustic wave. The former two modes are always stable (for sub-adiabatic
atmospheres), whilst the latter can be destabilised through magnetic buoyancy. Yu (1965)
showed that stability requires that the coefficient of ω0 in (4.4) be negative. For long
wavelength modes (ky → 0), this results in the following stability condition:

γ − 1 >
1
2

c2
A

c2
s
. (4.5)

Note that, according to Newcomb’s energy criterion (see (1.4)), for the particular
atmosphere considered here, two-dimensional interchange modes (ky ≡ 0) are never
unstable since the gradient of B/ρ is negative. For two-dimensional undular modes
(kx ≡ 0), the stability criterion is

γ − 1 >
c2

s c2
A + c4

A

4c4
s + 3c2

s c2
A
. (4.6)

This is precisely the condition given by Parker (1966) (his equation (7) in the absence of
cosmic ray pressure).
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4.2. Anelastic case
The background state in the anelastic case is described by

ρ̄ = ρr exp
(

z
H̄

)
, p̄ = pr exp

(
z
H̄

)
, T̄ = Tr, B0 = B̃r exp

(
z

2H̄

)
, (4.7a–d)

where the (hydrostatic) scale height H̄ satisfies

1
H̄

= 1
ρ̄

dρ̄

dz
= 1

p̄
dp̄
dz

= 2
B0

dB0

dz
= g

c2
s
. (4.8)

For such a reference state, the departure from adiabaticity, defined by (2.13), is

�∇ = − d
H̄

(γ − 1)

γ
. (4.9)

For this particular atmosphere, the stratification is near adiabatic, i.e. ε = |�∇| � 1, when
γ is close to 1. The (sub-adiabatic) reference state entropy gradient is given by

ds̄
dz

= −cp

d
. (4.10)

An important consequence of the restriction γ ∼= 1 is that the basic-state entropy gradient
ds0/dz, defined by (3.16), is O(ε) smaller than the reference state entropy gradient ds̄/dz,
and hence does not enter the linearised entropy equation (3.25).

In a similar fashion to the compressible case, the linearised anelastic equations (the
dimensional versions of (3.18)–(3.24)) can be combined to yield a single second-order
ODE for ŵ, with a solution of the form ŵ ∝ exp

(−z/2H̄
)

sin (kzz). The resulting
dispersion relation for the anelastic system is

− ω̃4k′2 +
(

2c̃2
Ak2

yk′2 + g
d

k2
H + c̃2

A

2H̄2
(2k2

x − k2
H)

)
ω̃2

− c̃2
Ak2

y

(
c̃2

Ak2
yk′2 + g

d
k2

H − c̃2
A

2H̄2
k2

H

)
= 0, (4.11)

where k′2 = k2
x + k2

y + k2
z + (4H̄2)−1. The dispersion relation (4.11), which is a quadratic

in ω2, thus supports two waves – the fast mode associated with the sound wave in the
compressible system has been filtered out. The remaining two waves are the gravity wave
(modified by the magnetic field), and the slow magneto-acoustic mode.

Stability requires that the ω0 term is negative. Hence, for long wavelength modes
(ky → 0), the stability criterion reduces to

d
H̄

c̃2
A

c2
s

< 2. (4.12)

This is the anelastic version of the condition given by Yu (1965) for the compressible
case. In fact, the anelastic condition (4.12) can be recovered from the compressible
condition (4.5) by setting γ = 1 + ε(H̄/d) and c2

A = εc̃2
A. Similarly, the stability criterion

for two-dimensional undular modes (4.6) reduces in the anelastic case to

d
H̄

c̃2
A

c2
s

< 4. (4.13)
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Magnetic buoyancy and the anelastic approximation

4.3. Comparison of the two systems
Although the derivation of the dispersion relations (4.4) and (4.11), individually, is
performed most clearly in dimensional variables, it is more instructive, when comparing
the two, to work with dimensionless quantities. On scaling length with the layer depth d,
and time with d/cs (i.e. ω → (cs/d) ω, k → d−1k), the compressible dispersion relation
(4.4) becomes

ω6 −
(
γ k′2 + M2

A(k′2 + k2
y)
)

ω4

+
(

M2
Ak2

yk′2(2γ + M2
A) + (γ − 1)λ2k2

H + λM
2
A

2H

(
2k2

x − γ k2
H

))
ω2

− M2
Ak2

y

(
γ M2

Ak2
yk′2 + (γ − 1)λ2k2

H − γ λM2
A

2H
k2

H

)
= 0,

(4.14)

with dimensionless scale height H = λ−1
(

1 + 1
2 M2

A

)
.

Similarly, the anelastic dispersion relation (4.11) in dimensionless form is

− k′2ω̃4 +
(

2M̃2
Ak2

yk′2 + λk2
H + λM̃

2
A

2H̄

(
2k2

x − k2
H

))
ω̃2

− M̃2
Ak2

y

(
M̃2

Ak2
yk′2 + λk2

H − λM̃
2
A

2H̄
k2

H

)
= 0, (4.15)

where H̄ = λ−1. To compare directly the dispersion relation for the compressible system
(4.14) with that for the anelastic system (4.15), the following additional rescaling is
necessary: ω = ε1/2ω̃, MA = ε1/2M̃A. Furthermore, the restriction that the stratification
of the atmosphere be close to adiabatic pins down the value of γ (cf. (4.9)) as

γ = λ

λ− ε
= 1 + ε

λ
+ O(ε2). (4.16)

On substitution for ω, MA and γ , (4.14) may be expressed as the following asymptotic
expression:

−k′2ω̃4 +
(

2M̃2
Ak2

y k′2 + λk2
H + λ

2M̃2
A

2

(
2k2

x − k2
H

))
ω̃2 − M̃2

Ak2
y

(
M̃2

Ak2
y k′2 + λk2

H − λ
2M̃2

A
2

k2
H

)

+ ε

{
ω̃6 −

(
k′2

λ
+ M̃2

A

(
k2 + k2

y

))
ω̃4

+
(

M̃2
Ak2

y k′2
(

2
λ

+ M̃2
A

)
− λM̃

2
A

2

(
k2

H + λM̃
2
A

2
k2

H

))
ω̃2

−M̃2
Ak2

y

(
M̃2

Ak2
y

k′2

λ
− λM̃

2
A

2

(
k2

H − λM̃
2
A

2
k2

x

))}
+ O

(
ε2
)

