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Abstract

Background. Despite extensive research into the neural basis of autism spectrum disorder
(ASD), the presence of substantial biological and clinical heterogeneity among diagnosed indi-
viduals remains a major barrier. Commonly used case‒control designs assume homogeneity
among subjects, which limits their ability to identify biological heterogeneity, while normative
modeling pinpoints deviations from typical functional network development at individual
level.
Methods. Using a world-wide multi-site database known as Autism Brain Imaging Data
Exchange, we analyzed individuals with ASD and typically developed (TD) controls (total
n = 1218) aged 5–40 years, generating individualized whole-brain network functional connect-
ivity (FC) maps of age-related atypicality in ASD. We then used local polynomial regression to
estimate a networkwise normative model of development and explored correlations between
ASD symptoms and brain networks.
Results. We identified a subset exhibiting highly atypical individual-level FC, exceeding 2
standard deviation from the normative value. We also identified clinically relevant networks
(mainly default mode network) at cohort level, since the outlier rates decreased with age in TD
participants, but increased in those with autism. Moreover, deviations were linked to severity
of repetitive behaviors and social communication symptoms.
Conclusions. Individuals with ASD exhibit distinct, highly individualized trajectories of brain
functional network development. In addition, distinct developmental trajectories were
observed among ASD and TD individuals, suggesting that it may be challenging to identify
true differences in network characteristics by comparing young children with ASD to their
TD peers. This study enhances understanding of the biological heterogeneity of the disorder
and can inform precision medicine.

Introduction

Autism spectrum disorder (ASD) is a lifelong neurodevelopmental disorder that affects indivi-
duals in various ways. According to the Centers for Disease Control and Prevention (CDC),
one in 36 children in the United States is estimated to be affected by ASD (Maenner et al.,
2023). There are multiple ASD subtypes, for example, the DSM-4 defines five subtypes of autism,
including Rett syndrome, Asperger’s syndrome, atypical autism, childhood disintegrative dis-
order, and classic autism (American Psychiatric Association, 2000). The phenotypic (symptoms
and etiology) and mesoscopic (functional brain networks) aspects of ASD are widely heteroge-
neous (Lombardo, Lai, & Baron-Cohen, 2019; Yang et al., 2023; Zabihi et al., 2019). Specifically,
ASD phenotypes are heterogeneous because they cover a range of social, communication, and
behavioral disorders. They also vary with age, for example, patients with IQ below 70 usually
have more severe symptoms (Shao, Fu, & Chen, 2023). Moreover, functional brain networks
in ASD are heterogeneous because they reflect the brain’s activity patterns and connection
strengths across tasks and resting states (Shao et al., 2023). Consequently, it is difficult to under-
stand its pathological mechanisms, distinguish among subtypes, and apply research findings in
clinical setting. Research in the past few decades has used various approaches to understand the
heterogeneity of ASD, including examination of genetic, neurobiological, and behavioral factors
(Caldecott, 2000; Guo et al., 2022; Mannion & Leader, 2016). However, the complex and multi-
factorial nature of the disorder remains a challenge for researchers and clinicians alike.

Advances in neuroimaging techniques have shed light on the neural mechanism of ASD,
revealing structural and functional differences in the brains of individuals with ASD compared
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to typically developed (TD) individuals (Bai et al., 2019).
ElNakieb et al., used resting-state fMRI data from the Autism
Brain Imaging Data Exchange database (ABIDE) and investigated
the role of connectivity dynamics of resting-state networks in the
diagnosis of ASD (ElNakieb et al., 2023). They found that com-
pared with TD individuals, those with ASD spent more time in
states with weaker FC, especially within the default mode network
(DMN) and between the DMN and other networks. What’s more,
researchers showed that the abnormalities of resting state FC in
ASD may depend on various factors, such as age, gender, IQ,
task condition, data modality, analysis technique and network
definition (Hull et al., 2017). However, the heterogeneity of the
disorder hampers identification of reliable biomarkers or
neuroimaging-based diagnostic tools (Ecker et al., 2013). In add-
ition, there is a need for more comprehensive and standardized
assessments of ASD to improve diagnostic accuracy and aid in
the identification of subtypes (Bai et al., 2019).

Traditional research methods often rely on comparisons
between patient and control groups, with age included as a covari-
ate to control for its effects. However, this approach has limita-
tions in achieving individual-level predictions and explaining
the variability in disease progression. Recent advances in neuroi-
maging techniques have enabled the identification of unique
neural signatures associated with psychiatric disorders at the indi-
vidual level (Lv et al., 2021). For instance, machine learning algo-
rithms can be applied to predict clinical outcomes based on
imaging features, providing personalized predictions for patients
(Drysdale et al., 2017). Furthermore, traditional group compari-
son approaches may not be sensitive enough to detect subtle
changes in brain structure or function that are characteristic of
psychiatric disorders. For example, studies have shown that
ASD individuals’ cortical thickness (CT), surface area, and
white matter volume change significantly with age (Sowell et al.,
2004). Thus, age-related changes should be taken into consider-
ation when comparing brain measures between groups to avoid
misinterpretation of the results.

Normative models(NM) have emerged as a powerful tool to
address the limitations of traditional group comparison studies
in neuroimaging research. By defining a range of values for a par-
ticular brain feature in a healthy cohort, NM can identify indivi-
duals who deviate from the expected patterns of brain
development or aging. This approach can help to address issues
related to heterogeneity, confounding factors, and individual vari-
ability in neuroimaging data (Fjell et al., 2015). Moreover, the
method has been applied in various fields of neuroscience, includ-
ing studies of ASD (Bethlehem et al., 2020; Ecker, 2019). The ben-
efits are as follows. First, it can overcome the limitations of
traditional case–control analysis methods and provide individual-
level results (Zabihi et al., 2020). Second, NM offers a flexible
framework considering factors like age and gender, addressing
the complex heterogeneity in resting-state FC in ASD. Third,
NM allows assessment of associations between FC heterogeneity
and ASD subtypes or dimensions, tied to clinical presentation,
genetic risk, or treatment response, in relation to other biological
or behavioral variables (Rutherford et al., 2023). Additionally,
there have been some advances in the use of normative modeling
in ASD research. It has been applied to brain measures such as
CT, white matter integrity, and FC (Sala-Llonch, Bartrés-Faz, &
Junqué, 2015).

Age is a crucial covariate that needs to be considered when
studying brain characteristics. Numerous studies have demon-
strated age-related changes in brain structure and function,

particularly during childhood and adolescence (Giedd et al.,
1999; Shaw et al., 2006). This helps ensure that observed differ-
ences are not due to age-related changes rather than the diagnos-
tic condition. For example, white matter volume has been shown
to increase with age in a linear manner until early adulthood, after
which it plateaus and then declines (Lebel et al., 2012).

Large-scale fMRI data are crucial for understanding the com-
plex relationship between brain activity and behavior, thereby
guiding the clinical treatment of neurological and psychiatric dis-
orders. Given the complexity of both brain activity and behavior,
identifying a direct mapping between specific brain regions and
behavioral measurements is unlikely (Gratton, Nelson, &
Gordon, 2022), and collaboration at the consortium level is
needed. Despite potentially revealing only small effect sizes, col-
laborative studies using cross-sectional methods can still provide
stronger effect sizes than mature genome-wide association study
methods (Sniekers et al., 2017).

FC alterations have been observed in several neurological dis-
orders (Baggio et al., 2015; Hazlett et al., 2017), suggesting the
potential use of FC as a biomarker for disease detection and
monitoring. In addition, FC has not been used as a neural
marker in NM research targeting ASD. Moreover, studies have
shown that disruptions in the DMN play an important role in
the pathogenesis of ASD (Dickie et al., 2018; von dem Hagen,
Stoyanova, Baron-Cohen, & Calder, 2013). However, the rela-
tionship between brain networks and the changes in FC over
the lifespan remains unclear. Recent large-scale analyses com-
bining data have revealed significant heterogeneity in CT
among children with ASD (van Rooij et al., 2018). Thus, we
can make the following inferences about FC in ASD: first, age
is a particularly important variable in the development of aut-
ism; second, we should not focus on mean differences between
all cases and all healthy controls but rather stratify subjects
according to age, focusing on changes in FC and degree of vari-
ability over time, to identify extreme cases that lie on this nor-
mative variability spectrum.

