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25.1 Introduction
Public health data available for research are booming with the expansion of Big Data
sources, shifting the landscape of DOHaD research. These new forms of data offer ample
opportunities to advance epidemiological modelling within the DOHaD framework. Big
Data is often described by the ‘3 Vs’: high volume, high velocity, and wide variety and
refers, for example, to the large volumes of Electronic Health Records (EHRs) now stored
as many nations move towards the routine electronic recording and centralising of
health data. The term Big Data also applies to data derived from wearable devices and
phone applications, increasingly affordable technologies that allow for the collection of
new kinds of data, in larger volumes, and almost in real time. Such technologies, along
with improved data processing speed and advanced computing capacity, grant access to
the lifestyle and health information of millions of individuals who can be followed
through the lifespan.

However, within heterogeneous and dynamic socio-demographic contexts and a fast-
moving technological landscape, these new forms of data raise a plethora of methodo-
logical challenges related to accurately characterising population health trajectories and
biological mechanisms. In addition, while the current inferential potential of DOHaD
research depends on which variables are collected, at what frequency, and at what time
points, it is also closely shaped by the theoretical model(s) chosen for a given study: a
framework implicating critical and sensitive windows in development shaped the early
DOHaD literature, but other models were added such as the accumulation of risk model,
the chain of risk model, and a hybrid of those [1]. These frameworks shape study designs,
data collection practices, and the interpretation of results and set the scene for how Big
Data is likely to be taken up in the field.

In this chapter, we provide an overview of DOHaD modelling methods and consider
the emerging place of Big Data in investigating multidimensional research questions in the
field. To do so, we discuss various methodological aspects of modelling, such as operatio-
nalisation, sampling, population representation, ethics, and the accuracy of tools used to
acquire and analyse data. We also discuss the current landscape of artificial intelligence-
derived methods, judging their utility against the validity of findings, and their potential
when compared to ‘traditional’ empirical data sources and analytical approaches.

25.2 Current DOHaD Modelling and Methodological Challenges
A myriad of methodological challenges are present in DOHaD research even prior to Big
Data, in particular, the issues of validity across time and space, characterising causal
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links, and identifying sources of bias. Physiological processes are difficult to model
because they are integrated into non-static systems. These refer to the less quantifiable
and less predictable behavioural, lifestyle, environmental, and socio-economic systems
interacting with biology. The moderating or mediating effects of culture, health inequal-
ities, medical systems, and health policy on health outcomes must be clarified to assess
the generalisability of any given model. Even in gold-standard birth cohort research
designs, epidemiological models need to account for the fact that, for example, through
societal restructuring and climate change, the properties of exposures can change over
time and across generations [2]. As a result, it is difficult to produce predictive DOHaD
models and interventions that remain valid and useful across time for a given popula-
tion. Alternative designs such as the observational study design in humans cannot,
however, capture the complexity of all important causal links.

A further challenge for aetiological and epidemiological models of DOHaD is how to
define the sources of individual differences in health outcomes with a robust degree of
certainty. Some examples include disentangling antenatal and postnatal exposure and
their interactions [3]; accounting for sex and gender-based differences in biology and
behaviour; inter-organ variation in adaptability to maternal ill health (e.g. the placenta
response to stress) [4, 5]; and evaluating disparities in outcomes across diverse groups
given that the bulk of data is from a small number of middle- to high-income and white-
dominated contexts [6, 7].

Prediction models are also prone to confounding and collider bias [8] (a variable in a
causal pathway that is a shared effect of more than one cause). For DOHaD research, the
primary exposures studied in the developmental pathway are nutrition, parental physio-
logical and psychological health, the environment and toxicants, and social and demo-
graphic determinants [7]. Intuitively it is easy to assume that many of these exposures
can co-occur and may moderate one another. While confounding can often be resolved
by taking these variables into account, residual confounding remains a risk when those
influencing factors are unknown or unmeasurable. In the case of collider bias, this can
also lead to counter-intuitive conclusions. Such counter-intuitive conclusions are exem-
plified by the ‘birthweight paradox’, where babies born with low birthweight (LBW) to
smoking mothers (exposure) appear to have a lower risk of neonatal mortality (outcome)
compared to those born with LBW to non-smoking mothers [9].

Here, tools such as directed acyclic graphs (DAGs) that portray causal relationships
graphically can help a researcher explore a model’s functional assumptions and conceptu-
alise any mechanisms of causality. DAGs help recognise mediators, moderators, confoun-
ders, and colliders [10] and have helped to illustrate the collider role of LBW in the above
paradox [9]; that is, when maternal smoking is absent, other unobserved causes (malnu-
trition and congenital defects) can lead to LBW and more severe health problems and thus
higher infant mortality. Therefore, while the above research question appeared ‘simple’
initially and involves few measurable exposures (smoking or not) and outcomes (LBW and
mortality), failing to incorporate inter-correlations between variables and confounding
effects, conceptualised by theory and DAGs, is unlikely to provide reliable causal inference.