= 0, (4.17)

where k2 = k2
x + k2

y + k2
z . Setting ε = 0 in (4.17) recovers the anelastic dispersion

relation (4.15). By inspecting the expression (4.17), we can assess under what conditions
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Figure 1. Contours of the (squared) frequency ω̃2 of the slow magneto-acoustic mode for the compressible
system, with ε = 0.01 (solid lines), and the anelastic system (dashed lines); λ = 1, kz = π. In (a) M̃2

A = 10; in
(b) M̃2

A = 50; in (c) M̃2
A = 100.

do the dispersion relations resulting from the compressible and anelastic systems produce
significantly different results. In particular, we are interested in seeing if there are
circumstances under which the asymptotic ordering can be broken, with terms that are
formally O (ε) being ‘promoted’ to O (1).

For any of the O (ε) terms (in curly brackets) to come into play at O (1), M̃2
A would

have to be as large as O
(
ε−1) – a value far beyond the regime of validity of the anelastic

approximation; with this ordering, the Alfvén wave speed would be comparable to the
speed of sound, and the magnetic field would be strong enough to upset the assumed
hydrostatic balance at leading order. At first glance one might also intuit that some of the
O (ε) terms could contribute to the dominant balance if λ ∼ ε. However, the derivation of
(4.17) involves expanding γ according to (4.16) which is valid only for λ� ε. The validity
of the expression (4.17) requires that M̃2

A be of order unity and ε/λ� 1 – under these
restrictions it is not possible to upset the O(ε0) balance.

Figure 1 compares (squared) frequencies of the slow magneto-acoustic mode for a range
of wavenumbers kx, ky and increasing values of M̃2

A. Positive (negative) values correspond
to stability (instability). As for all diffusionless magnetic buoyancy instabilities (see, for
example, the energy principle analysis of Hughes & Cattaneo 1987), instability is favoured
for large kx and small ky. As expected, qualitative and quantitative agreement between the
two systems is very good when M̃2

A = 10. The agreement between the two systems worsens
as M̃2

A is increased. When M̃2
A = 50, quantitative agreement is less good, but the overall

features of the contour plot are still captured by the anelastic system. When M̃2
A is as

large as ε−1, in this case M̃2
A = 100, the agreement between compressible and anelastic

systems breaks down and there are large differences between the solutions of the two
systems.

5. Instabilities of more general equilibria

In § 4 we examined the instabilities of an isothermal atmosphere with constant Alfvén
speed; this particular choice allows an analytical solution and hence a detailed comparison
of the compressible and anelastic systems. In this section, we extend our study to consider
the instabilities of two other magnetohydrostatic atmospheres, again with the aim of
comparing results obtained under the anelastic approximation with those from the full
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Magnetic buoyancy and the anelastic approximation

system. As noted earlier, the eigenvalue problem determining the linear growth rate
requires, in general, a numerical solution.

5.1. Isothermal atmosphere with linear magnetic stratification
Here, as in § 4, we again consider an isothermal atmosphere, but now with the magnetic
field linearly stratified with depth. The equilibrium temperature and magnetic field
distributions are given by

Tb = T̄ = 1, Bb = B0 = 1 + ζ z. (5.1a,b)

From (3.3), the basic-state density in the compressible system is then given by

ρb(z) = pb(z) = exp(λz)

{
1 + ζM2

A
λ

[
ζ z exp(−λz) −

(
1 + ζ

λ

)
(1 − exp(−λz))

]}
.

(5.2)
In the anelastic system, the non-magnetised reference state is described by

ρ̄(z) = p̄(z) = exp(λz),
ds̄
dz

= −1. (5.3a,b)

Recall that the departure from adiabaticity ε for an isothermally stratified atmosphere is
governed by (4.9). Thus, in the compressible system, a subadiabatic value of γ is chosen
according to γ = λ/(λ− ε). In the anelastic system, we use the value of γ that gives
exactly adiabatic stratification, i.e. γad = 1. As a consequence, the basic state entropy
gradient does not enter the picture (i.e. ds0/dz = 0).

Figure 2 shows the growth rate of the magnetic buoyancy instability as a function of M̃2
A

for various magnetic field gradients ζ and various degrees of departure of adiabaticity ε,
for fixed kx = 4, ky = 0.01, λ = 1. Since our interest lies in comparison of the anelastic
and compressible systems, rather than in an extensive investigation of the instability, we
have concentrated on fixed values of the wavenumbers, but recognising the fact that the
instability mechanism is favoured when ky � kx.

For a given value of ζ , the agreement between the compressible and anelastic results
improves as ε is reduced. This is expected and reassuring. For a given ε and M̃2

A, the
discrepancy between the two systems becomes larger as ζ is increased. In the case of
the compressible system, the basic state can be substantially altered by the presence of
the strong field gradient (large ζ ); i.e. magnetic stratification can provide a significant
contribution to the background entropy gradient. The basic-state entropy gradient (3.27)
can be thought of as a sum of atmospheric gradient βA and magnetic gradient βM

contributions, dsb/dz = βA + βM . For this particular nearly adiabatic basic state, the
atmospheric contribution is

∣∣βA
∣∣ = ε, and the magnetic part is, to leading order, βM =

ε2G/λ, where G = M̃2
AζB0/p̄. In the anelastic system, the corresponding part of the

entropy gradient due to magnetic stratification does not enter the governing equations
(ds0/dz = 0). This difference between the two systems does not result in a significant
disagreement between them provided that G = O(1); in this case, the background entropy
gradient is, to leading order (O(ε)), given by the atmospheric gradient βA, and the
magnetic component βM is O(ε2). However, we can expect breakdown of the agreement
between the two systems when the magnetic part of the entropy gradient – which does
not enter the picture in the anelastic system – becomes large enough to be influential in
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Figure 2. Growth rates (σ̃ = −Im(ω̃)) of magnetic buoyancy instability in compressible (ε = 10−3 and
ε = 5 × 10−3) and anelastic systems as a function of M̃2

A, for various field gradients (ζ = 5, 10, 20). In (a)
λ = 1; in (b) λ = 5. Stars denote the positions where Gmax = 0.7/ε.

the compressible system, i.e. when βM = O(ε). This requires G = O(ε−1). The maximum
value of G in the interval 0 � z � 1 is

Gmax = max
z∈[0,1]

G =

⎧⎪⎨
⎪⎩

ζ 2M̃2
A

λ exp(1 − λ/ζ )
, for ζ � λ,

ζ M̃2
A, for ζ < λ.

