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Abstract
One of the best methods to investigate and calculate a desired quantity using available limited data is the Bayesian statistical method, which
has been recently entered the field of nuclear astrophysics and can be used to evaluate the astrophysical S-factors, the cross sections and, as a
result, the nuclear reaction rates of Big Bang Nucleosynthesis. This study tries to calculate the astrophysical S-factor and the rate of reaction
T(d,n)4He as an important astrophysical reaction with the help of this method in energies lower that electron repulsive barrier, and for this
purpose, it uses the R-Software, which leads to improved results in comparison with the non-Bayesian methods for the mentioned reaction
rate.
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1. Introduction

How is the Big Bang’s correctness investigated?! Big Bang is based
on three pillars: the Cosmic Microwave Background Radiation
(CMBR or CMB), the universe inflation, and the Big Bang
Nucleosynthesis (BBN), the first two of which have been proved
both theoretically and experimentally. However, the third one has
been faced with a serious problem. As one of the main branches of
the nucleosynthesis theory in nuclear astrophysics, through study-
ing the universe evolution using nuclear reactions, the BBN seeks
to calculate the rates of the primary reactions of the very first
moments of the Big Bang. Based on this theory, the Big Bang
leads to the production of hydrogen (and its isotopes including
deuterium and tritium), helium, and a little lithium through pri-
mary reactions network during the first 3 minutes of the universe
life (Cowan et al. 2004; Coc 2016; Weinberg 1993). In this regard,
the calculated values for the abundances of produced hydrogen,
deuterium, and helium are in perfect agreement with the experi-
mental measured values of the astrophysical observations. But the
calculated value for the lithium abundance is three times (Iliadis
et al. 2020) the experimentally measured value. This discrepancy is
known as the cosmological Lithium problem in BBN. The explana-
tions for the lithium problem include unknown systematic effects
in 7Li observations, possible errors in thermonuclear reaction rates
affecting the lithium and beryllium synthesis, physics beyond the
standard model, and imprecise awareness of lithium develop-
ments in stars, despite the determined possible locations for each
nuclei (Iliadis 2023).
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However, it is believed that solving process of the lithium prob-
lem from the point of view of nuclear physics depends on the
accurate calculation of the nucleosynthesis reaction rates related
to the production or destruction of lithium and determining their
exact abundances. Therefore, if the mentioned discrepancy is
solved, the correctness of the BBN and then the Big Bang theory
can be proved.

In this regard, many researches have been already focused on
this problem and this field of research to calculate the exact value
of reaction rates, such as Descouvemont et al. (2004) and Coc et al.
(2015) using R-matrix and χ2-minimisation fits and Adelberger
et al. (2011) for solar system. But lack of enough experimental
data for some important reactions forces the researchers to use
other methods compatible with the harsh situation of the lack of
data that limits the possibility of accurate calculations. The new
methods include Bayesian statistics that fits the mentioned harsh
situation and will be explained in Section 3.

Therefore, in order to improve the mentioned discrepancy
through exact calculating the S-factor and the reaction rates, this
study investigates the S-factor and the reaction rate of T(d,n)4He
as a part of the BBN reactions network using a new method, and
for this purpose, Bayes’ principle and nuclear R-matrix theory are
simultaneously used to infer an accurate output using available
limited experimental data.

2. Importance of the T(d,n)4He reaction

Before this study, a number of studies had focused on the cal-
culation of the rates of some reactions of the BBN reaction
network (Fig. 1) using Bayesian method, such as d(p,γ)3He,
3He(3He,2p)4He and 3He(α,γ)7Be (Iliadis et al. 2016), d(d,n)3He
and d(d,p)3H (Iñesta, Iliadis, & Coc 2017), 3He(d,p)4He (de
Souza et al. 2019a), 7Be(n,p)7Li (de Souza et al. 2020), 3H(d,n)4He
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Figure 1. Big Bang Nucleosynthesis reaction network according to Nakamura et al. (2017). Each line represents a nuclear reaction.

(De Souza, Iliadis, & Coc 2019b), d(p,γ)3He (Moscoso et al. 2021),
and 16O(p,γ)17F (Iliadis, Palanivelrajan, & de Souza 2022), all of
which have been reviewed by (Esmaeili et al. 2022).

Among the BBN reactions network, the T(d,n)4He reaction has
been selected for this study, which has been marked with a red
colour in Fig. 1.