Taking another example, understanding the association between maternal stress and
lower infant cognitive outcome [11] warrants pertinent exploration into the relative
contributions of other exposures concomitant to maternal stress, such as under- or
overnutrition, infections and toxicants, and their interrelationships. Here, modelling
methods should integrate observed variables, latent variables (not directly observed but
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derived from questionnaires or other observed variables, i.e. stress), and their measure-
ment errors, alongside time indicators. Moreover, the mediating mechanisms proposed
in the literature, such as epigenetic modulation, the microbiome, metabolism, and
(offspring) endogenous immunity, would also have to be incorporated. In practice, a
single model that simultaneously incorporates multiple predictive pathways and associ-
ations will more accurately capture the causal relationships of interest between the
exposure and outcome of interest [12, 13]. Of translational value, such epidemiological
modelling would eventually result in developing better targeted interventions.

25.2.1 Data: What Are We Collecting, What Are We Measuring?
High-quality data that are fit for purpose and meet the criteria of accuracy, validity,
completeness, and consistency are a cornerstone of empirical science. Data quality may
be affected at the stages of data collection, cleaning, or the numerical transformation that is
often used to meet required assumptions such as the normal distribution in statistics.
Measurement errors, whether systematic or random, are present in all observational
studies. While these errors impact the validity and reliability of data and introduce biases,
they are rarely acknowledged or accounted for in the epidemiological literature. Makin and
de Xivry address common statistical mistakes [14], and Wagenmakers et al. [15] present
guidelines on how to report statistical analyses transparently based on four scientific norms
of ‘communalism, universalism, disinterestedness and organised skepticism’.

Since we allude above to the notion of variable choice and availability, next, we
discuss the importance of clear terminology and data quality in DOHaD research
methods. How we define and measure exposures and outcomes impacts inferences,
findings, and subsequent interventions and policies. One example of this is the work
of researchers who rely on clinically defined groupings based on dichotomisation, such
as diabetes diagnosis, or the classification of body mass index (BMI) as obese/over-
weight/normal-weight/underweight. One obvious risk of using a strict classification of
body morphology by BMI alone is undermining the field’s knowledge about fat distri-
bution being a strong determinant for metabolism and cardiovascular health, especially
fat within the abdomen (visceral adiposity). Without other markers to corroborate
metabolic health risks (blood pressure, cholesterol, visceral fat mass, etc.), some individ-
uals with normal weight, categorised as ‘controls’, may be metabolically unhealthy and
‘at-risk’ of physiological phenotypes. In fact, this group represents 35 per cent of normal-
weight individuals [16]. This problem extends to gestational diabetes screening in
pregnancy, which is provided to women meeting the BMI > 30 kg/m2 criteria in the
UK, while those under 30 are assumed to be void of any hyperglycaemia risks during
pregnancy. The absence of evidence, however, is not evidence of absence. The conse-
quence of such hidden (latent) subgroups of individuals within a ‘control’ or ‘normal-
weight’ category is the introduction of bias into the statistical analyses that epidemi-
ological models rely on for inference, thus leading to inaccurate conclusions.

Similarly, in psychology, the diagnosis of autism as present/absent is common,
although autism spectrum disorder (ASD) is typically conceptualised by experts as a
continuum (see also Azevedo et al. in this volume). Such a binary diagnosis of ASD
ignores potential distinct mechanisms of importance for the DOHaD of autism subtypes,
which could possibly relate to the timing of any ‘disruption’ in brain development and
could be informative for mechanistic studies and prognosis [17].
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Overall, what we suggest above is that DOHaD researchers must be conscious of
relying on clinical data alone such as those retrieved from EHRs without clarifying
sources of biases, the caveats of present/absent dichotomised diagnoses [18], and the
local clinical guidelines from which they derive. We suggest, however, that some
classification approaches are available to limit some of these caveats such as collating
multiple variables and produce profiles based on similarities of exposure and/or out-
comes at one time point (e.g. latent class modelling) or many time points over time to
uncover trajectories (latent class growth analysis and piecewise modelling). This could
mean, for example, retrieving glucose measures sampled throughout pregnancy and
establishing the likely glycaemic status rather than relying only on a single GDM
diagnosis. These approaches also help identify profiles of individual responses to inter-
ventions and can therefore improve tailored treatment allocation.