However, because of the large individual differences in ASD,
different patients exhibit different symptoms and etiologies.
Therefore, it is difficult to identify a major trend or type of change
in ASD patients. Thus, we decided to use the whole-brain FC net-
work as an indicator and focus on changes in connectivity within
and between different brain networks with age. It is crucial to
consider the heterogeneity in brain connectivity and morphology
in individuals with ASD, particularly in relation to age, and to
investigate how these differences may impact development and
long-term outcomes. We aimed (1) to determine a predicted nor-
mative value of within- and between-network FC that changes
with age, defining values more than two standard deviations
from the predicted value as extreme; (2) to provide an individual-
level assessment of ASD with reference to the population level,
describing the degree of change in connectivity with age; and
(3) to elucidate the relationship between brain data and symp-
toms, specifically by determining the correlation between behav-
ioral data and the strength of connectivity within and between
networks, focusing on the differences between the brain regions
identified through this behaviorally relevant analysis and those
identified through traditional case/control methods. We con-
structed functional networks in each subject’s brain and used
these as raw materials for comparison (see Methods for the
details). All code and data used can be found on GitHub
(Bethlehem, Seidlitz, Romero-Garcia, Dumas, & Lombardo,
2018).
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Methods and materials

Participants

The ABIDE dataset is a large-scale open-access neuroimaging
dataset for ASD, which currently includes resting-state fMRI
data from 1495 individuals collected at 17 data acquisition cen-
ters. All the data analyzed in this study were sourced from the
ABIDE dataset (see more details in online Supplementary file
1). We aimed to identify subtle changes in brain FC in ASD popu-
lations using a large dataset to achieve greater statistical power.
After exclusion, the sample size was 642 for the TD group and
576 for the ASD group. The characteristics of the sample are
shown in Table 1. And Fig. 1a and 1b provide an illustrative over-
view of the complete sample.

Constructing age-related normative models

Before this section, we preprocessed functional MRI data, con-
structed FC matrices, and conducted multisite effect correc-
tion, please check online Supplementary file 2 for detailed
instructions.

An overview of the normative modeling approach is provided
in Fig. 2; this approach has been described previously (Marquand,
Rezek, Buitelaar, & Beckmann, 2016). We used a method called
the local polynomial regression fitting process (LOESS) to deter-
mine the local width or smoothing kernel of the regression model
based on the minimum squared error model provided across
the entire age range (see methodological details in online
Supplementary file 3). With LOESS, the local width or smoothing
kernel of the regression was determined by the model that pro-
vided the overall smallest sum of squared errors using hyperpara-
meter optimization across 5–100% of the full age range using
Brent’s method as implemented in the R optim function from
the stats package. We also evaluated the consistency of our out-
puts using percentile scoring, extensive bootstrapping, and sensi-
tivity analyses and assessed the consistency of the NM. These
methods all indicated that our results were highly consistent.

NM not only yields the predicted FC for each subject but also
produces the normative mean and standard deviation from the
TD group. These statistical norms were then used to compute the
Z’-scores of each functional connection and the W-scores of each
brain network for each patient with ASD (Bethlehem et al., 2020),
reflecting the degree of deviation of their FC from the TD norm
in units of standard deviation. Age groups with fewer than 2 TD
individuals were not subjected to statistical analysis. The formulas
for calculating Z’-scores and W-scores are shown below:

Z′FC = FC− mnorm
snorm

where Z’FC represents the standardized FC value, FC represents the
individual’s original value, μnorm represents the mean value calcu-
lated using the Loess method, and σnorm represents the standard
deviation from NM, which makes this measure (i.e. Z’) slightly dif-
ferent from the general Z score.

The Z’-score of each individual reflects the difference of their
FC relative to the TD norm in terms of standard deviations. Each
individual has 160 × 160 Z’-scores, and since Z’-scores are calcu-
lated for each functional connection, we can obtain a Z’-score
map for each patient with ASD showing the typical deviation of
each brain region relative to the TD norm.

Brain network construction

For further comparison of the TD and ASD groups, we divided
the cohort into three age groups: 5–11 years, 12–17 years, and
18–30 years, representing children, adolescents, and adults,
respectively.

Analyzing the 160 × 160 FC matrix is massively difficult due to
the small overall average differences between groups and the low
significance of individual FC scores, which are influenced by vari-
ous random factors such as sleep status and head movement dur-
ing scanning. To overcome these limitations, we applied the
functional template ‘Dosenbach160’ to divide the brain into six
functional networks and calculated the mean FC within and
between networks for each subject, resulting in a reduced number
of features from 25 800 (160 × 160) to 23(6 + C2

6 + 2) (Dosenbach
et al., 2010), among which the last two scores are summary com-
posite scores for between and within networks. The 23 scores were
named W-scores, which were then used to construct 23 NM for
further analysis (see in online Supplementary file 4), represented
the degree of connectivity abnormality (compared to normative
values) within and between each brain network. While the last
two scores are called ‘overall-FC-within’ and ‘overall-FC-between’,
and the former reflected the total extent of abnormality within
all of the individual’s networks, the later stood for the opposite.
The calculation formula is as follows:

Wnetwork = FCnetwork − mnorm network
snorm network

Although similar to Z’-scores, W-scores differ in that the former
is derived from every single FC data point, while the latter is
derived from aggregated network data.

The formula for W-score calculation involves standardizing
the FC values within or between networks, calculating the mean
and standard deviation of the raw within- or between-network
FC scores, and using these values to compute the W-score.

Table 1. Sample characteristics after normative modeling selection

Group Mean N S.D. Minimum Maximum Median

Age ASD 15.19 576 7.786 5 40 13

TD 15.34 642 8.033 5 40 13

IQ ASD 106.1 576 16.41 41 148 107

TD 111.47 642 12.23 73 148 111

SRS ASD 81.12 482 21.51 6 164 82

TD 38.82 457 15.15 0 85 41

The characteristics of both cohorts are shown in the figure. Information of age, full IQ standard score, and the total score of social responsiveness scale are listed.
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Within-network FC reflects the mutual dependence between dif-
ferent regions within a network, while between-network FC
reflects the communication strength between different networks.
These connections reveal the organizational principles of brain
function and behavior and help us understand the interaction
between different neural systems and cognitive functions
(Bullmore & Sporns, 2012; Di Martino et al., 2014).

Normative modeling reliability

To assess the reliability of normative Z’-scores and W-scores, we
performed permutations (1000 bootstrap with replacement) with
the normative sample and calculated 1000 permutations for each
individual and each FC. To evaluate the impact of age-related
individual outliers on the global case‒control group differences,

Figure 1. Age distribution of all subjects in the current study. Age distribution histograms of all participants under the age of 40. (A) Shows all participant data and
(B) shows data from participants according to group (ASD or TD).

Figure 2. Methodological overview of the whole study. (A) We calculated the global FC of all participants. (B) LOESS regression was used to estimate the devel-
opmental trajectory of every FC to obtain an age-specific mean and standard deviation, which were then used to obtain Z’-scores and W-scores, which illustrated
the deviation of each individual’s functional connections. The additional number ‘6 + 15 + 2’ represents the 6 within-network NM, 15 between-network NM, and the
sum of within- and between-network NM. (C) For each subject, a normative probability map, which consists of W-scores, was computed to quantify the deviation
from the NM of each brain region. (D and E) FC of different brain networks was quantified to obtain the average value for further statistical analysis. (F) Participants
were divided into three age groups and two diagnostic groups to observe differences between the ASD and TD groups over time. (G) FC network W-scores and SRS
subscale scores were correlated to identify clinically significant networks.
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we conducted hypothesis testing on the W-scores after removing
subject outliers in a networkwise manner (based on truncation at
± 2 S.D.). While we present mainly results related to DMN in this
study (further explanation in Discussion section), analyses of
other neural networks using the same approach were also calcu-
lated for completeness.