The T(d,n)4He reaction is considered as one of themost impor-
tant reactions of the nuclear fusion for future terrestrial nuclear
reactors because of its theoretical high nuclear gain of about 450–
1 000. It is even considered and investigated as a space propulsion
source or a power source (Chapman 2011) and also as a source
of energy production in stars, which has the highest cross section
and the amount of energy produced per reaction, which leads to
the stable nucleus of 4He, and is also the basis of higher stages
of fusion in older stars, hence one of the affecting factors on the
lithium problem in BBN. This reaction is also considered as a
possible source of intermediate energy ranged neutrons (Gagliardi
et al. 1989) that can be used in different laboratories.

Because of its importance, as mentioned earlier, this reaction
has been investigated by de Souza et al. (2019b), which resulted
in better and improved S-factor and reaction rate, having lower
calculation uncertainties. For the same reasons, this study tries to
do the same investigation but with some different considerations
in its performed method, which is described in the next section.

3. Method

In this study, Bayesian statistics is used as a new statistical method
for nuclear calculations on the basis of limited available data,
because it gives results with lower uncertainties in comparison
with non-Bayesian methods (such as methods on the basis of χ2-
minimisation). Bayes’ principle (or Bayesian statistics) is used to fit
the existing experimental data in order to further extrapolations.
Bayes’ principle in one of its applied forms can be expressed as
follows:

P
(
θ |y) = L

(
y|θ)

.π(θ)

∫ L
(
y|θ)

.π(θ) dθ
(1)

in which, the numerator expresses the product of the likelihood
[L

(
y|θ)

] (a postulated nuclear model) and the probability density
of the priors [π(θ)] (primary form of the studied parameters in
term of distribution functions), which gives the posterior

[
P
(
θ |y)]

(the updated distribution functions of the parameters as the out-
put of the study) (de Souza et al. 2020). The denominator of the
Equation (1) is a normalisation factor that has no special role in
the calculations of this study and is considered as one, because the
summation of all the possible probabilities is one. The likelihood
in most of nuclear astrophysical calculations is defined as a prod-
uct of the used distribution function for the astrophysical S-factor
and the statistical uncertainty. This form of statistics uses a very
scant experimental data of a phenomenon in order to estimate the
best treat for that phenomenon.

All the basic considered parameters of the used model (like-
lihood) in this study are based on the nuclear R-matrix theory.
According to previous studies in this field, the S-factor, as an
astrophysical replacement for nuclear cross section, in single-level
two-channel R-matrix theory can be written as:

S(E) = Sbare(E) .exp
(

πη
Ue

E

)
(2)

2πη = 0.98951013Z0Z1

√
M0M1

M0 +M1

1
E

(3)

where Sbare is for a nucleus without electron screening effect,
2πη is the Sommerfeld parameter, and Ue is the electron screen-
ing potential (Iliadis 2015). Based on Baye et al. (2000), one can
approximate and expand the S-factor parameter using Taylor
series (expansion) as follows:

Sbare(E) = S(0) + S′(0) E+ 1
2
S′′(0) E2 (4)

in which, to calculate the Sbare using R-matrix theory, the following
nuclear relation is considered:

Sbare(E) = E. exp(2πη) .σdn(E) (5)

in which, the reaction cross section (σdn) is

σdn(E) = π

k2d

2J + 1
(2J1 + 1) (2J2 + 1)

|Sdn|2 (6)

where kd is the deuteron (projectile) wave number, J1=1/2 and
J2=1 are the spins of the T (or 3H) and deuteron ground state,
respectively, with (J=3/2) in this study, and Sdn is the scattering
matrix element as follows:
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|Sdn|2 = �d�n

(E0 + � − Er)
2 + (�/2)2

(7)

where �d and �n are, respectively, the partial widths of the input
channel 3H + d and the output channel 4He + n, � is the total
width, � is the level shift, E0 is eigenvalue of energy, and Er is
the resonance energy of the studied reaction. The partial and total
widths, and the level shift follow the below equations, respectively:

� =
∑
c

�c, �c = 2γ 2
c Pc (8)

� =
∑
c

�c = �1 + �2,

�c = −γ 2
c (Sc − Bc) (9)

where γ2
c is the reduced width, Bc is the boundary condition

parameter, and the energy-dependent quantities Pc and Sc are,
respectively, the penetration factor and shift factor for channel c
of a reaction (each of the two allowed reaction channels in this
study) as:

Pc = kdac
F2

	 +G2
	

,

Sc = kdac
(
F	 F′

	 +G	 G′
	

)
F2

	 +G2
	

(10)

in which 	 is the orbital angular momentum of the reaction
channel. The other useful parameter in R-matrix theory is ac as
the radius of the reaction channel:

ac = r0
(
A

1
3
1 +A

1
3
2

)
(11)

where A1 and A2 are the mass numbers of two interacting nuclei
(here, T and D), and r0 is a constant number between 1 and 2 fm.

The above-mentioned parameters are introduced in the
Bayesian model of this study as the fitting parameters in the forms
of probability density functions (PDF), which finally will result in
the extrapolated S-factor distribution.

At the end, by numerical integration of reaction rate Equation
(12), using the resulted S-factor, the reaction rates of T(d,n)4He
are calculated for temperatures in the range of 1 MK to 10 GK:

NAσυ =
(

8
πm01

) 1
2 NA(
kT

) 3
2

∗ ∫∞
0 S(E) . exp(−2πη) exp

(
− E
kT

)
dE

(12)

wherem01 is the reduced mass of the target and projectile, and kT
is in term ofMeV, which corresponds to Giga Kelvin temperatures.

However, the definedmodel in R-software for Bayesian analysis
includes two types of parameters: physical parameters (resonance
energy, reduced widths, and channel radii) and experimental
parameters (data uncertainty and normalisation coefficients). Of
course, in the end, only the S-factor is reported as the final goal of
this study. Same as de Souza et al. (2020), in this study, the defined
normal probability densities related to the priors of the physical
parameters are truncated at zero (to not being negative). The con-
sidered priors are specified in Table 1 (γ 2

WL ≈ �

μ.a2 is the Wigner
limit with reduced mass μ of the interacting components, Bohr
radius a, and Planck constant �).

The calculating Markov chain of this study is based on a
Metropolis–Hastings algorithm, and the model used to calculate

Table 1. The priors of the Bayesian model of
this study.

Parameter Prior

E0 Uniform (0.02, 0.08)

EB TruncNormal (0, 1.02)

γ 2d TruncNormal
[
0,

(
γ 2WL,d

)2]
γ 2n TruncNormal

[
0,

(
γ 2WL,n

)2]
ad Uniform (2.5, 10.0)

ap Uniform (2.5, 10.0)

Uc TruncNormal (0, 0.012)

σ extr TruncNormal (0, 52)

ξ Lognormal (0, σ 2L )

the S-factor has the following nested form that contrary to de
Souza et al. (2019b) and has four chains with the length of 50 000
and Burn-in of 1 000:

S′
i ∼Normal

(
Si, σ 2

extr.i
)

(13)

S′′
i,j = fS,j × S′

i (14)

Sexpi,j ∼Normal
(
S′′
i,j, σ

2
Stat.i

)
(15)

where Si is the experimental data of the S-factor, f s is the statis-
tical scaling factor, and σ represents the mentioned uncertainties
of the calculations. For the scaling factor (f s), which is a number
close to 1, the non-informative prior function was introduced with
the form of the normal PDF, which has a mean value of 0 and
a standard deviation of 100, and was again truncated at 0 to be
positive. The indices ‘extr’ stand for the total unknown sources of
the uncertainties, including statistical uncertainty and systematic
uncertainty.

Furthermore, the experimental data points that were used as
the input data into the defined model, along with the results of
the defined model of this study for data extrapolation, will be
mentioned later in the next section.

4. Results and discussion

At first, it must be mentioned that, since all experiments are
faced with uncertainties, which are divided into two Statistical and
Systematic uncertainties, we have a reaction rate or equivalently
the astrophysical S-factor as S±stat

±sys , with ±stat and ±sys showing
the statistical and systematic uncertainties, respectively.