Additionally, missing data, either by design (e.g. unmeasured exposures/outcomes)
or attrition, negatively impact data quality and challenge causal inference. This can be
addressed by powerful analytical tools that recognise data complexity and the impact of
missing data [19, 20]. Several methods are available to address missing data, including
maximum likelihood, multiple imputation, and Bayesian methods. Complete case analy-
sis leads to loss of data and statistical power but is widely used, while other complex but
more justifiable methods are not often attempted [21]. Assumptions about the properties
of missing data, whether these are missing completely at random or not, must be made.
With the emergence of Big Data and EHRs that tend to have a high prevalence of missing
information, appropriate techniques that deal with missing data need to be carefully
applied.

25.3 Big Data: Challenges and Opportunities
As referenced above, Big Data refers to data large in volume, collected at high velocity,
and comes in a variety of sources, formats, and dimensions, such as from birth cohort
and longitudinal studies, medical records, or wearable/phone devices. Birth cohort
studies, such as the Avon Longitudinal Study of Parents and Children study, have
supported the DOHaD hypothesis by in-depth prospective sampling and large multidi-
mensional data collection from human participants. While integral to the DOHaD
evidence base, standard cohort studies are costly and may be of limited size. EHRs, a
source of Big Data, can be obtained from centralised systems, while large omics data sets
(genomics, transcriptomics, metabolomics, etc.) are often sourced from biobanks and
can be added to increasingly available personal and external ‘exposome’ data (e.g. lifestyle
and environmental). Among the benefits of EHRs is their level of comprehensiveness,
and so with larger samples, this also improves the statistical power required to provide
accurate estimates of effect size. The availability of such data means that if taken up in
DOHaD research, the scope for such studies would no longer be limited by small sample
sizes due to funding and/or the restrictive protocols of conventional longitudinal birth
cohorts [22]. In practice already, linkage study designs join primary- and secondary-care
databases or merge multiple EHR databases and registries, potentially offering new
insight into disease pathways. For example, the UK-based CALIBER study drew on
EHR sources to investigate the cumulative incidence and period prevalence of diseases
over the lifecourse. Results were presented in the form of a chronological map of
308 physical and mental health conditions from four million individuals, from infants
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to the elderly [23]. The role of universal medical coverage and centralised digital health
records, such as the English National Health Service, in enabling such exploration in this
particular study cannot be underestimated.

More recently, data acquired from real-time biosensors measuring pollution expos-
ure, blood glucose levels, or heart rate from wearable devices have become available. Data
involving behaviour and social networks can also be retrieved from open social media
platforms at high speed. The past three years, especially during the COVID-19 pandemic,
have seen a surge of software developments intended to meet the needs of monitoring
health markers and well-being remotely. The uptake of telemedicine was enabled, for
example, by digital platforms used by clinicians to manage antenatal hyperglycaemia [24]
and the self-report of glucose levels by pregnant women on their phones [25]. These tools
could be employed in future DOHaD studies. However, key ethical issues related to
privacy, rights, and moral code of conduct when retrieving these data require careful
considerations in this changing research landscape.

25.3.1 Limitations of Current Big Data Sources and Applications
One first potential caveat of relying on Big Data sources it that DOHaD researchers
wanting to use Big Data may be obliged to formulate research questions based on data
availability or including data not necessarily designed primarily for DOHaD research.
These researchers will have less control over data quality because of the larger distance
from data collection, that is the inputting user (clinician for EHR / hospitals, or user of a
phone app), and from the decisions made in defining and measuring the variables in
these data sets. Overall, sources of error need to be considered when evidence from Big
Data is evaluated. Without researchers’ involvement in data collection, it may be
impossible to subsequently correct or even identify these errors.

The task of comparing and validating DOHaD models across populations may be
further hindered by the heterogeneity in data architectures across national and inter-
national sources. Before the term Big Data surfaced, omics-derived data alone (e.g.
genomics, transcriptomics, and proteomics) already inferred the outputs of millions of
data points [3]. Formulating a cascading model of these omics layers, which follow
biologically downstream from one another, is both necessary and extremely complex.
Further, linking biologically derived material to clinical data of different formats, and
based on a variety of measurements, including imaging, questionnaires, and diagnoses,
requires technologies that facilitate multidimensional integration. Thereafter, powerful
methods that support analysis are necessary.

Larger sample sizes improve the power to detect effects, and clearly the whole
DOHaD framework requires both large samples and a comprehensive set of exposures
and events to be modelled. However, the primary issue is that complex models are more
difficult to explain and thus could complicate their practical translation into actionable
policies. Users and clinicians equally need to be versed in their use and interpretation.