Constructing individual-level atypicality scores

One major advantage of NM is the probabilistic prediction of
deviations from the norm for all subjects. Specifically, NM pro-
vides a multivariate measure of all brain network deviations
from the normative range. This can capture FC differences from
TD patterns. To better understand the most important brain dif-
ferences for each subject, we estimated two summary scores (both
within- and between-network) to capture their maximum devi-
ation from typical patterns (which may be the most clinically rele-
vant). This can be modeled using extreme value statistics, which
postulates that the expected maximum value based on any random
variable will converge to an extreme value distribution. Therefore,
we estimated the maximum deviation for each subject by averaging
the trimmed 1% highest absolute deviations across all functional
connections and fitting an extreme value distribution to these devia-
tions, which were then used to map behavioral associations and cal-
culate the outlier rates for different age groups.

Exploratory analysis of behavioral associations

In addition to assessing the impact of differences between ASD
and TD populations, we conducted exploratory analysis of the
standard model W-scores. We explored whether the W-scores
reflected underlying phenotypic features by performing
Spearman correlation analyses with the W-scores of each brain
network and the phenotypic characteristics of ASD patients,
such as ADOS, SRS, SCQ, AQ, and FIQ scores. After addressing
multiple comparison corrections, correlation with FDR corrected
p < 0.05 was considered significant.

Results

A normative model of typical development over time

As shown in Fig. 3A, the 160 ROIs were divided into six networks
comprising the DMN, frontoparietal network (FPN),
cingulo-opercular network (CON), sensorimotor network (SMN),
occipital network (OCN), and cerebellum network (CEN), which
have been commonly used in previous studies (Power et al.,
2011; Wang, Hu, Weng, Chen, & Liu, 2020).

As shown in Fig. 3B, the FC of children (ages 5–12 years) first
increased with age and then gradually decreased with age starting
in adolescence, as observed in the DMN and frontoparietal net-
work (FPN) in most brain network connections. This is consistent
with previous research findings (Supekar et al., 2013). However,
the results showed that the FC of individuals with ASD did not
significantly differ from that of TD individuals. In this case,
there was no significant difference between overall-FC of indivi-
duals with ASD and that of TD individuals.

Figure 3C presents the developmental NM of FC derived from
the TD cohort. All analyses were conducted on the FC of the 1218
subjects. LOESS regression was used, in which the local width or
smoothing kernel of the regression is determined by the model to
provide the smallest overall squared error. It was implemented in
the R statistical package of the optimization function, using

Brent’s method for hyperparameter optimization (Brent, 1973).
To keep the TD and ASD groups consistent, both were divided
into the same age groups. For each age group and each brain
region, we calculated a normative mean and standard deviation
from the TD group. These statistical norms were then used to cal-
culate Z’-scores and W-scores for each individual with ASD and
each brain region. Since Z’-scores were utilized for each FC,
while W-scores were calculated for each brain functional network.
We then obtained both Z’-score maps and W-score maps for each
ASD participant, showing the degree of abnormality of each brain
region relative to the TD norm.

Functional network partitioning: clinical diagnostic
significance

After dividing brain functional network connectivity into two
types (within-network and between-networks), we identified
clinically relevant networks by analyzing the distribution of net-
work data in ASD patients relative to their questionnaire scores.
TheW-scores of individuals showed varying degrees of significant
correlation with scores on various subscales of the social re-
sponsiveness scale (SRS). Notably, the FC of the DMN, FPN,
and OCN were particularly correlated with SRS subscale scores
(Fig. 4). Within the DMN, FC was significantly negatively correlated
with SRS_awareness (r =−0.192, pcorrected = 0.028), SRS_cognition (r
=−0.101, pcorrected = 0.025), and SRS_mannerisms (r =−0.153,
pcorrected = 0.045) subscale scores. Within the FPN, FC was signifi-
cantly negatively correlated with SRS_cognition (r =−0.262,
pcorrected = 0.001), SRS_communication (r =−0.112, pcorrected =
0.021), and SRS_mannerisms (r =−0.183, pcorrected = 0.007) subscale
scores. Within the OCN, FC was significantly negatively corre-
lated with SRS_cognition (r =−0.243, pcorrected = 0.002), SRS_c
ommunication (r =−0.145, pcorrected = 0.013), and SRS_mannerisms
(r =−0.176, pcorrected = 0.008) subscale scores (see other relevant
values in online Supplementary file 5). The remaining three net-
works showed weaker correlations with the questionnaire data.
Generally, compared to any other network FC, the FC between
the DMN and any other network showed a significantly stronger
negative correlation with at least three SRS subscale scores. The
other network FC that were significantly negatively correlated with
at least three SRS subscale scores were the FC between the FPN
and CON and the FC between the SMN and OCN. The clinical
symptoms reflected by FC within the FPN and OCN were similar.

The TD and ASD groups exhibited distinct developmental
trajectories

Another advantage of the NM method is its ability to identify
individuals with atypical FC. As ASD patients exhibit brain FC
similar to that of TD individuals in the overall sample, we subse-
quently divided the subjects into age groups and observed
changes in the FC of each network in different age groups.

The significant main effect of the group indicated that the
outlier rates were greater in the ASD cohort (8.07%) than in
the TD cohort (3.75%) [F(11217) = 41.83, pcorrected < 0.001].
There was also a significant main effect of Age [F(2, 1217) =
75.611, pcorrected < 0.001]. Furthermore, the group × age inter-
action yielded a significant result [F(2, 1212) = 0.167, pcorrected =
0.015]. Consequently, the developmental trends of cohorts with
the same disease status differed across different age groups, and
the developmental trends of ASD and TD also differed within
the same age group. The outlier rate of children with ASD
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Figure 3. Module partitions and details about normative models across the lifespan. (A) Module partitions. 1DMN, the default mode network; 2FPN, the fronto-
parietal network; 3CON, the cingulo-opercular network; 4SMN, the sensorimotor network; 5OCN, the occipital network; 6CEN, the cerebellum network; L, left; R,
right. The number indicates the corresponding network below. (B) A schematic of NM. First, LOESS regression was used to estimate the FC developmental trajectory
for each individual brain region to obtain age-specific means and standard deviations. This enables prediction of the FC value (the darker blue contour line) from
the clinical covariates (age) along with measures of predictive confidence (the two lighter blue contour lines). For each one-year age bin, the normative scores were
calculated for these means and standard deviations, and the y-value of the dark blue line represents the median. Next, for each ASD individual and each brain
network, normalized means and standard deviations were used to calculate the W-score relative to their neurotypical age bin. The red and blue dots represent the
values for the ASD group and TD group, respectively. (C) NM across the lifespan. NM of developmental changes in FC across the developmental range in the TD
cohort. FC was predicted using a trained NM across the age range of 5–40 years of age. Dark vertices indicate the mean deviation from normative scores of six
different networks over five age bins. The specific age bins are illustrated as ‘(26∼33)’ above the pixel plot. The names of the networks are listed in Fig. 3.
Moreover, the predicted cross-sectional developmental trajectories of FC are shown for three randomly selected networks.
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Figure 4. Correlation between W-scores and scores on SRS subscales. Correlation between W-scores in various brain networks and the scores of the four subscales of the SRS in the ASD group. Each number on the X-axis corresponds
one-to-one with the numbers on the Y-axis, representing the six different brain networks. Each colored cell represents a significant correlation, with darker colors indicating stronger correlations. Besides, the presence of ‘**’ marks
within certain squares signifies conditions where p < 0.01 after FDR correction, while green squares lacking ‘**’ denote situations where p < 0.05 after FDR correction. Blank squares, on the other hand, represent non-significant
correlations. The results show a negative correlation between FC values and SRS scores, indicating that weaker FC is associated with more severe social cognitive and communication deficits. Various networks are shown as numbers
on the Y-axis; specific information on these networks is listed above in Fig. 3A.
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(aged 5–11 years) (4.07%) was slightly lower than that of TD chil-
dren (6.22%), while the outlier rate of adolescents with ASD (aged
12–17 years) (8.32%) was slightly higher than that of TD adoles-
cents (5.21%). The outlier rate of adults with ASD (aged 18–30
years) (15.42%) was significantly higher than that of TD adults
(2.24%) (Fig. 5). In other words, the FC within and between
brain networks of the TD group decreased with increasing age,
while the corresponding indicators of the ASD group increased
rapidly with age.