(5.4)

Thus we can expect breakdown of the agreement between the two systems when Gmax
becomes as large as 1/ε; i.e. the validity of the anelastic approximation can be broken
by a large enough field gradient ζ = O(ε−1/2), even if the field is weak M̃2

A = O(1). The
argument above is confirmed in figure 2, where we mark values of M̃2

A for which Gmax =
0.7/ε.

5.2. Linear temperature and magnetic stratification
Now we consider the case where the equilibrium temperature and magnetic field
distributions are given by

Tb = T̄ = 1 + θz, Bb = B0 = 1 + ζ z. (5.5a,b)

The basic-state density in the compressible system is (from (3.3))

ρb(z) = (1 + θz)m
{

1 − ζM2
A
(ζ + (m − 1)θ) [(1 + θz)m − 1] − mζθz

m(m − 1)θ2(1 + θz)m

}
, (5.6)

where m = (λ/θ − 1) is the polytropic index. The basic-state pressure is pb = ρbTb. In the
anelastic system, the non-magnetised reference state density and pressure take the form
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σ̃

(a) (b)

M̃2
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ζ =
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ζ
=
1
0

ζ =
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ζ
=
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ζ =
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ζ =
5

ε = 5 × 10–3

ε = 10–3

Anelastic

Figure 3. Growth rates (σ̃ = −Im(ω̃)) of magnetic buoyancy instability in compressible (ε = 10−3 and
ε = 5 × 10−3) and anelastic systems as a function of M̃2

A for the case of equilibria with linear temperature
and magnetic field stratification (ζ = 5, 10, 20). In (a) θ = 5; in (b) θ = 20. Stars denote the positions where
Hmax = 0.7/ε.

of polytropes,

ρ̄ = (1 + θz)m , p̄ = (1 + θz)m+1 . (5.7a,b)

The departure from adiabaticity for such an atmospheric stratification is given by

ε = |�∇r| , �∇r = θ(m + 1)

γ

(
1 − mγ

m + 1

)
. (5.8a,b)

For a given γ , the polytropic index corresponding to adiabatic stratification is mad =
1/(γ − 1). For the isothermal atmospheres discussed in §§ 4 and 5.1, the constraint of near
adiabaticity required γ to be close to unity; here, the value of γ is unrestricted, so we adopt
the standard value of γ = 5/3. In the compressible system, with temperature stratification
θ , ε is adjusted by selecting the appropriate polytropic index m, according to (5.8a,b). In
the anelastic case we take the value of m that gives exactly adiabatic stratification; with
γ = 5/3, mad = 1.5. The sub-adiabatic reference state entropy gradient is given by

ds̄
dz

= − 1
1 + θz

. (5.9)

Note that, in contrast to the isothermal atmospheres, where the basic state entropy gradient
does not enter the anelastic equations, here, it does come into play.

Figure 3 compares the growth rates of the magnetic buoyancy instability between the
compressible and anelastic systems, again with kx = 4, ky = 0.01. The agreement between
the two systems is better for larger stratification θ .

The anelastic system is formally valid when the magnetic contribution to the entropy
gradient ds0/dz is order unity. We have seen above how, through a combination of large
field strength and strong field gradient, the magnetic field can substantially affect the
background entropy gradient. Here, it is also true that for sufficiently large M̃2

A and ζ ,
the basic-state entropy gradient can become as large as ds0/dz = O(ε−1). In this case,
the formal asymptotic ordering is broken, and the influence of magnetic field is strong
enough to modify the assumed hydrostatic equilibrium. The maximum value of ds0/dz in
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the interval 0 � z � 1 is

Hmax = max
z∈[0,1]

ds0

dz
=

⎧⎪⎪⎨
⎪⎪⎩

(γ − 1)

γ

ζ(ζ − θ)M̃2
A

(γ (1 − θ/ζ ))mad+1 , for ζ � (mad + 1)θ,

(γ − 1)

γ
ζ M̃2

A, for ζ < (mad + 1)θ.

(5.10)

Thus we anticipate breakdown of the asymptotic ordering, and hence a breakdown of
the agreement between the results of the compressible and anelastic systems, when Hmax
becomes as large as 1/ε. For illustration, in figure 3, we mark the values of M̃2

A for which
Hmax = 0.7/ε.

6. A note on the energy principle of ideal MHD

One of the most elegant and widely used means of analysing the linear stability of ideal,
compressible MHD equilibria is via the energy principle of Bernstein et al. (1958).
The underlying idea is to express the change in potential energy δW resulting from a
Lagrangian displacement ξ as an integral, involving ξ and its spatial derivatives, together
with the basic-state distributions of pressure, density and magnetic field. It is then possible
readily to formulate necessary conditions for instability; furthermore – thus making the
energy principle particularly powerful – it is often possible, owing to the self-adjointness
of the force operator, to deduce sufficient conditions for instability. In the light of the
preceding discussions, it is therefore of interest to formulate the corresponding energy
principle for anelastic MHD, with particular emphasis on its description of magnetic
buoyancy instability. In this context, the energy principle for anelastic MHD has also
previously been addressed by Fan (2001), although from a slightly different perspective
to that taken here.