The use of Big Data also raises issues of data security and representation, particularly
data obtained outside conventional academic institutions, in contexts where systems and
resources are not fit for this purpose, such as in low- andmiddle-income countries (LMICs).
Users of both healthcare services and digital platforms, such as social media, may represent
distinct groups with possibly little overlap in demography, risks, and healthcare needs [22].
It is plausible to assume that LMICs are unlikely to have population-wide health records or
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access to digital data collection and remote health monitoring from which DOHaDmodel-
ling could be done. Here, validation and reproducibility of DOHaDmodels are less feasible
and highlight the lack of representation through their exclusion.

25.4 Artificial Intelligence: Challenges and Opportunities
When Big Data is considered, the word AI is not far behind. Pattern recognition,
similarity profiling, and predictions are tasks for which AI methods such as machine
learning (ML) have been developed, and these have potential applications to DOHaD
research. It should be noted that ML and conventional statistical methods may be seen as
a continuum since the algorithms behind ML, including linear and logistic regression,
and several dimensionality reduction techniques have existed for decades. (For a contrast
between ML and conventional statistics, see [26].) However, the real advantage of AI is
that it supports the analysis of large data volumes alongside multidimensionality (i.e.
where the number of variables is larger than the subjects).

AI is already being tested and implemented in the clinical domain, including to
improve the efficiency of hospital administration. AI is also being used to predict
medication side effects and patient outcomes from radiological imaging and thereby
promote patient-tailored medicine and interventions. In DOHaD, ML approaches would
subserve exploratory designs to identify biological pathways, which appear more fre-
quently in the mosaic of data, in the form of associations, including from DNA
sequences and omics data, and those obtained from EHRs [26]. Certain applications
require user input from which the ML ‘learns’ to classify new data from sets of rules from
previous data (supervised learning) or is completely unsupervised in detecting patterns.
This is similar to the latent modelling techniques mentioned earlier that derive from the
‘classical’ statistics and the structural equation modelling framework. Other subfields of
AI associated with ML include deep learning, rooted in multi-layered neural networks,
which also allow computers to identify relations between concepts/features and charac-
terise these associations from complex to simpler concepts [27]. ML methods to date
could also assist in the processing of single modalities or data collection methods, such as
magnetic resonance imaging of the brain, heart rate variability in the fetus, and DNA
methylation patterns in disease [28], all of which are relevant for DOHaD research.

Despite the potential of ML for DOHaD described, very few ML studies have so far
transitioned from single data type and scale to ‘fusing’ several dimensions, or and
towards the integration of additional outcome measures retrieved from EHRs, medical
imaging, and biospecimens. Data harmonising and deployment of ML is an ongoing
endeavour, but some attempts have been made in relation to cardiovascular medicine
(reviewed by [29]). The issue to date is that these algorithms exploit two modalities at
most (e.g. radiological imaging and free text from clinical reports). (For an in-depth
review of the current landscape of AI for multi-modal integration, see [30]).

In our previous section, we discussed the necessity to characterise accurately DOHaD
prediction models. It is at present the case that the several competing ML approaches and
the rapidly evolving demands of AI have yet to produce a consensus regarding how to
develop or validate a prediction model relying on these novel tools. For example, in
predicting Type 2 diabetes and cardiovascular disease, Dalakleidi et al. reported the best
performance to have been achieved by groups of artificial neural networks. However, the
so-called decision trees, random forest algorithm, and support vector machines were said
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to provide the best accuracy measures by Zheng et al. [31]. Furthermore, AI methods do
not necessarily outperform conventional statistical regression applications and are not
free of methodological biases [32]. Additionally, scholars warn that ML studies are often
computationally demanding on resources (e.g. support vector machines, logistic regres-
sion, random forests, gradient-boosted machines, and neural networks) [33].

25.4.1 Issues of Interpretation and Reporting
Concerns are often raised about the scope, complexity, transparency, reproducibility across
different scientific teams and different populations, and the interpretability of prediction
models. While AI operates from a ‘black box’ within deep neural networks and unsuper-
vised learning, the biological plausibility and meanings of the output are generated by
researchers. Given that so far only a few published prediction models have found utility in
clinical practice, the utility of AI when compared to conventional methods remains an
open question. It is unclear whether AI can address the questions of causality most
pertinent in DOHaD, when DOHaD draws from interpretability and theory and is moving
towards the integration of social science and ethnography. (See Richardson, in this volume
for a discussion of how DOHaD is characterised by ‘cryptic causality’.)