Discussion

Capturing and utilizing individual variability in ASD patients

In a large and heterogeneous cohort spanning a range of ASD
phenotypes, traditional case‒control analyses showed small
group-level differences in FC between ASD and TD cohorts.
In contrast, our normative modeling approach revealed marked
and widespread patterns of atypical brain network organization
at the individual level in ASD participants. These patterns were
highly individualized, varied across developmental stages, and
were related to symptoms, particularly repetitive behaviors.
This supports the view that a subset of ASD individuals exhibits
developmental trajectories distinct from those of TD individuals,
with each ASD individual following a highly individualized tra-
jectory. Methodologically, our study indicates that (1) expanding
beyond the case‒control paradigm is necessary to understand the
heterogeneous neuroanatomy of ASD; (2) normative modeling
provides an alternative conceptual framework to understand
the heterogeneous neurobiology of ASD according to deviations
from typical developmental patterns; (3) focusing on the ‘aver-
age ASD individual’ provides only a partial reflection of the con-
dition. In other words, the case‒control approach focuses on
common effects rather than individual variability. Capturing
and utilizing this variability at the individual level is the core
of precision medicine.

The NM described variations in typical brain development,
showing that overall-FC development progresses relatively
smoothly and that the overall-FC in ASD patients is not signifi-
cantly different from that of TD individuals, which is generally
consistent with previous neuroimaging studies (Anderson et al.,
2011; Keown et al., 2013; Ray et al., 2014; Redcay et al., 2013).
We observed extensive individual differences among ASD partici-
pants, namely, differences in their deviations from the NM, which
explains why our classic case‒control analysis detected few signifi-
cant differences and why some previous large-scale neuroimaging
studies could only detect small group differences (Haar, Berman,
Behrmann, & Dinstein, 2016; van Rooij et al., 2018). The hetero-
geneity of ASD is widely recognized (Abrahams & Geschwind,
2008; Ecker, 2019); studies have reported decreases or increases
in FC of ASD (Mak-Fan, Taylor, Roberts, & Lerch, 2012), but
the sample sizes of these reports are relatively small. There are
also reports of normative modeling of CT in ASD cohorts. The
results of our large-sample study address the shortcomings of
these studies.

Identification of clinically significant networks

We conducted a comprehensive analysis by examining the corre-
lations of W-scores with a wide range of phenotypic information
available in the ABIDE dataset. In doing so, we identified some
networks that were fundamentally different from those typically

detected according to average case‒control differences. These
findings suggest that the standardized model is sensitive to signals
related to behavioral changes. We found brain networks signifi-
cantly associated with the SRS scores of the participants.
Specifically, the FC within the DMN, FPN, and OCN, as well as
the FC between any network and the DMN, were important in
diagnosing ASD patients.

The DMN includes a set of brain regions that are more active
when an individual is not focused on the outside world, instead,
they are activated when an individual engages in internal thoughts
or self-referential processing. Several studies have suggested that
individuals with ASD exhibit atypical connectivity within the
DMN. For example, one study used community structure analyses
to explore functional network features of individuals with ASD
and found disrupted recruitment and integration in the DMN
(Yang et al., 2023). Another study using dynamic FC analysis
reported altered dynamics in several networks, such as the
DMN, in patients with ASD (Wang et al., 2022). These studies
suggest that ASD is associated with atypical connectivity within
the DMN, highlighting the importance of studying brain FC in
ASD research.

On the other hand, the SRS is a tool used to assess the severity
of ASD symptoms in individuals. The scale consists of five sub-
scales: social communication, social interaction, social-emotional
reciprocity, repetitive behavior, and the last one, interests and
attention. Higher scores indicate more severe symptoms. We
found a significant negative correlation between the subscale
scores and the strength of FC within the abovementioned brain
networks, indicating that the higher the scores were, the weaker
the FC and the more severe the symptoms were, which is consist-
ent with the impaired social abilities and executive function of
ASD patients. These findings indicate that FC is a potential bio-
marker for assessing ASD clinical presentations and diagnosis,
offering valuable insights into the neural basis of ASD and ultim-
ately informing the development of more targeted interventions
for individuals with ASD. However, the SRS is usually only admi-
nistered to individuals who have already been diagnosed with
ASD, which may introduce bias in general inferences about this
brain-behavior relationship. More research is needed to confirm
this conclusion.

The intergroup differences associated with age

Our results highlight the potential importance of examining
network-level changes in brain connectivity across the lifespan
in individuals with ASD and suggest that such changes may be
a valuable biomarker for tracking disease progression and treat-
ment response. We used the outlier rate as a metric reflecting
the likelihood of observing atypical individuals in each age
group. We found that the outlier rate of the ASD group increased
significantly after adulthood, while the outlier rate of the ASD
group was slightly lower than that of the TD group during child-
hood. Moreover, the outlier rate of the ASD group between the
ages of 18 and 30 was significantly higher than that of the TD
group. In statistical analysis, subjects with a W-score more than
two standard deviations from the normative FC value calculated
by the model were considered outliers, while typical individuals
were used as a comparison. The outlier rate represents the propor-
tion of outliers out of the total number of individuals in each age
group. We added a semitransparent block to the figure to indicate
the inevitable error and uncertainty. Meanwhile, the numerical
dots in the area between the top blue line and the bottom blue
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line represents the proportion of typical individuals, whose
W-scores are within 2SD higher/lower than the normative
value. In this case, those points that are excluded from the typical
group are statistical outliers. The outlier rates reflect the generality
of the cases. It is important to emphasize the homogeneity of
these cases because, as mentioned earlier, it is likely that these
outliers are the ones driving most of the observed small differ-
ences between the patient and control groups. The differences
found in the study suggest that it is challenging to detect genuine
differences in network features during childhood. Several studies
have reported similar age-related changes in brain network prop-
erties in ASD. For example, Supekar et al. (2013) reported that the
atypical FC patterns in individuals with ASD become more pro-
nounced with age. Another study by Lynch et al. (2013) reported
that the FC patterns in the ASD group increasingly differed from
those in the TD group with age.

We also found that FC of the DMN distinguished ASD and
TD groups to a greater extent than the FC of other networks,
especially FC within the DMN, between the DMN and FPN,
between the DMN and CON, and between the DMN and SMN.
The FPN is a network involved in higher cognitive functions
such as attention, executive control, and working

memory Andthe CON is a network involved in cognitive and
emotional processing, such as emotion regulation, decision-
making, and executive control, including the cingulate gyrus
and opercular networks. The SMN is a network involved in pro-
cesses such as movement, sensation, and perception, including
both the central pre- and post-central gyri. The OCN is a network
involved in visual processing, including the visual cortex (which
will be mentioned later).

This difference is likely because these connections play a cru-
cial role in supporting various cognitive functions, such as social
cognition, attention, and sensory processing, which are known to
be impaired in individuals with ASD (Just, Keller, Malave, Kana,
& Varma, 2012; Kana, 2006; Uddin, Supekar, & Menon, 2013). In
particular, the DMN is involved in self-referential thinking, men-
talizing, and social cognition, which are altered in individuals
with ASD (Kennedy & Courchesne, 2008; Schurz, Radua,
Aichhorn, Richlan, & Perner, 2014). Several studies have reported
similar findings regarding the altered FC between the DMN and
other brain networks in individuals with ASD. For example,
Kennedy and Courchesne (2008) found that the DMN exhibited
hyperconnectivity with other brain networks in individuals with
ASD. In addition, Di Martino et al. (2014) reported that the

Figure 5. Discrepancies in the outlier rates among different groups. Changes in the outlier rate over age in different diagnostic cohorts. The X-axis represents dif-
ferent brain networks, and the Y-axis represents outlier rates. The study population was divided into three distinct age groups (children, adolescents, and adults),
and each row represents a different age group. Colors distinguish the ASD and TD groups. As age increases, the outlier rate of the TD cohort decreased gradually,
while the outlier rate of the ASD group increased significantly.
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DMN and SMN were more strongly connected in individuals with
ASD than in TD individuals. Another study by Rudie et al. (2012)
found that individuals with ASD had decreased inverse correla-
tions between the activity of the DMN and that of other networks.