There are a few data for S-factor in some limited areas of
energy. In this study, all of the available datasets for the reac-
tion are simultaneously used to find the curve of the studied
quantity and also to estimate the value of S-factor in the missed
areas using statistical fitting methods, such as extrapolations that
are based on Bayesian principal. It must be emphasised that the
mentioned data points are all of the available valid data that
are based on experiments. However, to analyse the behaviour of
the astrophysical S-factor (equivalent to the cross section) of the
deuterium-tritium reaction, T(d,n)4He, in the low-energy regions,
the data of Jarmie et al. (1984), Brown, Jarmie, & Hale (1987),
Kobzev et al. (1966), Arnold et al. (1954), and Conner, Bonner, &
Smith (1952) (see Appendix A) were used in our Bayesian model
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Figure 2. The astrophysical S-factor (equivalent to the cross section) for T(d,n)4He. Panel (a) shows the distribution of the data points, and the panel (b) shows the Bayesian fit for
the data points as a blue line, and the grey credible interval.

mentioned in Section 3, which resulted in Fig. 2 as the data fit for
the astrophysical S-factor.

As can be seen, the behaviour of the S-factor at low energies is
dominated by a broad resonance at an energy lower than 50 keV,
and as the energy decreases, its value also drops to about 12MeV.b.

However, after the final fitting process, the value of Sbare−0 =
12.11±0.089

±0.091 MeV.b was obtained that found to be in very good
agreement with the results of de Souza et al. (2019b) in their Fig. 3,
with a very slight difference: the uncertainty value in this study is
slightly higher than those of de Souza et al. (2019b). Also, in com-
parison, for example, with S0.04 = 25.87± 0.49MeV.b from Bosch
et al. (1992), which obviously represents higher uncertainties, the
results of the Bayesian method yields lower uncertainties, hence
a better result. It should be noted that the value reported by de
Souza et al. (2019b) for the S-factor is not for zero energy ( 	=S0),
but instead, for the value of S-factor in energies about 0.04 (S0.04 =
25.438±0.080

±0.089 MeV.b), which is again in very close agreement with
the value obtained in the diagram of Fig. 2 of this study. Regarding
this difference between the reported S-factors for different energy
regions, the reported S-factors of the two studies just apparently
seem to be different, but in fact, they are not, since the S-factor on
the 0.04 MeV in this study is S0.04 = 25.518±0.085

±0.088 MeV.b, which is
closely similar to the one reported by de Souza et al. (2019b) at the
same energy.

Furthermore, for the electron screening effect, as can be seen
in Fig. 2 as the astrophysical S-factor variation diagram, at very
low energies (less than 10 keV), no significant electron screening

effect can be expressed for this reaction, and only a limit can be
considered, which of course will have a small value (about only a
few eV), and for this reason, the S-factor diagram does not increase
at very low energies under the influence of this effect and does
not goes up but instead is stopped at a certain value. The result of
this study as the non-significant electron screening effect for the
T(d,n)4He reaction is in full agreement with the result of de Souza
et al. (2019b), while this result disagree with the reports of some
studies, including Langanke et al. (1989). The agreement between
the results of this study and those of de Souza et al. (2019b) shows
that choosing a higher number of Markov chains with different
length and Burn-in does not make significant differences on the
final results.

Moreover, from the diagram of Fig. 2, it can be seen that the
data of Kobzev et al (1966) in the sequence of higher energies
describes the behaviour of the S-factor better than those of Kobzev
et al. (1966) and also Arnold et al. (1954), whose data provide a
better description of the S-factor in low energies, while the study
of Conner et al. (1952) describes the variations of the S-factor very
well in both high- and low-energy regions.

At the end, using the resulted S-factor (Sbare), and after replac-
ing it in the reaction rate formula (Equation (12)), the reaction rate
values can be calculated for a range of temperatures, whose output
graph is as Fig. 3 indicates.

The reaction rate curve has been plotted by numerical integra-
tion of Equation (12) using the same S-factor (S-bare) of the previ-
ous section (calculated using the Bayesian model) and considering

https://doi.org/10.1017/pasa.2024.15 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2024.15


Publications of the Astronomical Society of Australia 5

Figure 3. Reaction rate at GK for T(d,n)4He. Panel (a) shows the distribution of the reaction rate data points, and the panel (b) shows the Bayesian fit for them as a blue line, and
the grey credible interval.

the 50th percentiles of the deduced probability densities. These
values can be found in Appendix B.