Within the constraints of the anelastic approximation, we first consider a general
magnetohydrostatic equilibrium. As in § 2.2, we denote the reference state variables by an
overbar, and, as in § 3.2, basic-state variables by a subscript ‘0’; also as in § 2.2, we express
perturbations to the basic state by δu∗, δb∗, δs∗, etc. The linearised forms of (2.22), (2.32),
(2.24) and (2.25) may then be written as

∇ · (ρ̄ δu∗) = 0, (6.1)

∂δu∗

∂t∗
= −∇

(
δp∗

ρ̄

)
− δs∗

cp
g + 1

μ0ρ̄
(∇ × B0) × δb∗ + 1

μ0ρ̄

(∇ × δb∗)× B0, (6.2)

∂δb∗

∂t∗
= ∇ × (

δu∗ × B0
)
, (6.3)

∂δs∗

∂t∗
+ δu∗ · ∇ (s̄ + s0) = 0. (6.4)

Under the linear approximation, the fluid velocity δu∗ is linked to the Lagrangian
displacement ξ through the simple relation

δu∗ = ∂ξ

∂t∗
. (6.5)
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Integrating (6.1), (6.3) and (6.4) with respect to time thus gives

∇ · (ρ̄ξ) = 0, (6.6)

δb∗ = ∇ × (ξ × B0) , (6.7)

δs∗ = −ξ · ∇ (s̄ + s0) . (6.8)

The momentum equation (6.2) can be expressed formally as

ρ̄
∂2ξ

∂t∗2 = F (ξ), (6.9)

where the force operator F is defined by

F (ξ) = −ρ̄∇
(

δp∗

ρ̄

)
− δs∗ρ̄

cp
g + 1

μ0
(∇ × B0) × δb∗ + 1

μ0

(∇ × δb∗)× B0. (6.10)

As with the expression for F for fully compressible MHD, it is straightforward although
tedious to establish that F is self-adjoint.

The change in potential energy δW over the fluid volume V is given by

δW = −1
2

∫
V

ξ · F (ξ) dV. (6.11)

On substituting for F from (6.10), making use of standard integral manipulations and the
boundary condition that ξ · n = 0 on the boundary of V , and substituting from (6.7) and
(6.8), we obtain

δW = 1
2

∫
V

{
1
μ0

|∇ × (ξ × B0)|2 − j0 · ((∇ × (ξ × B0)) × ξ) − ρ̄

cp
(ξ · g) ξ · ∇ (s̄ + s0)

}
dV,

(6.12)
where j0 = μ−1

0 ∇ × B0. Expression (6.12), which is an integral of a quadratic expression
for ξ and its first derivatives, with coefficients governed by the basic state, is the
general expression for δW under the anelastic approximation. For the magnetohydrostatic
atmospheres considered in this paper, with B0 = B0(z)ŷ and g = gẑ, (6.12) becomes

δW = 1
2

∫
V

{
B2

0
μ0

[(
∂ξx

∂y

)2

+
(

∂ξz

∂y

)2

+
(

∂ξx

∂x
+ ∂ξz

∂z

)2
]

+ B0

μ0

dB0

dz
(∇ · ξ) ξz − ρ̄g

cp

d
dz

(s̄ + s0) ξ2
z

}
dV. (6.13)

Seeking solutions of the form

ξ =
(
ξ̂x(z) sin kxx sin kyy, ξ̂y(z) cos kxx cos kyy, ξ̂z(z) cos kxx sin kyy

)
, (6.14)

gives, after substituting for ∇ · ξ from (6.6) and dropping hats,

δW = 1
8

∫
V

{
B2

0
μ0

[
k2

y

(
ξ2

x + ξ2
z

)
+ (

kxξx + ξ ′
z
)2]

+ B0

μ0

dB0

dz

(
kxξx − kyξy + ξ ′

z
)
ξz − ρ̄g

cp

d
dz

(s̄ + s0) ξ2
z

}
dz, (6.15)
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where ′ denotes differentiation with respect to z. It is instructive to compare (6.15) with the
corresponding expression for compressible MHD (see Hughes & Cattaneo 1987), which
we shall denote by δWcomp, where

δWcomp = 1
8

∫
V

{
B2

b
μ0

[
k2

y

(
ξ2

x + ξ2
z

)
+ (

kxξx + ξ ′
z
)2] + γ pb

(
kxξx − kyξy + ξ ′

z
)2

+ 2ρbg
(
kxξx − kyξy + ξ ′

z
)
ξz + gρ′

bξ
2
z

}
dz. (6.16)

As shown by Hughes & Cattaneo (1987), for the case of fully compressible MHD,
expressions (1.4) and (1.5) follow by minimising δWcomp over the components of ξ . For
anelastic MHD, the situation is slightly different, in that δW, given by (6.15), must be
minimised subject to the constraint provided by (6.6).

For interchange modes (ky = 0), the ξx term appears only in the combination (kxξx + ξ ′
z),

which represents ∇ · ξ . Using (6.6) one further time thus gives

δW = 1
8

∫
V

(
B2

0
μ0

(
ρ̄′

ρ̄

)2

− B0

μ0

dB0

dz
ρ̄′

ρ̄
− ρ̄g

cp

d
dz

(s̄ + s0)

)
ξ2

z dz. (6.17)

Pursuing the same line of argument as for the energy principle of compressible MHD,
it therefore follows that a necessary and sufficient condition for instability is that the
inequality

B2
0

μ0

d
dz

ln
(

B0

ρ̄

)
> −

(
gρ̄2

cpρ̄
′

)
d
dz

(s̄ + s0) (6.18)

holds somewhere in the fluid. Criterion (6.18) is in agreement with that obtained by taking
the anelastic limit of the general interchange instability criterion (1.4). It is of interest to
note that, whereas for the compressible system, the instability criterion for interchange
modes requires minimisation over (kxξx + ξ ′

z), no such minimisation is required, or even
possible, in the anelastic system; instead, (kxξx + ξ ′

z) is constrained through the mass
conservation equation (6.6).

For three-dimensional modes (kx /= 0, ky /= 0), we incorporate the constraint (6.6)
through substitution into (6.15) to obtain

δW = 1
8

∫
V

{
B2

0
μ0

[
k2

y

(
ξ2

x + ξ2
z

)
+ (

kxξx + ξ ′
z
)2]− B0

μ0

dB0

dz
ρ̄′

ρ̄
ξ2

z − ρ̄g
cp

ξ2
z

d
dz

(s̄ + s0)

}
dz.