Overall, these findings suggest that altered connectivity within
the DMN and between the DMN and other networks may con-
tribute to the cognitive and social impairments observed in indi-
viduals with ASD. Therefore, assessing the FC within and between
these networks may be a promising approach for developing bio-
markers and therapeutic targets for ASD.

The summary values reflect brain information processing

To better understand the most important brain differences of each
participant, we estimated not only two but 21 + 2 summary scores
for each participant, including 6 values representing the internal
FC of each network, 15 values representing the FC between net-
works, and 2 total values. These values have different meanings.

The interpretations of within-network connectivity vary
slightly among studies. For example, Power et al. (2011) suggested
that strongly connected network modules within the brain may
reflect a function or process that is relatively more centralized
or localized than other modules. Meunier, Lambiotte, and
Bullmore (2010), on the other hand, argue that increased within-
network connections may indicate tighter information integration
or coordination.

Regarding the FC between networks, research has found that
brain regions with strong connectivity have similar functional fea-
tures and form specific brain networks. These brain networks are
activated in different cognitive tasks, and there are interactions
and regulatory relationships between different brain networks,
enabling efficient information processing and integration capabil-
ities when humans perform cognitive tasks. The FC values between
networks represent the flexibility of the brain when performing dif-
ferent tasks and the degree of integration of the entire brain.

Potential anatomical significance of FC

To interpret the FC abnormalities through recent anatomical dis-
coveries offers a novel perspective. Astrocytes, highly abundant
within the central nervous system and recognized for their star-
shaped morphology, are key players in supporting and regulating
neuronal functions. This includes maintaining neuronal metabol-
ism and modulating neurotransmission. Recent studies in the
context of depression have highlighted astrocytic dysfunction as
a significant contributor to FC disruptions (Liu et al., 2022).
Dysregulated calcium signaling in astrocytes can lead to excessive
glutamate release, disturbing interneuronal communication and
resulting in FC anomalies. We extend this understanding to pro-
pose that FC irregularities observed within the DMN of indivi-
duals with ASD might also be influenced by astrocytic
dysfunction. These anatomical insights could shed light on the
observed FC anomalies in the DMN of ASD.

Limitations and future directions

There are some limitations to consider in this study. First, the cur-
rent data are cross-sectional, and standardized age-modeling
methods cannot make individual-level judgments about trajector-
ies. Longitudinal data would extend this standardized modeling
approach. Second, to remove multisite effect, researchers sug-
gested that the hierarchical Bayesian approach may be a better

alternative to ComBat because it avoids the exclusion of meaning-
ful variance correlated with site and can improve the accuracy of
normative modeling (Bayer et al., 2022). We chose this model due
to its advantages in terms of computational efficiency, automatic
parameter learning, and the mitigation of issues related to local
optima and overfitting, subsequent studies should try to apply dif-
ferent models to remove site effects in normative modeling stud-
ies. Third, the calculation of W-scores was based on two mean
calculations from the raw data, which inevitably led to some
loss of precision; we hope to solve this problem in the future.
Fourth, although this study has a large sample size, it does not
encompass the very early developmental period or the very late
adulthood period; it also has few female participants, with a
male-to-female ratio of approximately 5:1. Conclusions regarding
female participants lack corresponding evidence, and additional
female data should be collected in the future to study sex differ-
ences in ASD. In addition, there are many different normalization
modeling methods, each with its own advantages and disadvan-
tages (Marquand et al., 2019). We chose to use the LOESS estima-
tion method because it is computationally efficient and the
resulting W-scores are easy to interpret. However, because it is
based on an estimate of the standard deviation of the normative
sample, it is potentially sensitive to small sample sizes in specific
age ranges (e.g. if a particular age range has only four data points,
there may be an unreliable S.D.). Therefore, we excluded age
ranges (one year) containing less than or equal to two subjects.
Finally, although head motion within scanners is a well-known
confounding factor in resting-state studies, recent studies have
shown that the same motion can also affect structural image qual-
ity and surface reconstruction (Power, Barnes, Snyder, Schlaggar,
& Petersen, 2012; Van Dijk, Sabuncu, & Buckner, 2012).
Therefore, given its impact on traditional analysis methods, we
strongly encourage future research to consider motion as an
important confounding factor.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291724000138.

Data availability statement. The data stored at our lab-based network
attachment system: http://QuickConnect.cn/others. ID:guests; PIN dong@
123.COM. All people who interested in it can download directly.

Acknowledgements. This research was supported by the Innovation Team
Program in Philosophy and Social Science of Yunnan Province(Research on
psychological adaptation and development of China’s ethnic minority students
in border areas), and TheTechnology Talent and Platform Plan of Yunnan
Province Science and Technology Department (202405AC350075). The fund-
ing agencies did not contribute to the experimental design or conclusions, and
the views presented in the manuscript are those of the authors and may not
reflect those of the funding agencies.

Author contributions. Anhang Jiang analyzed the data, counterbalanced the
multi-site, prepared the figures, tables, and wrote the paper. Xuefeng Ma, Bo
Yang and Shuang Li contributed to research ideas and figure improvement;
Lingxiao Wang and Shizhen Wang contributed to data analyses techniques;
Guang-Heng Dong designed this research and edited the manuscript. All
authors contributed to and approved the final manuscript.

Funding statement. The authors report that they have no financial conflicts
of interest with respect to the content of this manuscript.

Competing interests. None.

Ethical standards. The authors assert that all procedures contributing to
this work comply with the ethical standards of the relevant national and

10 Anhang Jiang et al.

https://doi.org/10.1017/S0033291724000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291724000138
https://doi.org/10.1017/S0033291724000138
http://QuickConnect.cn/others
http://QuickConnect.cn/others
mailto:dong@123.COM
mailto:dong@123.COM
https://doi.org/10.1017/S0033291724000138


institutional committees on human experimentation and with the Helsinki
Declaration of 1975, as revised in 2008.

References

Abrahams, B. S., & Geschwind, D. H. (2008). Erratum: Advances in autism
genetics: On the threshold of a new neurobiology. Nature Reviews
Genetics, 9(6), 493–493. https://doi.org/10.1038/nrg2861

American Psychiatric Association. (2000). Diagnostic and statistical manual of
mental disorders (4th ed., text rev.). Washington, DC: American Psychiatric
Association.

Anderson, J. S., Nielsen, J. A., Froehlich, A. L., DuBray, M. B., Druzgal, T. J.,
Cariello, A. N., … Lainhart, J. E. (2011). Functional connectivity magnetic
resonance imaging classification of autism. Brain, 134(12), 3742–3754.
https://doi.org/10.1093/brain/awr263

Baggio, H. C., Segura, B., Garrido-Millan, J. L., Marti, M.-J., Compta, Y.,
Valldeoriola, F., … Junque, C. (2015). Resting-state frontostriatal functional
connectivity in Parkinson’s disease-related apathy: frontostriatal connectiv-
ity and apathy in PD. Movement Disorders, 30(5), 671–679. https://doi.org/
10.1002/mds.26137

Bai, D., Yip, B. H. K., Windham, G. C., Sourander, A., Francis, R., Yoffe, R., …
Sandin, S. (2019). Association of genetic and environmental factors with
autism in a 5-country cohort. JAMA Psychiatry, 76(10), 1035–1043.
https://doi.org/10.1001/jamapsychiatry.2019.1411

Bayer, J. M. M., Dinga, R., Kia, S. M., Kottaram, A. R., Wolfers, T., Lv, J., …
Marquand, A. (2022). Accommodating site variation in neuroimaging data
using normative and hierarchical Bayesian models. NeuroImage, 264,
119699. https://doi.org/10.1016/j.neuroimage.2022.119699

Bethlehem, R. A. I., Seidlitz, J., Romero-Garcia, R., Dumas, G., & Lombardo,
M. V. (2018). Normative age modelling of cortical thickness in autistic
males. Neuroscience. https://doi.org/10.1101/252593

Bethlehem, R. A. I., Seidlitz, J., Romero-Garcia, R., Trakoshis, S., Dumas, G., &
Lombardo, M. V. (2020). A normative modelling approach reveals
age-atypical cortical thickness in a subgroup of males with autism spectrum
disorder. Communications Biology, 3(1), 486. https://doi.org/10.1038/
s42003-020-01212-9

Brent, R. P. (1973). An algorithm with guaranteed convergence for finding a zero
of a function. The Computer Journal, 14, 422–425. https://academic.oup.com/
comjnl/article/14/4/422/325237.