It can be seen in Fig. 3 that with the increase in the tempera-
ture, since the kinetic energy of the interacting particles increases,
conditioned by enough or high abundances of deuteron and tri-
tium in the environment, the reaction rate grows until it reaches
a limit of about 5× 108 cm−3mol−1s−1. Of course, further growth
of the reaction rate is possible and is not limited to the mentioned
value, but the conditions and temperature of the environment (the
energy of the interacting particles) play vital roles in the occur-
rence of the reaction. At the lower temperatures (energies), due
to the energy decrease of the interacting particles (deuterium and
tritium), which are less able to penetrate the Coulomb repulsive
barrier, the reaction rate undergoes a sharp exponential decrease
and gives a value close to zero, which can be seen in the diagram,
but this reduction of the rate to zero is actually due to the insignif-
icant rate of the reaction, and in practice, it does not exactly mean
as the complete cessation of the reaction in the star environment.

The exponential curve of Fig. 3 is an estimate of the
likely behaviour of the reaction rate function with respect to

temperature. As mentioned, the changes of the reaction rate of
T(d,n)4He can be considered as relatively exponential.

Reconsidering the changes of the temperature, the energy and
the resulted astrophysical S-factor for the d-t reaction in terms of
each other obtains the following contour plots of Figs. 4 and 5.

In the graph of Fig. 4, the blue area shows the lowest S-factors,
while the red area shows the highest values of the S-factor in terms
of temperature and energy. As can be seen in the contour plot
of Fig. 4, the value of the S-factor at an energy of about 50 keV
and a temperature of about 5.8 K has a maximum value, which is
actually the resonance of the cross section of the reaction in the
mentioned energy (temperature) region. But in the areas around
it, the S-factor decreases, which is a good representation of the
resonant behaviour of the cross section of the studied reaction in
this energy range; hence a proof that the studied reaction has a
resonant behaviour in this region.

Also, the presence of S-factor values can be seen only in the
upper regions of above the line E=a1T. It should be noted that
the energy and temperature of the stellar environment, where the
reactions take place, are actually equivalent concepts in nuclear

https://doi.org/10.1017/pasa.2024.15 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2024.15


6 S.S. Esmaeili et al.

Figure 4. Astrophysical S-factor (MeV.b) contour plot as a quantity for reaction rate in terms of temperature (Kelvin) and energy (keV) for the T(d,n)4He reaction.

Figure 5. Astrophysical S-factor (MeV.b) contour plot as a quantity for reaction rate in
terms of logarithmic temperature (Kelvin) and energy (keV) for the T(d,n)4He reaction.

physics, hence linearly dependent on each other with a coef-
ficient as a1. As a result, the linear dependence of these two
quantities can be seen as black diagonal lines having the slope
of a1 and a2. Naturally, in the area below the line E=a1T, the
S-factor does not have any values, because in this area, temper-
ature and energy are not of the same nature; hence, a specific
cross section cannot be obtained in this circumstance. The slope
a1 indicating the dependence between the two quantities of energy
and temperature as E=a1T is the conversion coefficient between
two mentioned quantities in nuclear physics (a1=11 600 eV/300
K= 38.67 eV K-1).

It is also noteworthy that the value of the S-factor will be limited
to a certain upper limit. Therefore, according to the diagram, the

value of S-factor will be between the two border regions of E=a1T
and E=a2T. The slope of the upper boundary line (a2) will depend
on the value of different values of the S-factor, because especially
for some energy and temperature values, several close cross sec-
tions (S-factor) are obtained from different studies. As a result, the
resulting contour plot will have two boundaries (or a hill-top point
in its 3D view).

In the diagram of Fig. 5, where the temperature has been plot-
ted logarithmically, again the S-factor is maximised in the energy
of about 50 keV and the logarithmic temperature equal to about
0.58 (with the corresponding unit), showing the same resonance
that was mentioned before, and having the same dependence line
of energy and temperature as E=a1T(a1=11 600 eV/300K = 38.67
eV K−1).

The importance of the two diagrams of Figs. 4 and 5 is that
the simultaneous dependence of the astrophysical S-factor on both
energy and temperature quantities can be seen, and at the same
time, the resonance in the cross section of the reaction is well
evident.

However, as a comparison with this study, the model used by
de Souza et al. (2019b) had three longer chains, while the model of
this study uses four shorter chains instead, to investigate the cal-
culation independency of the number and length of the chains. It
must be mentioned that the whole other studies in this field, such
as Iliadis et al. (2016), de Souza et al. (2019a), (2020), Moscoso
et al. (2021), and Iliadis et al. (2022) have used three chains for
their calculations.