Guidelines regarding AI are developing rapidly. For example, following a quality
assessment of the conduct and reporting of multi-variable prediction models, a 22-item
checklist (TRIPOD) was developed [34]. The risk of bias tool (PROBAST-AI) for
diagnostic and prognostic prediction model studies based on AI has also emerged to
ensure that users have key information about the design, conduct, and analysis, alongside
a robust standardised tool for bias evaluation that would allow a fair judgement on the
utility of these models [31, 35, 36]. Guidelines should be consulted by authors, reviewers,
and editors, to ensure reproducibility, reliability, and validity, and hence safe implemen-
tation. Again, even prior to applying AI-derived analytics, the uncertainty of measure-
ments in Big Data and its sources of error must be accounted for and possibly identified
systematically, and the data quality validated.

25.6 Ethical Questions about Big Data and AI
The rapid expansion of Big Data and AI raises a range of ethical concerns. First, the
question of who audits and protects data including EHRs (which can also be used as
testing data by commercial parties) is central to ensuring ethical research in the DOHaD
field and is currently insufficiently addressed [22, 37]. The lack of standardisation of data
protection laws between countries adds to this issue.

Additionally, the most powerful AI pipelines are deployed from within the very few
corporations with the computational and financial resources. The commercialisation of
both healthcare software or AI tools and their findings within the private sector is another
challenge that research institutions must navigate if the potential of such data is to be
realised. Such a feat would require more transparency and possibly a move to open sources
of data. (For an example of Google’s DeepMind approach to open data, see [38].)

Nevertheless, open and public data collection is also likely to introduce other ethical
issues that need to be carefully considered [39]. Big Data collection and usage may move
the position of the individual (the unique data provider) from the one fulfilling the ‘social
vision’ of the healthcare system and science into the ‘economic vision’ of the commercial
enterprise [22]. Participants recruited through academic institutions consciously engage
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with the scientific community with consent and pledge their time voluntarily. This
contrasts with the passive and often unwitting involvement in Big Data collection via the
data generated by medical records and phone devices. The use of such data without
consent raises concerns regarding data ownership, privacy, and the circulation of profits.
Data protection in secondary research by academic institutions using public data is
enforced by the institutions themselves through university and institutional ethics boards,
but enforcing consent and data protection may be less clear when third-party commercial
and private bodies are concerned.

Rarely mentioned in the discussion of AI-derived methods are the risks introduced or
heightened to certain populations because of their implementation. Experts such as
Professor Kate Crawford at the AI Now Institute are re-evaluating the societal burden
of AI. She states AI is not ‘artificial’ since it requires the same earthly resources and
labour to mine the power and hardware sustaining it. Consequently, this is also becom-
ing a source of disparity and power imbalance on the ground, within and between
populations who compete to mine these resources [40]. Such ramifications would be
the real irony for an AI integration into DOHaD research and the long-term agenda of
the scientific community.

25.7 Conclusion
There is a strong anticipation that in the future, DOHaD researchers will benefit from
innovative methodological designs. This could build on the best of current biostatistical
methods and soon include AI technologies where the multidimensionality of data
sources and a longitudinal format can be integrated, and the outputs shown to be
interpretable. Current and novel ‘mega’ projects may push this progress forward.
An example is the protocol implemented in the EarlyCause project [41] that will explore
the causal mechanisms between early-life adversity (antenatal and postnatal) and future
psycho-cardio-metabolic multi-morbidity. It will involve the participation of 14 European
institutions and include three complementary and sequential phases that integrate longi-
tudinal population data sets (e.g. ALSPAC and UK BIOBANK), animal studies, and
cellular models with analytical tools from structural equation modelling and machine
learning. It also aims to offer a web-based platform for data access and information on
research standards and best practices to support future study designs and exploration. Such
a mix of granular data collection and Big Data sources in open access, along with AI and
conventional statistical approaches, holds great potential for DOHaD research.

The DOHaD research community may look to other fields and consider how to train
their own data and solution architects in the newest technologies and Big Data usage.
Interdisciplinary teamwork will be crucial in ensuring both robust management and use of
data as well as anticipating ethical and governance issues [42]. It is crucial to assess whether
certain limitations are inevitable or can be remedied to create the necessary, transparent,
and reliable evidence base. Collaborations in data collection could be expanded more
frequently to ‘crowdsourcing’ in data analysis and interpretation. Of course, teamwork
does not come without caveats when studying complex and dynamic modelling, such as
leading to further heterogeneity in findings and conclusions [43]. Nevertheless, we reiterate
that attention to operationalisation of exposures and outcomes, reducing bias in data
collection and analysis, and the necessity for interpretability should be at the forefront of
the DOHaD agenda in the era of Big Data and AI.
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