(6.19)
As discussed by Hughes & Cattaneo (1987), the most unstable modes are those that are
solenoidal in the plane perpendicular to the imposed field and, in addition, have ky → 0.
A necessary and sufficient criterion for instability is then that

B2
0

μ0

d
dz

ln B0 > −
(

gρ̄2

cpρ̄
′

)
d
dz

(s̄ + s0) (6.20)

holds somewhere in the fluid. Criterion (6.20) is in agreement with that obtained by taking
the anelastic limit of the general criterion for three-dimensional instability (1.5).
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Magnetic buoyancy and the anelastic approximation

7. Conclusions and discussion

To aid theoretical and computational studies of compressible fluid dynamics it is often
helpful to apply some simplifying assumptions to the governing equations of compressible
MHD in order to derive a simpler, asymptotically consistent reduced system. Indeed,
magnetic buoyancy has been studied using the reduced ‘magneto-Boussinesq’ equations
derived by Spiegel & Weiss (1982) and Corfield (1984). More recently, Bowker et al.
(2014) developed a distinct set of magneto-Boussinesq equations that allowed for the study
of magnetic buoyancy in the presence of velocity shear. Fan (2001) studied the nonlinear
break-up of a magnetic layer under magnetic buoyancy instability in the further distinct
regime of anelastic MHD. The development of both of the aforementioned Boussinesq
reduced systems requires the imposition that the characteristic length scale parallel to the
direction of the imposed field is longer (in a strict asymptotic sense) than the characteristic
transverse scale. The equations of anelastic MHD on the other hand involve no such
constraint: no distinction is drawn between length scales parallel and perpendicular to
the imposed magnetic field. The equations of anelastic MHD were originally developed
to study thermal convection in the presence of an evolving magnetic field – with the
notable application being the geodynamo model of Braginsky & Roberts (1995). As such,
the question of how magnetic buoyancy fits into the anelastic picture was not a primary
concern. However, given the subtleties involved in incorporating the effects of magnetic
buoyancy into the Boussinesq approximation, it is by no means clear, a priori, whether
the phenomenon of magnetic buoyancy is faithfully represented by the equations of
anelastic MHD. Motivated by this apparent conundrum, in this article we have pursued two
closely related objectives. The first is to formalise the relationship between descriptions of
magnetic buoyancy in the compressible, anelastic, and Boussinesq systems. The second is
to assess the conditions under which the equations of anelastic MHD provide an accurate
description of magnetic buoyancy instability.

Our first aim is accomplished in § 2, where, by using an order of magnitude analysis, we
derive the scalings that must be obeyed to account for the effects of magnetic buoyancy.
Magnetic buoyancy arises when magnetic pressure plays a role in regulating local gas
density. Thus, a minimal requirement for this process to be captured in the reduced
equations is that magnetic pressure fluctuations are of the same order of magnitude as
density fluctuations. This requirement in turn imposes an important relation between
the parallel length scale of perturbations LB, the pressure scale height Hp and magnetic
field scale height HB, namely that LB ∼ √

HpHB (expression (2.44)). Magnetic buoyancy
is captured within the set of reduced equations only if this relation is satisfied. In
the standard anelastic approximation, both pressure and magnetic scale heights are
comparable to the depth of the fluid d: i.e. d ∼ Hp ∼ HB. Thus, the characteristic
parallel length scale of magnetic buoyancy perturbations is comparable to the transverse
length scale (layer depth): LB ∼ d. This explains why no special treatment of length
scales is required in order to include magnetic buoyancy under the standard anelastic
approximation; expression (2.44) is intrinsically satisfied within the standard anelastic
approximation. Based on the orderings derived in § 2 we have identified five distinct
asymptotically consistent regimes of compressible MHD. Four of these regimes satisfy
(2.44) and thus include the phenomenon of magnetic buoyancy (two in the anelastic
approximation and two in the Boussinesq approximation). The fifth regime is the
‘Boussinesq magnetoconvection’ regime, in which the effects of magnetic buoyancy are
excluded. We describe the scalings underpinning these distinct regimes in detail in § 2.4.
Furthermore, in Appendix A, we derive the governing equations in each regime by taking
appropriate limits of the standard anelastic system. Our formal asymptotic approach makes

942 A46-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

32
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.325
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the relationship between the various reduced systems fully transparent and pins down the
conditions of validity of each regime. In particular, the asymptotic conditions for the
validity of the anelastic MHD approximation require that both the equilibrium entropy
gradient and the magnitude of the magnetic field are small, i.e. |�∇| ∼ M2

A ∼ ε.
In regard to our second objective, we compare, for various magnetohydrostatic

equilibria, the growth rates of the magnetic buoyancy instability in compressible MHD
with those in anelastic MHD. The agreement between the two systems is in line with
the theoretical (asymptotic) conditions for the validity of the anelastic approximation:
provided the magnetic field gradient is not excessively large (d/HB = O(1)), compressible
solutions converge to the anelastic ones when the stratification is nearly adiabatic
(|�∇| � 1) and magnetic pressure is small in comparison with plasma pressure (M2

A � 1).
The agreement between the two systems breaks down when either of the conditions
is violated. It should be noted that the agreement also fails when the field gradient is
sufficiently large (d/HB � 1), even for weak field strengths. The requirement of near
adiabaticity is most restrictive for the cases of isothermal stratification, where it restricts
the validity of anelastic approximation to gases with γ ∼= 1. Although this is far from the
traditional value commonly adopted in studies of stellar interiors with hydrogen plasma,
where γ = 5/3, it is, however, potentially relevant for interstellar thermal gas, where the
effective γ is 1 or less (Parker 1953).