Bullmore, E., & Sporns, O. (2012). The economy of brain network organization.
Nature Reviews Neuroscience, 13(5), 336–349. https://doi.org/10.1038/nrn3214

Caldecott, K. W. (2000). Single-strand break repair and genetic disease. Nature
Reviews Genetics, 9(8), 619–631. https://doi.org/10.1038/nrg2380

Dickie, E. W., Ameis, S. H., Shahab, S., Calarco, N., Smith, D. E., Miranda, D.,
… Voineskos, A. N. (2018). Personalized intrinsic network topography
mapping and functional connectivity deficits in autism spectrum disorder.
Biological Psychiatry, 84(4), 278–286. https://doi.org/10.1016/j.biopsych.
2018.02.1174

Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., …
Milham, M. P. (2014). The autism brain imaging data exchange: Towards a
large-scale evaluation of the intrinsic brain architecture in autism.
Molecular Psychiatry, 19(6), 659–667. https://doi.org/10.1038/mp.2013.78

Dosenbach, N. U. F., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D.,
Church, J. A., … Schlaggar, B. L. (2010). Prediction of Individual Brain
Maturity Using fMRI. Science, 329(5997), 1358–1361. https://doi.org/10.
1126/science.1194144

Drysdale, A. T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y.,
… Liston, C. (2017). Resting-state connectivity biomarkers define neuro-
physiological subtypes of depression. Nature Medicine, 23(1), 28–38.
https://doi.org/10.1038/nm.4246

Ecker, C. (2019). Notice of retraction and replacement: Ecker et al. association
between the probability of autism spectrum disorder and normative sex-
related phenotypic diversity in brain structure. JAMA Psychiatry, 2017;74
(4):329–338. JAMA Psychiatry, 76(5), 549–550. https://doi.org/10.1001/
jamapsychiatry.2018.4296

Ecker, C., Ronan, L., Feng, Y., Daly, E., Murphy, C., Ginestet, C. E., … Williams,
S. C. (2013). Intrinsic gray-matter connectivity of the brain in adults with

autism spectrum disorder. Proceedings of the National Academy of Sciences,
110(32), 13222–13227. https://doi.org/10.1073/pnas.1221880110

ElNakieb, Y., Ali, M. T., Elnakib, A., Shalaby, A., Mahmoud, A., Soliman, A.,
… El-Baz, A. (2023). Understanding the role of connectivity dynamics of
resting-state functional MRI in the diagnosis of autism spectrum disorder:
A comprehensive study. Bioengineering, 10(1), 56. https://doi.org/10.3390/
bioengineering10010056

Fjell, A. M., Grydeland, H., Krogsrud, S. K., Amlien, I., Rohani, D. A.,
Ferschmann, L., … Walhovd, K. B. (2015). Development and aging of cor-
tical thickness correspond to genetic organization patterns. Proceedings of
the National Academy of Sciences of the United States of America, 112
(50), 15462–15467. https://doi.org/10.1073/pnas.1508831112

Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H.,
Zijdenbos, A., … Rapoport, J. L. (1999). Brain development during child-
hood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2
(10), 861–863. https://doi.org/10.1038/13158

Gratton, C., Nelson, S. M., & Gordon, E. M. (2022). Brain-behavior correla-
tions: Two paths toward reliability. Neuron, 110(9), 1446–1449. https://
doi.org/10.1016/j.neuron.2022.04.018

Guo, X., Zhai, G., Liu, J., Cao, Y., Zhang, X., Cui, D., & Gao, L. (2022).
Inter-individual heterogeneity of functional brain networks in children
with autism spectrum disorder. Molecular Autism, 13(1), 52. https://doi.
org/10.1186/s13229-022-00535-0

Haar, S., Berman, S., Behrmann, M., & Dinstein, I. (2016). Anatomical abnor-
malities in autism? Cerebral Cortex, 26(4), 1440–1452. https://doi.org/10.
1093/cercor/bhu242

Hazlett, H. C., Gu, H., Munsell, B. C., Kim, S. H., Styner, M., Wolff, J. J.,… Piven,
J. (2017). Early brain development in infants at high risk for autism spectrum
disorder. Nature, 542(7641), 348–351. https://doi.org/10.1038/nature21369

Hull, J. V., Dokovna, L. B., Jacokes, Z. J., Torgerson, C. M., Irimia, A., & Van
Horn, J. D. (2017). Resting-state functional connectivity in autism spectrum
disorders: A review. Frontiers in Psychiatry, 7, 1. https://doi.org/10.3389/
fpsyt.2016.00205

Just, M. A., Keller, T. A., Malave, V. L., Kana, R. K., & Varma, S. (2012).
Autism as a neural systems disorder: A theory of frontal–posterior under-
connectivity. Neuroscience & Biobehavioral Reviews, 36(4), 1292–1313.
https://doi.org/10.1016/j.neubiorev.2012.02.007

Kana, R. K. (2006). Sentence comprehension in autism: Thinking in pictures
with decreased functional connectivity. Brain, 129(9), 2484–2493. https://
doi.org/10.1093/brain/awl164

Kennedy, D. P., & Courchesne, E. (2008). The intrinsic functional organization
of the brain is altered in autism. NeuroImage, 39(4), 1877–1885. https://doi.
org/10.1016/j.neuroimage.2007.10.052

Keown, C. L., Shih, P., Nair, A., Peterson, N., Mulvey, M. E., & Müller, R.-A.
(2013). Local functional overconnectivity in posterior brain regions is asso-
ciated with symptom severity in autism spectrum disorders. Cell Reports, 5
(3), 567–572. https://doi.org/10.1016/j.celrep.2013.10.003

Lebel, C., Gee, M., Camicioli, R., Wieler, M., Martin, W., & Beaulieu, C.
(2012). Diffusion tensor imaging of white matter tract evolution over
the lifespan. NeuroImage, 60(1), 340–352. https://doi.org/10.1016/j.
neuroimage.2011.11.094

Liu, J., Mo, J.-W., Wang, X., An, Z., Zhang, S., Zhang, C.-Y., … Cao, X. (2022).
Astrocyte dysfunction drives abnormal resting-state functional connectivity
in depression. Science Advances, 8(46), eabo2098. https://doi.org/10.1126/
sciadv.abo2098

Lombardo, M. V., Lai, M.-C., & Baron-Cohen, S. (2019). Big data approaches
to decomposing heterogeneity across the autism spectrum. Molecular
Psychiatry, 24(10), 1435–1450. https://doi.org/10.1038/s41380-018-0321-0

Lv, J., Di Biase, M., Cash, R. F. H., Cocchi, L., Cropley, V. L., Klauser, P., …
Zalesky, A. (2021). Individual deviations from normative models of brain
structure in a large cross-sectional schizophrenia cohort. Molecular
Psychiatry, 26(7), 3512–3523. https://doi.org/10.1038/s41380-020-00882-5

Lynch, C. J., Uddin, L. Q., Supekar, K., Khouzam, A., Phillips, J., & Menon, V.
(2013). Default mode network in childhood autism: Posteromedial cortex
heterogeneity and relationship with social deficits. Biological Psychiatry,
74(3), 212–219. https://doi.org/10.1016/j.biopsych.2012.12.013

Maenner, M. J., Warren, Z., Williams, A. R., Amoakohene, E., Bakian, A. V.,
Bilder, D. A., … Shaw, K. A. (2023). Prevalence and characteristics of

