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Introduction. In the problem of finding the motion of a
classical particle one has the choice of dealing with a system of
second order ordinary differential equations (Lagrange's
equations) or a single first order partial differential equation
(the Hamilton-Jacobi equation, henceforth referred to as the
H-J equation). In practice the latter method is less frequently
used because of the difficulty in finding complete integrals.
When these are obtainable, however, the method leads rapidly
to the equations of the trajectories. Furthermore it is of
fundamental theoretical importance and it provides a basis
for quantum mechanical analogues.

The treatment of motion of a relativistic particle is also
usually based on Lagrange-type equations. When the H-J view-
point is adopted the time is customarily singled out as a special
parameter. Thus the coordinate-symmetry of the four-
dimensional formulation is lost. On the other hand the approach
is more easily assimilated into quantum theory.

It is the object of this paper to exhibit an H-J theory for
relativistic particles which retains the symmetry of formulation
and which yields certain known results by a comparatively easy
calculation.

The first section deals with the geometrical background
of the approach which is due to H. Rund. Since this is fully
described in his paper {1], we shall here content ourselves
with a brief outline of the principal results. Section 2 is
devoted to the application of the theory to Lagrangians of the
type encountered in relativistic electrodynamics. In the last
section we examine a specific example.
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1. We consider a dynamical system with n-1 degrees
i i
of freedom whose Lagrangian has the form L (g ,t,q ). Here
t represents the time; E}l (i=1,2,...,n-1) is the time derivative

i
of the generalized coordinate q . The trajectories are given
by the variational principle

5 L at =0, (1)
which is equivalent to
6 [Lds =0, (1)

n
where s is an arbitrary parameter and we have put q =t,
i i dq?

1

a =q/a", a and

o o ¥ 1 n i n n
L = Lq,q" ) =LI(qg,q,q9" /9" )q
(¢ =1,2,...,n) . (2)

o
Clearly L 1is homogeneous of degree one in the q' and we
may regard it formally as the metric function of a Finsler space

(although it may not satisfy the usual positivity and convexity
assumptions).

The canonical momenta p are then defined by
a

(3)

(%
Assuming that these equations are solvable for the q' as

a
functions of the g and p we then define the Hamiltonian by
o s

i

H(q", p,) Llq,q' a(q@, pﬁ)] . (4)

It follows from equations (3) and (4) that

o
1 d oH oL

5 sher (b) — = - — . (5)

pa S aqa aq
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Also we note that the Euler-Lagrange equations for the
variational principle (1)' read

91, a1,
- = 0. (6)

a a

9q! q

4
ds
To this point the parameter s has been arbitrary. If it is now
chosen so that
a a
ds = L{q ,dq ), (7)
then

I—'(q ,q' ) =1, (7)

and equations (5)(a) and (6) reduce to the canonical equations of

motion
d
oH _ dg° o _ o (8)
dp ds 5 ° T ds
a q

the latter because of (3) and (5)(b).

VConsider now a point PO(qZ) and the family of all
geodesics (extremals of (1)') passing through Po. The points
P(qa) which lie at a distance s from PO, as measured along
these geodesics, form a hypersurface S which may be
represented by

S(qa) = s = constant . (9)

Suppose that q' ? is the tangent vector to the geodesic through
a
P on this surface and that p corresponds to q' as in (3).
a

It can then be shown that

p = —. (10)
Hence, in view of the normalizing condition (7)' and (4), the
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hypersurface S satisfies the partial differential equation

H< , _a__s_> = 1. (11)
o
9q

This condition corresponds to the classical H-J equation for the
Hamilton one- point function.

2. We now deal with the case when

e q %) = (w0 + w)lds, (12)
1) (2)

where (a) w (q,dq)
(1)

o
a (q)dq ,

1

(b) w (q,dq)

. B 1/2
<baﬁ(q)dq dq ) . (13)
(2)

As above we assume that ¢ and B range from 1 to n and
that the determinant of the b 5 =b is not zero, so that the
o

Ba

tensor bCZB inverse to b exists and satisfies
a
Py - % - . (14)

From (3) we immediately deduce that

-1
p =L-[a +(b q'B)(w/ds) ]. (15)
o @ ap
(2)
In order to find the Hamiltonian we should now solve these

a
equations for q' and substitute in (12). The following method
is, however, more direct. First we note that the vector

B -1
(b ,q"" )N w/ds)
o aP (2)

p
is a unit vector with respect to the metric tensor b 8 i.e.
o
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B~ o af i\ M -2
b apﬁ = b (ba)\q )(bﬁpq )((:)/ds) =1, (16)
by (14) and (13)(b). But (15) shows that 'f)a = paL-1 -a, and
hence (16) yields
of -1 -1 _ \
b (paL - aa)(pﬁL - aﬁ) = 1. (16)

This equation is (at most) quadratic in L-1 and, when solved,
expresses L as a function of qa and P, Comparison with
(4) then shows that the solution is, in fact, the required
Hamiltonian. We will not need the explicit form of H or the

, &

q as functions of qa and pB, though the former is easily

found from (16)' while the latter is given by

1@ ap . -1
q b (pﬁ aﬁw ,

where

_ ap -1
¢ =1+0Db (paH -aa)aﬁ’

as a straight-forward calculation will verify.