Given that the equations of anelastic MHD are most commonly used in astrophysical
modelling, it is important to discuss how the conditions for validity of anelastic MHD
measure up against physical reality. As a concrete example, we may consider the interior of
the Sun. Departure from adiabaticity is small throughout the bulk of the convection zone;
�∇ � 10−6 at the base of the convection zone, with stratification becoming substantially
superadiabatic only near the solar surface. Below the convection zone, in the solar radiative
interior, the stratification is significantly subadiabatic, with �∇ of order unity. Although
there is no consensus on precisely how the solar dynamo operates, it is widely believed
that the bulk of the solar magnetic field resides in the tachocline, a thin shear region at
the base of, or just beneath, the convection zone. While surface observations provide good
measurements of the field strength at the solar surface, we have very limited knowledge
of the field strength at depth. Theoretical estimates of the mean toroidal field strength
in the tachocline are in the range 103–105 G. When expressed in terms of the square
of the Alfvén Mach number, this certainly makes the field weak: 10−10 � M2

A � 10−6.
We do not expect M2

A to be larger than this throughout the majority of the convection
zone, with the exception of near-surface regions where the plasma pressure becomes small
and the magnetic field exists in the form of intense flux concentrations; there, magnetic
pressure becomes comparable to the plasma pressure and M2

A can be of order unity. The
smallness of �∇ and M2

A thus makes the anelastic approximation valid in the bulk of the
convection zone. There, however, the dynamics is dominated by turbulent convection,
with magnetic buoyancy not expected to play a significant role. Magnetic buoyancy is,
however, believed to be a key player in subadiabatic regimes, in particular being the
primary candidate for the release of strong toroidal field from the interior. In the stably
stratified lower tachocline, Petrovay (2003) puts forward that a useful approximation for
the departure from adiabaticity is �∇ = −0.015z, where z is the depth below the base of
the convection zone, measured in Mm. Since the width of the tachocline ht, is estimated
to be approximately 4 % of the solar radius (ht ≈ 30 Mm) (see Christensen-Dalsgaard &
Thompson 2007), this suggests that |�∇| remains less than unity throughout the tachocline
and hence that the constraints of the anelastic approximation are indeed satisfied. In the
deeper radiative interior, although magnetic pressure is expected to be a small fraction of
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the plasma pressure M2
A � 1, the stratification is strongly subadiabatic |�∇| � O(1). Thus,

the anelastic approximation cannot capture all of the dynamics of the solar radiative zone.
Nonetheless, although not painting the entire picture, we envisage that the equations of
anelastic MHD will still provide valuable insight into the dynamics of magnetic buoyancy
instabilities in atmospheres that are strongly stratified in density, and thus representative
of stellar interiors.

It remains to note that our considerations in this paper have excluded all effects
of diffusion. The neglect of diffusion terms would not appear to be of overriding
significance, in that the subtleties arising from the inclusion of magnetic fields in the
various approximations do not lie in the diffusion terms. The inclusion of diffusive
effects in the anelastic and magneto-Boussinesq approximations merely requires that the
diffusion coefficients (viscosity, thermal and magnetic diffusivity) enter at precisely the
order at which they play an active, but not dominant, role (Corfield 1984; Lantz & Fan
1999; Bowker et al. 2014). Based on the analysis in this paper, we expect the asymptotic
agreement between the properties of magnetic buoyancy instability in compressible and
anelastic MHD to carry over from the ideal to the diffusive case. Certainly, a comparison
of hydrodynamic thermal convection calculations (with diffusion) shows good agreement
between compressible and anelastic systems in both the linear and nonlinear regimes
(Calkins, Julien & Marti 2015; Verhoeven, Wiesehöfer & Stellmach 2015). However, it
should be noted that Berkoff et al. (2010) found significant differences between the growth
rates of magnetic buoyancy instability in the diffusive compressible and anelastic systems
even when the conditions for the validity of the anelastic approximation are satisfied. This
is an intriguing result that merits further careful investigation.
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Appendix A. Distinguished regimes of compressible MHD

In § 2.4, we describe five asymptotically consistent reduced regimes of the compressible
MHD equations: two distinct anelastic regimes (one with strong field gradient
(standard), one with weak field gradient); two magneto-Boussinesq regimes (one with
weak field gradient (standard), one with strong field gradient); and the Boussinesq
magnetoconvection regime. The governing equations for fully compressible MHD are
described in § 2.1 ((2.7)–(2.11)), and those for the standard anelastic regime in § 2.2
((2.22)–(2.27)). Here, we present the governing equations for the remaining four reduced
regimes. To elucidate the connections between the various reduced systems, we derive the
governing equations in each regime by taking appropriate limits of the (standard) anelastic
system (described by (2.22)–(2.27)); for completeness, we reproduce this below in § A.1.

A.1. Anelastic perturbation equations
It is helpful to express all variables as a sum of their basic state values and a perturbation:
B∗ = B0 + δb∗, s∗ = s0 + δs∗, u∗ = δu∗ etc. The basic-state quantities depend only on z
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and satisfy relations (3.14), (3.15a,b) and (3.16); the perturbation quantities are denoted by
prefix ‘δ’. The equations governing the (nonlinear) perturbations are (from (2.22)–(2.27))

∇ · (ρ̄δu∗) = 0, (A1)

ρ̄

(
∂δu∗

∂t∗
+ δu∗ · ∇δu∗

)
= −∇

(
δp∗ + δpM

)
+ λδρ∗êz

+M̃2
A
(
B0 · ∇δb∗ + δb∗ · ∇B0 + δb∗ · ∇δb∗) , (A2)

δpM = M̃2
A

(
B0 · δb∗ + 1

2

∣∣δb∗∣∣2) , (A3)

∂δb∗

∂t∗
+ δu∗ · ∇ (

B0 + δb∗) = (
B0 + δb∗) · ∇δu∗ − (

B0 + δb∗) (∇ · δu∗) , (A4)

∂δs∗

∂t∗
+ δu∗ · ∇δs∗ + δw∗ ds0

dz
+ δw∗ ds̄

dz
= 0, (A5)

δp∗

p̄
= δρ∗

ρ̄
+ δT∗

T̄
, (A6)

δs∗ = δT∗

T̄
− (γ − 1)

γ

δp∗

p̄
. (A7)

The system (A1)–(A7) constitutes the standard equations of anelastic MHD, with
M̃2

A = O(1) and d/HB = O(1).