Furthermore, this study mainly uses dnorm and dunif func-
tions for its defined models so as to consider a normal distribu-
tions for the input data, which makes no significant difference on
the final results in comparison with other studies, such as de Souza
et al. (2019b).

However, according to the numerical values obtained for the
studied reaction (increase in the cross section and as a result, the
increase in the reaction rate of T(d,n)4H), and by referring to
Fig. 1, it can be seen that this increase will require more deuteron
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consumption; therefore, the amount of the conversion of these two
nuclei into lithium will reduce to a negligible extent, which con-
firms the reduction of the discrepancy between the theoretical and
experimental values of lithium abundances, hence leading to an
improvement in lithium problem. But due to the slight decrease
of this value, it cannot be claimed that the existing problem has
been completely resolved, but only an insignificant reduction (in
the range of only a few percent compared to the difference of
three times between the theoretical and experimental values) will
be resulted, and the lithium problem will still remain, the reason
for which should be in other cases, including a correction on the
Big Bang theory.

5. Conclusion

In this study, using the R-program (R Core team 2015), four
short Markov chains using a Bayesian model (likelihood) hav-
ing different components with different values and distribution
functions in comparison with latest studies in this field were used
in order to find the behaviour of the astrophysical S-factor and
consequently the reaction rate for T(d,n)4He as one of the most
important reactions in nuclear astrophysics, playing a crucial role
in BBN.

As the first result, making changes in the defined models and
functions with different imported values and also changing the
Markov chains made no significant difference in the final values
of the S-factor or the studied reaction rate.

Also, as the second result of this study, despite the innova-
tion and efficiency of Bayesian method, only little improvements
have been made on the primary lithium abundances. Therefore,
to justify this condition and the inadequacy of the models used so
far to solve the lithium problem, this interpretation can be pro-
posed that these kinds of calculations have no significant impact
on the abundance of lithium, and as a result, the reason for the
discrepancy between the theoretical and experimental values of
the initial abundance of lithium should be explained using other
considerations, including a new correct knowledge of the lithium
destructionmechanism in proto-stars or the need for a new related
physics theory, especially correcting the Big Bang theory in some
of its aspects, such as BBN development process, star evolution
process, or so on.

Therefore, despite the correctness and effectiveness of the cur-
rent calculations, the need to complete such calculations is still
remained and other factors should and can be included in to fully
solve the lithium problem.
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Appendix A. The data used for the T(d,n)4He reaction calcu-
lations

± �ECM ± �Sstat Systematic

Reference E (keV) (eV) S (MeV.b) (MeV.b) uncertainty

Jarmie et al. (1984) 4.992 2.4 12.63 0.58 0.0126

5.99 2.66 13.48 0.39 0.0126

6.99 2.92 12.83 0.4 0.0126

7.99 3.18 13.43 0.27 0.0126

9.989 3.44 13.92 0.14 0.0126

11.989 3.7 14.32 0.1 0.0126

15.99 3.96 15.81 0.13 0.0126
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23.994 4.48 18.87 0.08 0.0126

27.996 4.74 20.7 0.09 0.0126

31.998 5 22.19 0.11 0.0126

36.001 5.26 24.02 0.11 0.0126

40.004 5.52 25.28 0.14 0.0126

42.005 5.78 26 0.12 0.0126

44.007 6.04 26.3 0.14 0.0126

46.009 6.3 26.74 0.13 0.0126

46.809 6.4 26.64 0.14 0.0126
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± �ECM ± �Sstat Systematic