Psychological Medicine 11

https://doi.org/10.1017/S0033291724000138 Published online by Cambridge University Press

https://doi.org/10.1038/nrg2861
https://doi.org/10.1038/nrg2861
https://doi.org/10.1093/brain/awr263
https://doi.org/10.1093/brain/awr263
https://doi.org/10.1002/mds.26137
https://doi.org/10.1002/mds.26137
https://doi.org/10.1002/mds.26137
https://doi.org/10.1001/jamapsychiatry.2019.1411
https://doi.org/10.1001/jamapsychiatry.2019.1411
https://doi.org/10.1016/j.neuroimage.2022.119699
https://doi.org/10.1101/252593
https://doi.org/10.1038/s42003-020-01212-9
https://doi.org/10.1038/s42003-020-01212-9
https://doi.org/10.1038/s42003-020-01212-9
https://academic.oup.com/comjnl/article/14/4/422/325237
https://academic.oup.com/comjnl/article/14/4/422/325237
https://academic.oup.com/comjnl/article/14/4/422/325237
https://doi.org/10.1038/nrn3214
https://doi.org/10.1038/nrn3214
https://doi.org/10.1038/nrg2380
https://doi.org/10.1038/nrg2380
https://doi.org/10.1016/j.biopsych.2018.02.1174
https://doi.org/10.1016/j.biopsych.2018.02.1174
https://doi.org/10.1016/j.biopsych.2018.02.1174
https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1126/science.1194144
https://doi.org/10.1126/science.1194144
https://doi.org/10.1038/nm.4246
https://doi.org/10.1038/nm.4246
https://doi.org/10.1001/jamapsychiatry.2018.4296
https://doi.org/10.1001/jamapsychiatry.2018.4296
https://doi.org/10.1001/jamapsychiatry.2018.4296
https://doi.org/10.1073/pnas.1221880110
https://doi.org/10.1073/pnas.1221880110
https://doi.org/10.3390/bioengineering10010056
https://doi.org/10.3390/bioengineering10010056
https://doi.org/10.3390/bioengineering10010056
https://doi.org/10.1073/pnas.1508831112
https://doi.org/10.1073/pnas.1508831112
https://doi.org/10.1038/13158
https://doi.org/10.1038/13158
https://doi.org/10.1016/j.neuron.2022.04.018
https://doi.org/10.1016/j.neuron.2022.04.018
https://doi.org/10.1016/j.neuron.2022.04.018
https://doi.org/10.1186/s13229-022-00535-0
https://doi.org/10.1186/s13229-022-00535-0
https://doi.org/10.1186/s13229-022-00535-0
https://doi.org/10.1093/cercor/bhu242
https://doi.org/10.1093/cercor/bhu242
https://doi.org/10.1093/cercor/bhu242
https://doi.org/10.1038/nature21369
https://doi.org/10.1038/nature21369
https://doi.org/10.3389/fpsyt.2016.00205
https://doi.org/10.3389/fpsyt.2016.00205
https://doi.org/10.1016/j.neubiorev.2012.02.007
https://doi.org/10.1016/j.neubiorev.2012.02.007
https://doi.org/10.1093/brain/awl164
https://doi.org/10.1093/brain/awl164
https://doi.org/10.1093/brain/awl164
https://doi.org/10.1016/j.neuroimage.2007.10.052
https://doi.org/10.1016/j.neuroimage.2007.10.052
https://doi.org/10.1016/j.neuroimage.2007.10.052
https://doi.org/10.1016/j.celrep.2013.10.003
https://doi.org/10.1016/j.celrep.2013.10.003
https://doi.org/10.1016/j.neuroimage.2011.11.094
https://doi.org/10.1016/j.neuroimage.2011.11.094
https://doi.org/10.1016/j.neuroimage.2011.11.094
https://doi.org/10.1126/sciadv.abo2098
https://doi.org/10.1126/sciadv.abo2098
https://doi.org/10.1126/sciadv.abo2098
https://doi.org/10.1038/s41380-018-0321-0
https://doi.org/10.1038/s41380-018-0321-0
https://doi.org/10.1038/s41380-020-00882-5
https://doi.org/10.1038/s41380-020-00882-5
https://doi.org/10.1016/j.biopsych.2012.12.013
https://doi.org/10.1016/j.biopsych.2012.12.013
https://doi.org/10.1017/S0033291724000138


autism spectrum disorder among children aged 8 Years — autism and
developmental disabilities monitoring network, 11 sites, United States,
2020. MMWR. Surveillance Summaries, 72(2), 1–14. https://doi.org/10.
15585/mmwr.ss7202a1

Mak-Fan, K. M., Taylor, M. J., Roberts, W., & Lerch, J. P. (2012). Measures of
cortical grey matter structure and development in children with autism
spectrum disorder. Journal of Autism and Developmental Disorders, 42(3),
419–427. https://doi.org/10.1007/s10803-011-1261-6

Mannion, A., & Leader, G. (2016). An investigation of comorbid psychological
disorders, sleep problems, gastrointestinal symptoms and epilepsy in chil-
dren and adolescents with autism spectrum disorder: A two year follow-up.
Research in Autism Spectrum Disorders, 22, 20–33. https://doi.org/10.1016/j.
rasd.2015.11.002

Marquand, A. F., Rezek, I., Buitelaar, J., & Beckmann, C. F. (2016).
Understanding heterogeneity in clinical cohorts using normative models:
Beyond case-control studies. Biological Psychiatry, 80(7), 552–561. https://
doi.org/10.1016/j.biopsych.2015.12.023

Marquand, A. F., Kia, S. M., Zabihi, M., Wolfers, T., Buitelaar, J. K., &
Beckmann, C. F. (2019). Conceptualizing mental disorders as deviations
from normative functioning. Molecular Psychiatry, 24(10), 1415–1424.
https://doi.org/10.1038/s41380-019-0441-1

Meunier, D., Lambiotte, R., & Bullmore, E. T. (2010). Modular and hierarch-
ically modular organization of brain networks. Frontiers in Neuroscience, 4.
https://doi.org/10.3389/fnins.2010.00200

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E.
(2012). Spurious but systematic correlations in functional connectivity
MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154.
https://doi.org/10.1016/j.neuroimage.2011.10.018

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J.
A.,… Petersen, S. E. (2011). Functional network organization of the human
brain. Neuron, 72(4), 665–678. https://doi.org/10.1016/j.neuron.2011.09.006

Ray, S., Miller, M., Karalunas, S., Robertson, C., Grayson, D. S., Cary, R. P., …
Fair, D. A. (2014). Structural and functional connectivity of the human
brain in autism spectrum disorders and attention-deficit/hyperactivity dis-
order: A rich club-organization study. Human Brain Mapping, 35(12),
6032–6048. https://doi.org/10.1002/hbm.22603

Redcay, E., Moran, J. M., Mavros, P. L., Tager-Flusberg, H., Gabrieli, J. D. E., &
Whitfield-Gabrieli, S. (2013). Intrinsic functional network organization in
high-functioning adolescents with autism spectrum disorder. Frontiers in
Human Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00573

Rudie, J. D., Shehzad, Z., Hernandez, L. M., Colich, N. L., Bookheimer, S. Y.,
Iacoboni, M., & Dapretto, M. (2012). Reduced functional integration and
segregation of distributed neural systems underlying social and emotional
information processing in autism spectrum disorders. Cerebral Cortex, 22
(5), 1025–1037. https://doi.org/10.1093/cercor/bhr171

Rutherford, S., Barkema, P., Tso, I. F., Sripada, C., Beckmann, C. F., Ruhe, H.
G., … Marquand, A. F. (2023). Evidence for embracing normative model-
ing. eLife, 12, 343. https://doi.org/10.7554/eLife.85082

Sala-Llonch, R., Bartrés-Faz, D., & Junqué, C. (2015). Reorganization of brain
networks in aging: A review of functional connectivity studies. Frontiers in
Psychology, 6. Retrieved from https://www.frontiersin.org/articles/10.3389/
fpsyg.2015.00663

Schurz, M., Radua, J., Aichhorn, M., Richlan, F., & Perner, J. (2014).
Fractionating theory of mind: A meta-analysis of functional brain imaging
studies. Neuroscience & Biobehavioral Reviews, 42, 9–34. https://doi.org/10.
1016/j.neubiorev.2014.01.009

Shao, L., Fu, C., & Chen, X. (2023). A heterogeneous graph convolutional atten-
tion network method for classification of autism spectrum disorder. BMC
Bioinformatics, 24(1), 363. https://doi.org/10.1186/s12859-023-05495-7

Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., … Giedd,
J. (2006). Intellectual ability and cortical development in children and adoles-
cents. Nature, 440(7084), 676–679. https://doi.org/10.1038/nature04513