A.2. Weak field-gradient anelastic equations
When the magnetic field is only weakly stratified, with εB ≡ d/HB � 1, the anelastic
equations can be reduced further. To retain magnetic effects requires M̃2

A = O(1/εB) (i.e. a
stronger field than assumed in the standard anelastic approximation) and the following
expansions:

B0 = B00 + εBB01, (A8)

δb∗ = ε
1/2
B b⊥+εBb‖, (A9)

δu∗ = u⊥+ε
1/2
B u‖, (A10)

∇ = ∇⊥+ε
1/2
B ∇‖, (A11)

δpM = δpM
0 + εBδpM

1 =
(

B00 · b‖+1
2 |b⊥|2

)
+ εB

(
B01 · b‖+1

2

∣∣b‖
∣∣2) , (A12)

ds0

dz
= βM

0 + εBβM
1 =

(
γ − 1

γ

B00

p̄
dB01

dz

)
+ εB

(
γ − 1

γ

B01

p̄
dB01

dz

)
. (A13)

Note that the δ-prefix has been dropped in (A9) and (A10) to ease notation. Substituting
expansions (A8)–(A13) into (A1)–(A7) gives, at leading order, the following set of
governing equations:

∇⊥ · (ρ̄u⊥) = 0, (A14)

ρ̄

(
∂

∂t∗
+ u⊥ · ∇⊥

)
u⊥ = −∇⊥

(
δp∗ + δpM

0

)
+ λδρ∗êz + (

b⊥ · ∇⊥+B00 · ∇‖
)

b⊥,

(A15)
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Magnetic buoyancy and the anelastic approximation

ρ̄

(
∂

∂t∗
+ u⊥ · ∇⊥

)
u‖ = −∇‖

(
δp∗ + δpM

0

)
+ (

b⊥ · ∇⊥+B00 · ∇‖
)

b‖+b⊥ · ∇⊥B01,

(A16)

∂b⊥
∂t∗

+ u⊥ · ∇⊥b⊥= (b⊥ · ∇⊥+B00 · ∇‖
)

u⊥−b⊥ (∇⊥ · u⊥) , (A17)

∂b‖
∂t∗

+ u⊥ · ∇⊥
(
B01 + b‖

) = (
b⊥ · ∇⊥+B00 · ∇‖

)
u‖−

(
B01 + b‖

)
(∇⊥ · u⊥) , (A18)

∇⊥ · b⊥ = 0, (A19)(
∂

∂t∗
+ u⊥ · ∇⊥

)
δs∗ + w

(
ds̄
dz

+ βM
0

)
= 0. (A20)

Equations (A14)–(A20) constitute a new reduced sytem of equations, governing the weak
field-gradient, strong field anelastic regime.

A.3. Boussinesq limits of anelastic equations
In this section we illustrate how to recover the Boussinesq magnetoconvection and
magneto-Boussinesq equations by taking appropriate limits of the anelastic system. The
Boussinesq equations are recovered in the limit of weak stratification, i.e. λ = d/Hp =
ε1 � 1. The Boussinesq regime is characterised by typical flow speeds of O((ε1ε2)

1/2cs);
such speeds are O(ε

1/2
1 ) slower than flow speeds in the anelastic regime. The typical

dynamical time scale is thus correspondingly long: (ε1ε2)
−1/2 times the acoustic time

scale. Thus to recover the Boussinesq equations from the anelastic system, velocity and
time need to be rescaled as

δu∗ = ε
1/2
1 u+, t∗ = ε

−1/2
1 t+, (A21a,b)

where we have used superscript ‘+’ to denote further scaling of variables with a power
of ε1. We expand the thermodynamic variables – including both the reference state and
perturbation – as follows:

ρ̄ = 1 + ε1ρ̄1, δρ∗ = δρ∗
0 + ε1δρ

∗
1 , (A22)

p̄ = 1 + ε1p̄1, δp∗ = δp∗
0 + ε1δp∗

1, (A23)

T̄ = 1 + ε1T̄1, δT∗ = δT∗
0 + ε1δT∗

1 , (A24)

ds̄
dz

= β̄0 + ε1β̄1, δs∗ = δs∗
0 + ε1δs∗

1; (A25)

the quantity β̄0 ∈ {−1, +1}, where β̄0 = −1(+1) for a subadiabatic (superadiabatic)
atmosphere. Depending on how we treat the magnetic field, we obtain either the equations
of Boussinesq magnetoconvection or the magneto-Boussinesq equations.

A.3.1. Weak field-gradient magneto-Boussinesq equations
In comparison with the standard anelastic ordering, here the magnetic field stratification
is weak (field gradient is O(ε1)) and the magnetic field strength accordingly stronger
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(M̃2
A = O(ε−1

1 )). We therefore decompose the basic-state field as

B0(z) = B00 + ε1B01(z), (A26)

where B00 is uniform. Magnetic fluctuations are O(ε1) smaller than the imposed field; thus
we write

b(x, t) = ε1b1. (A27)

The magnetic pressure fluctuation then becomes

δpM = δpM
0 + ε1δpM

1 = b1 · B00 + ε1

(
b1 · B01 + 1

2 |b1|2
)

, (A28)

and the basic-state entropy gradient takes the form

ds0

dz
= βM

0 + O(ε1) = (γ − 1)

γ
B00

dB01

dz
+ O(ε1). (A29)

We express the fluctuation of total pressure δΠ∗ = δp∗ + δpM as

δΠ∗ = δΠ∗
0 + ε1δΠ

∗
1 , (A30)

the ∇ operator as
∇ = ∇⊥+ε1∇‖ (A31)

and the fluid velocity as
u+ = u+

0 +ε1u+
1 . (A32)

From the O(1) and O(ε1) terms in the anelastic continuity equation (A1), we obtain,
respectively,

∇⊥ · u+
0 = 0, (A33)

∇‖ · u+
0 +∇⊥ · u+

1 = − w+
0

dρ̄1

dz
. (A34)

As discussed in § 2, in the magneto-Boussinesq regime the total pressure variations δΠ

are O(ε1ε2); to satisfy this requirement we need δΠ∗
0 = 0 (recall δΠ = ε2δΠ

∗). Indeed,
this is consistent with the O(1) balance in the momentum equation, which reduces to
∇⊥δΠ∗

0 = 0. It follows that the fluctuations in gas pressure and magnetic pressure cancel
to leading order, i.e.