It follows from (11) and the above remarks that the H-J
equation for any dynamical system whose Lagrangian has the
form (12) may be written

op (89S _\OS _ -
b (3q°‘ a“)(g,qﬁ aB> 1. (17)

The reader who wishes to compare these results with those
of the usual theory may check that if

n * * 9 * *.k *
q=t:LE(w+w)/dt,pk£"—l'<,H.=.
(1) (2) 8q

then
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- Lp = .18 =1,2,...,n-1) .
pk pn (k 1, yn-1)

Py

The last of these yields the classical H-J equation when L is

98
put equalto 1 and p 1is replaced by — .
a Bqa
3. The assumption that
2 2
=4 = , b = s 1
n ’ % T %% of moe ap (18)

permits us to interpret L as the Lagrangian of a particle of
charge e and rest mass m , moving in the presence of a
o

gravitational potential g 5 and an electromagnetic potential
a

¢ (cf. Lichnerowicz [2]). From (17), then, the H-J equation
a

ap [0S 9S 2 2
—— - —_— - . 1
g < eq;)(a e<p)—mc (19)

is

We remark that if ¢ =0 this equation reduces to one introduced
a
by Fock [3], primarily to deal with light rays.
The problem of motion for charged particles (or photons)
will be solved by obtaining a complete integral of (19) for pre-

a . . . .
assigned g P and ¢ . We examine this process in a special
a

case.
1/2
Assume that the line-element do = (g deadxﬁ) / has
a
the form
2 -1 2 2. .2 2 2 2 2 2
dor =-y dr -r d® -r sin 6 dp +c ydt . (20)

Equation (19) then becomes

os ¥ aqes V.1 fes Y
“Yor “%1) T 2\se " ®%2) T2 . 2 98y %3

r r sin ©
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+—~——1 _B__S e 2— 2<:2 21
2 at (P4 —mO . ( )
cy

When vy, ¢ depend only on r and 95 =<p4 =0 (static spherical
a

symmetry) Nordstrom [4] and Jeffery [5] showed that

2
2km'! ke! e!
ST tTTaz 4 T Gur (22)
cr 4mCc r

y =1

while ‘Pi(r) is arbitrary (it contributes nothing to the electro-

magnetic field). These results follow from the demand that
Einstein' s and Maxwell' s field equations be satisfied. The
constants k and c¢ have their usual meanings, while m' and
e' may be considered as constants of integration. It should
be noted that the Schwarzschild line-element is a special case
of (20) (when e' =0 in (22)). Thus the results based on this
line-element will be special cases of the Nordstrém-Jeffery

theory.

Having made the above assumptions, we may further
assume, without loss of generality, that ¢, =0 for, if necessary,
we may replace S in (21) by S=S5-e f<p1dr . Equation (21)
then reduces to

as\ 1 (asV 4 (asy
" Y\8r) T 2\B8) Tz 2 \ag

r

2
1 [0S 2 2
+T(a—t' - e<p4) =m ¢ . (23)
cy

The variables ¢ and t are cyclic and, putting S =S1(r) + 52(9)

+ S3(q)) + S4(t) , we readily obtain

2 2
1
dS3—k dS4_k (d52>+k3 2 -
dpe ~ 37 dt ~ T4’ \de .2 2
sin © -
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where kZ’ k_, k are constants. Substitution from (24) into

37 T4
(23) then yields

2

ds ) 2
1 2 -2 2 -1 -1
— = - - . 2
(dr (k, - ep,) (cv) [(m e} + (,r ) Iy (25)
Thus the required complete integral is
2 -2 2 2 2 -2 -114/2
S = f[(k4 -eg ) (ey) - (mieT + ko )y ] dr

2 2 -2 _.1/2
+ f[kz - k3 sin 0] <'ie + k3§0 + k4t + (constant),
(26)
and the trajectories are found by solving
98S
3 ° nP = (constant) (p=2,3,4) (27)
P

for r, @€ and ¢ .

The set of solutions admits a sub-family which lies in the

equatorial ''plane' & = w/2. To see this we solve the equations
2 i 2
9°s d 9°s 2
. X + = O (P:2,3;4; x':r’x :e,
idt 9k Ot
9k 9x P 3
p x =g)
de
for — . The solution is
dt
de 2 -2 -1 .2 2 -2 _.1/2
— = - - - i 8 .
™ c yr (k4 e (p4) [kz k3 sin ]

Thus, if © =7/2 initially and we put kZ =k then d6 /dt

3}
remains identically zero. In this case the function S is
independent of 6 and k2 is replaced by k3. Hence the

relation

348

https://doi.org/10.4153/CMB-1963-028-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1963-028-4

] -2 2 2 2 2 -2, -1.-1/2 2-4
—=f[(CY) (k4—efp4) —(moc +k2r )V /(yr) k3dr

W

+¢ = h {28)

gives r as a function of ¢ . The corresponding differential
equation is found by differentiating (28) with respectto r .

dr
When we solve the resulting equation for 4, ' Sduare, and set
P

r=u , we obtain

k2 du 2 1 K ee! 2 2(:2 N k2 2 1 2km'u  ke! 2 2
— ) == -—ul - - .
3\dg) T 2\ "4 T M 3" 2 T av

C 4mc

(29)

Allowing for interpretation of the constants k3, k4 and the units

of charge, this is identical to the equation derived by Jeffery [5].

The author would like to acknowledge his indebtedness to
Professor D.K. Sen for several helpful discussions in connection
with the above work.
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