Sniekers, S., Stringer, S., Watanabe, K., Jansen, P. R., Coleman, J. R. I., Krapohl,
E., … Posthuma, D. (2017). Genome-wide association meta-analysis of
78308 individuals identifies new loci and genes influencing human intelli-
gence. Nature Genetics, 49(7), 1107–1112. https://doi.org/10.1038/ng.3869

Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., &
Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain
growth in normal children. Journal of Neuroscience, 24(38), 8223–8231.
https://doi.org/10.1523/JNEUROSCI.1798-04.2004

Supekar, K., Uddin, L. Q., Khouzam, A., Phillips, J., Gaillard, W. D.,
Kenworthy, L. E., … Menon, V. (2013). Brain hyperconnectivity in children
with autism and its links to social deficits. Cell Reports, 5(3), 738–747.
https://doi.org/10.1016/j.celrep.2013.10.001

Uddin, L. Q., Supekar, K., & Menon, V. (2013). Reconceptualizing functional
brain connectivity in autism from a developmental perspective. Frontiers in
Human Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00458

Van Dijk, K. R. A., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of
head motion on intrinsic functional connectivity MRI. NeuroImage, 59(1),
431–438. https://doi.org/10.1016/j.neuroimage.2011.07.044

van Rooij, D., Anagnostou, E., Arango, C., Auzias, G., Behrmann, M., Busatto,
G. F.,… Buitelaar, J. K. (2018). Cortical and subcortical brain morphometry
differences between patients with autism spectrum disorder and healthy
individuals across the lifespan: Results from the ENIGMA ASD working
group. American Journal of Psychiatry, 175(4), 359–369. https://doi.org/
10.1176/appi.ajp.2017.17010100

von dem Hagen, E. A. H., Stoyanova, R. S., Baron-Cohen, S., & Calder, A. J.
(2013). Reduced functional connectivity within and between ‘social’ resting
state networks in autism spectrum conditions. Social Cognitive and Affective
Neuroscience, 8(6), 694–701. https://doi.org/10.1093/scan/nss053

Wang, C., Hu, Y., Weng, J., Chen, F., & Liu, H. (2020). Modular segregation of
task-dependent brain networks contributes to the development of executive
function in children. NeuroImage, 206, 116334. https://doi.org/10.1016/j.
neuroimage.2019.116334

Wang, M., Wang, L., Yang, B., Yuan, L., Wang, X., Potenza, M. N., & Dong,
G. H. (2022). Disrupted dynamic network reconfiguration of the
brain functional networks of individuals with autism spectrum disorder.
Brain Communications, 4(4), fcac177. https://doi.org/10.1093/
braincomms/fcac177

Yang, B., Wang, M., Zhou, W., Wang, X., Chen, S., Yuan, L.-X., & Dong, G.-H.
(2023). Edge-centric functional network analyses reveal disrupted network
configuration in autism spectrum disorder. Journal of Affective Disorders,
336, 74–80. https://doi.org/10.1016/j.jad.2023.05.025

Zabihi, M., Floris, D. L., Kia, S. M., Wolfers, T., Tillmann, J., & Arenas, A. L.,
… The EU-AIMS LEAP Group. (2020). Fractionating autism based on
neuroanatomical normative modeling. Translational Psychiatry, 10(1),
384. https://doi.org/10.1038/s41398-020-01057-0

Zabihi, M., Oldehinkel, M., Wolfers, T., Frouin, V., Goyard, D., Loth, E., …
Marquand, A. F. (2019). Dissecting the heterogeneous cortical anatomy of
autism spectrum disorder using normative models. Biological Psychiatry:
Cognitive Neuroscience and Neuroimaging, 4(6), 567–578. https://doi.org/10.
1016/j.bpsc.2018.11.013

12 Anhang Jiang et al.

https://doi.org/10.1017/S0033291724000138 Published online by Cambridge University Press

https://doi.org/10.15585/mmwr.ss7202a1
https://doi.org/10.15585/mmwr.ss7202a1
https://doi.org/10.1007/s10803-011-1261-6
https://doi.org/10.1007/s10803-011-1261-6
https://doi.org/10.1016/j.rasd.2015.11.002
https://doi.org/10.1016/j.rasd.2015.11.002
https://doi.org/10.1016/j.rasd.2015.11.002
https://doi.org/10.1016/j.biopsych.2015.12.023
https://doi.org/10.1016/j.biopsych.2015.12.023
https://doi.org/10.1038/s41380-019-0441-1
https://doi.org/10.1038/s41380-019-0441-1
https://doi.org/10.3389/fnins.2010.00200
https://doi.org/10.1016/j.neuroimage.2011.10.018
https://doi.org/10.1016/j.neuroimage.2011.10.018
https://doi.org/10.1016/j.neuron.2011.09.006
https://doi.org/10.1016/j.neuron.2011.09.006
https://doi.org/10.1002/hbm.22603
https://doi.org/10.1002/hbm.22603
https://doi.org/10.3389/fnhum.2013.00573
https://doi.org/10.1093/cercor/bhr171
https://doi.org/10.1093/cercor/bhr171
https://doi.org/10.7554/eLife.85082
https://www.frontiersin.org/articles/10.3389/fpsyg.2015.00663
https://www.frontiersin.org/articles/10.3389/fpsyg.2015.00663
https://www.frontiersin.org/articles/10.3389/fpsyg.2015.00663
https://doi.org/10.1016/j.neubiorev.2014.01.009
https://doi.org/10.1016/j.neubiorev.2014.01.009
https://doi.org/10.1016/j.neubiorev.2014.01.009
https://doi.org/10.1186/s12859-023-05495-7
https://doi.org/10.1186/s12859-023-05495-7
https://doi.org/10.1038/nature04513
https://doi.org/10.1038/nature04513
https://doi.org/10.1038/ng.3869
https://doi.org/10.1038/ng.3869
https://doi.org/10.1523/JNEUROSCI.1798-04.2004
https://doi.org/10.1523/JNEUROSCI.1798-04.2004
https://doi.org/10.1016/j.celrep.2013.10.001
https://doi.org/10.1016/j.celrep.2013.10.001
https://doi.org/10.3389/fnhum.2013.00458
https://doi.org/10.1016/j.neuroimage.2011.07.044
https://doi.org/10.1016/j.neuroimage.2011.07.044
https://doi.org/10.1176/appi.ajp.2017.17010100
https://doi.org/10.1176/appi.ajp.2017.17010100
https://doi.org/10.1176/appi.ajp.2017.17010100
https://doi.org/10.1093/scan/nss053
https://doi.org/10.1093/scan/nss053
https://doi.org/10.1016/j.neuroimage.2019.116334
https://doi.org/10.1016/j.neuroimage.2019.116334
https://doi.org/10.1016/j.neuroimage.2019.116334
https://doi.org/10.1093/braincomms/fcac177
https://doi.org/10.1093/braincomms/fcac177
https://doi.org/10.1093/braincomms/fcac177
https://doi.org/10.1016/j.jad.2023.05.025
https://doi.org/10.1016/j.jad.2023.05.025
https://doi.org/10.1038/s41398-020-01057-0
https://doi.org/10.1038/s41398-020-01057-0
https://doi.org/10.1016/j.bpsc.2018.11.013
https://doi.org/10.1016/j.bpsc.2018.11.013
https://doi.org/10.1016/j.bpsc.2018.11.013
https://doi.org/10.1017/S0033291724000138

	Age-atypical brain functional networks in autism spectrum disorder: a normative modeling approach
	Introduction
	Methods and materials
	Participants
	Constructing age-related normative models
	Brain network construction
	Normative modeling reliability
	Constructing individual-level atypicality scores
	Exploratory analysis of behavioral associations

	Results
	A normative model of typical development over time
	Functional network partitioning: clinical diagnostic significance
	The TD and ASD groups exhibited distinct developmental trajectories

	Discussion
	Capturing and utilizing individual variability in ASD patients
	Identification of clinically significant networks
	The intergroup differences associated with age
	The summary values reflect brain information processing
	Potential anatomical significance of FC
	Limitations and future directions

	Acknowledgements
	References