0 = δp∗
0 + δpM

0 . (A35)

Hence (negative) magnetic pressure replaces the thermodynamic pressure in the
expressions for density and entropy perturbations (A6) and (A7),

δρ∗
0 = −δT∗

0 − δpM
0 , δs∗

0 = δT∗
0 + γ − 1

γ
δpM

0 . (A36a,b)

At O(ε1), the momentum equation (A2) becomes

∂u+
0

∂t+
+ u+

0 · ∇⊥u+
0 = −∇⊥δΠ∗

1 −
(
δT∗

0 − δpM
0

)
êz

+ B00 · ∇‖b1 + b1 · ∇⊥(B01 + b1). (A37)
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At O(ε1), the induction equation (A4), with use of (A34), gives(
∂

∂t+
+ u+

0 · ∇⊥
)

(B01 + b1) = (
B00 · ∇‖+b1 · ∇⊥

)
u+

0 +w+
0 B00

dρ̄1

dz
. (A38)

The solenoidal constraint ∇ · B = 0 reduces, at leading order, to

∇⊥·b1 = 0. (A39)

Finally, from the energy equation (A5), with use of (A36), we obtain the temperature
equation (

∂

∂t+
+ u+

0 · ∇⊥
)(

δT∗
0 + γ − 1

γ
δpM

0

)
+ w+

0

(
βM

0 + β̄0

)
= 0. (A40)

Equations (A33) and (A37)–(A40) constitute the governing equations for the description of
magnetic buoyancy driven by a weak field gradient within the Boussinesq approximation,
first derived by Spiegel & Weiss (1982).

A.3.2. Strong field-gradient magneto-Boussinesq equations
Here, the field gradient is strong (d/HB = O(1)) and the field strength is such that M̃2

A =
O(1). We decompose the variables and gradient operator as

b(x, t) = b‖+ε
1/2
1 b⊥, (A41)

δpM = δpM
0 + ε1δpM

1 = M̃2
A

(
B0 · b‖+1

2

∣∣b‖
∣∣2)+ 1

2ε1M̃2
A |b⊥|2 , (A42)

ds0

dz
= βM

0 + O(ε1) = (γ − 1)

γ
M̃2

AB0
dB0

dz
+ O(ε1), (A43)

u+ = u+
⊥+ε

−1/2
1 u+

‖ , (A44)

∇ = ∇⊥+ε
1/2
1 ∇‖. (A45)

Substituting expansions (A41)–(A45) into (A1)–(A7) and following similar arguments
to those outlined in the weak gradient case above, we obtain the following set of
magneto-Boussinesq equations:

∇⊥ · u+
⊥ + ∇‖ · u+

‖ = 0, (A46)

(
∂

∂t+
+ u+

⊥ · ∇⊥+u+
‖ · ∇‖

)
u+

⊥ = −∇⊥δΠ∗
1 −

(
δT∗

0 + δpM
0

)
êz

+ M̃2
A
(
b⊥ · ∇⊥+(B0 + b‖) · ∇‖

)
b⊥, (A47)

(
∂

∂t+
+ u+

⊥ · ∇⊥+u+
‖ · ∇‖

)
u+

‖ = M̃2
A
(
b⊥ · ∇⊥+(B0 + b‖) · ∇‖

)
b‖+M̃2

Ab⊥ · ∇⊥B0,

(A48)(
∂

∂t+
+ u+

⊥ · ∇⊥+u+
‖ · ∇‖

)
b⊥= (b⊥ · ∇⊥+(B0 + b‖) · ∇‖

)
u+

⊥, (A49)
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∂

∂t+
+ u+

⊥ · ∇⊥+u+
‖ · ∇‖

)
b‖+u+

⊥ · ∇⊥B0 = (
b⊥ · ∇⊥+(B0 + b‖) · ∇‖

)
u+

‖ , (A50)

∇⊥ · b⊥ + ∇‖ · b‖ = 0, (A51)(
∂

∂t+
+ u+

⊥ · ∇⊥+u+
‖ · ∇‖

)(
δT∗

0 + γ − 1
γ

δpM
0

)
+ w+

(
βM

0 + β̄0

)
= 0, (A52)

where δpM
0 = M̃2

A

(
B0b‖ + 1

2 b2
‖
)

, δΠ∗
1 = δp∗

1 + 1
2 M̃2

Ab2
⊥. Equations (A46)–(A52)

constitute the governing equations for the description of magnetic buoyancy driven by
a strong field gradient within the Boussinesq approximation, first derived by Bowker et al.
(2014).

Note that a key difference between the (standard) weak field-gradient and strong
field-gradient magneto-Boussinesq regimes is that, in the former, the velocity and
magnetic field are solenoidal only in the plane perpendicular to the imposed field
((A33), (A39)), whereas in the latter the velocity and magnetic field are fully solenoidal
((A46), (A51)).

A.3.3. Boussinesq magnetoconvection equations
Here, the magnetic field is weaker than in the anelastic regime by a factor of ε

1/2
1 (see

table 1) and consequently M̃2
A = O(ε1). The momentum equation (2.23) at O(1) gives

∇p∗
0 = 0; hence p∗

0 is constant and can be set to zero without loss of generality. This
is consistent with the ordering of pressure fluctuations as O(ε1ε2). As a result, pressure
fluctuations do not enter the thermodynamics relations (A6) and (A7), and density and
entropy fluctuations depend only on temperature variations:

δρ∗
0 = −δT∗

0 , δs∗
0 = δT∗

0 . (A53a,b)

At leading order, the anelastic equations (A1)–(A5) reduce to those describing Boussinesq
magnetoconvection (see, e.g. Chandrasekhar 1961; Weiss & Proctor 2014):

∇ · u+ = 0, (A54)(
∂u+

∂t+
+ u+ · ∇u+

)
= −∇δp∗

1 − δT∗
0 êz + (∇ × B∗)× B∗, (A55)

∂B∗

∂t+
+ (

u+ · ∇)B∗ = (
B∗ · ∇)u+, (A56)(

∂

∂t+
+ u+ · ∇

)
δT∗

0 + β̄0w+ = 0. (A57)
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