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Transmission Electron Microscopy (TEM) has expanded the type of information obtained on 

nanocrystalline microstructures such as phase and orientation. Orientation microscopy refers to a 

technique which consists of solving spatially measurements of crystal orientations in a sample and 

reconstructing the microstructure from this information. Modern TEM experiments have also produced 

very large collections of datasets, which are often impossible to process manually. As a result, extensive 

research [1, 2] has proposed semi-automation approaches to analyze these datasets, these deterministic 

methods rely on classical computer vision techniques (e.g., Hough transform, Fourier filtering, 

segmentation and cross-correlation for similarity measure), which typically require manual 

hyperparameter tunning and a computation cost for each experiment. Deep neural networks (DNNs) 

have shown superior performance compared to classical computer vision techniques in most benchmark 

tasks [10], this led to the emergence of fully automated approaches [4, 5] and tools [6, 7] for various 

TEM tasks. In the context of orientation microscopy, ML-based approaches are still falling behind 

traditional techniques such as template matching [1] or Kikuchi technique [8] when it comes to 

generalization performance to unseen orientations and phases during training, this is due mainly to the 

limited amount of experimental data about the studied phenomena for training the models, it is a realistic 

and practical constraint specially for narrow domain applications where real data is not widely available. 

Some successful attempts have been made to use unsupervised learning techniques to gain more insight 

about the data [3, 9] but clustering information does not solve the orientation microscopy problem. 

 

There is a clear need for automated and practical image analysis tools using the-state-of-the-art machine 

learning techniques for phase and orientation determination to complement the existing relatively slow, 

complex and hyperparameter-dependent approaches. To this end, we propose the design of a hybrid and 

generic multi-task ML pipeline with a double purpose of -i- boosting the existing slow TEM-based 

orientation microscopy techniques for better generalization accuracy but with higher computation cost 

and -ii- replacing them with a fully ML pipeline for fast real-time prediction during data acquisition but 

with lower generalization accuracy when training data is limited. The first stage of the proposed pipeline 

is a classification task to determine the phase from real diffraction diagrams given as input, to solve this 

first task we employ an extensive Neural Architecture Search (NAS) using AutoKeras [11] to find the 

best neural architecture for phase classification. In order to gain better generalization performance, we 

also used data augmentation for the NAS procedure as a form of random rotations of the diffraction 

diagrams. We solved the orientation microscopy task in the second stage, using a similar preprocessing 

proposed by [2] for the templates to extract intensity descriptors from their polar representation. We also 

used a blurring filter and a thresholding rule for the number of spots on the simulated templates in order 

to obtain similar descriptors to those extracted from real diffraction diagrams. Similar descriptors are 

often used for template matching techniques, their compact size allows us to efficiently simulate the 
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orientation space for a given phase. Once the sequence of all template descriptors is simulated, we 

employed NAS to solve the problem of regressing Euler’s angles from the sequence of descriptors 

knowing the phase class. At the end of this stage, we obtain one regressor model per class phase trained 

on all possible phase orientations, the last step consists of finetuning every regressor on intensity 

descriptors extracted from real diffraction diagrams. Figure 1 illustrates the first stage of classification 

for phase detection and the second stage of regression for orientation detection and fine tuning.  

 

 

 
 

Figure 1. Offline procedure for training the ML pipeline for phase and orientation determination in 

TEM images. 

 

In Figure 2, we show the prediction scheme ones the pipeline is trained. Note that every branch can use 

either the trained regressor model or a classical technique for angle prediction, we illustrate the figure 

with our python implementation of template matching using the intensity descriptors, but we can easily 

incorporate different techniques for every phase.   
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Figure 2. Online procedure of the proposed ML-pipeline for the prediction of phase and orientation in 

TEM images. 

 

 

Experiments. We conduct our experiments using three different experimental sets of data on the same 

steel sample, each collected map consists of 500 × 500 diffraction images of size 144 × 144 pixels each. 

They all contain three main phases namely ferrite (Fe BCC), Niobiume Crabine (NbC) and cementite 

(Fe3C). The data were collected on a JEOL 2100F TEM instrument, using a Stingray camera recording 

the phosphorus screen. We employed two maps for training and selected one map which contains new 

orientations for testing. For the classification task, we noticed that the performance of the found NAS 

architecture on the validation set is not an indicator of how well the model will be able to generalize to 

new orientations, we were able to achieve 99.9% accuracy without data augmentation on 30% ratio size 

for the validation set and still poorly predict the test map. Data augmentation greatly helped improving 

the results in test map with a slight decrease to 95% in the validation set during training. The quality of 

the similarity between simulated and real descriptors heavily depends on the preprocessing steps, which 

has a direct implication on the final regression performance. Fine tuning allows to reduce this bias when 

training with real descriptors, and we are currently investigating better ways of solving the orientation 

problem with ML techniques. 
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