Reference E (keV) (eV) S (MeV.b) (MeV.b) uncertainty

Brown et al. (1987) 47.948 9 26.48 0.21 0.0126

50.947 9 26.84 0.21 0.0126

53.942 9 25.89 0.21 0.0126

56.942 9 25.5 0.2 0.0126

59.941 9 25.33 0.19 0.0126

62.941 9 23.44 0.19 0.0126

65.941 9 22.02 0.18 0.0126

69.541 9 20.34 0.16 0.0126

Kobzev et al., (1966) 46 1.2 25.93 0.52 0.025

48 1.2 25.96 0.52 0.025

52 1.3 25.76 0.52 0.025

56 1.4 25.28 0.51 0.025

60 1.5 24.77 0.5 0.025

64 1.3 23.66 0.47 0.025

66 1.3 22.85 0.46 0.025

68 1.4 21.89 0.44 0.025

72 1.4 19.98 0.4 0.025

76 1.5 18.14 0.36 0.025

80 1.6 16.53 0.33 0.025

84 1.7 15.01 0.3 0.025

88 1.8 13.65 0.27 0.025

92 1.8 12.5 0.25 0.025

96 1.9 11.41 0.23 0.025

100 2 10.45 0.21 0.025

104 2.1 9.59 0.19 0.025

108 2.2 8.76 0.18 0.025

112 2.2 7.98 0.16 0.025

116 2.3 7.28 0.15 0.025

120 2.4 6.65 0.13 0.025

124 2.5 6.08 0.12 0.025

128 2.6 5.61 0.11 0.025

132 2.6 5.23 0.1 0.025

136 2.7 4.89 0.1 0.025

140 2.8 4.6 0.09 0.025

144 2.9 4.32 0.09 0.025

148 3 4.11 0.08 0.025

152 3 3.88 0.08 0.025

156 3.1 3.69 0.07 0.025

160 3.2 3.5 0.07 0.025

164 3.3 3.32 0.08 0.025

168 3.4 3.15 0.08 0.025

176 3.5 2.84 0.07 0.025

184 3.7 2.62 0.07 0.025

192 3.8 2.42 0.06 0.025

± �ECM ± �Sstat Systematic

Reference E (keV) (eV) S (MeV.b) (MeV.b) uncertainty

200 4 2.26 0.06 0.025

208 4.2 2.13 0.05 0.025

216 4.3 2 0.05 0.025

224 4.5 1.89 0.05 0.025

232 4.6 1.79 0.04 0.025

240 4.8 1.69 0.04 0.025

248.2 5 1.6 0.04 0.025

256.2 5.1 1.51 0.04 0.025

264.3 5.3 1.44 0.04 0.025

Arnold et al., (1954) 8.98 75 13.34 0.026 0.02

9.32 75 13.703 0.027 0.02

9.47 75 13.508 0.027 0.02

9.52 75 13.6 0.027 0.02

11.95 75 14.068 0.028 0.02

11.99 75 13.849 0.028 0.02

12.03 75 13.68 0.027 0.02

12.81 75 14.302 0.029 0.02

12.83 75 14.957 0.03 0.02

14.48 75 14.939 0.03 0.02

14.68 75 15.753 0.031 0.02

14.89 75 15.448 0.03 0.02

18.33 75 16.921 0.034 0.02

18.35 75 16.989 0.032 0.02

19.92 75 17.249 0.034 0.02

20.27 75 17.721 0.035 0.02

23.95 75 18.969 0.038 0.02

23.97 75 18.366 0.036 0.02

25.17 75 20.718 0.021 0.02

25.26 75 20.755 0.021 0.02

25.32 75 19.969 0.02 0.02

25.66 75 19.92 0.02 0.02

25.72 75 20.596 0.02 0.02

26.09 75 20.277 0.02 0.02

26.38 75 20.525 0.02 0.02

29.95 75 21.766 0.022 0.02

31.16 75 22.749 0.023 0.02

31.52 75 22.695 0.023 0.02

35.36 75 24.314 0.024 0.02

35.38 75 24.589 0.024 0.02

37 75 24.967 0.025 0.02

37.16 75 25.184 0.025 0.02

41.23 75 26.6 0.027 0.02

41.25 75 26.514 0.026 0.02

43.29 75 27.067 0.027 0.02

42.49 75 26.847 0.027 0.02
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± �ECM ± �Sstat Systematic

Reference E (keV) (eV) S (MeV.b) (MeV.b) uncertainty

46.61 75 27.446 0.027 0.02

46.64 75 27.365 0.027 0.02

46.65 75 27.489 0.027 0.02

47.22 75 27.505 0.027 0.02

47.25 75 27.542 0.027 0.02

52.8 75 26.975 0.027 0.02

52.83 75 27.085 0.027 0.02

58.66 75 25.621 0.025 0.02

58.68 75 25.669 0.026 0.02

61.39 75 24.593 0.024 0.02

61.43 75 24.492 0.024 0.02

64.51 75 23.071 0.023 0.02

64.54 75 23.157 0.023 0.02

67.37 75 22.002 0.022 0.02

67.39 75 21.951 0.022 0.02

70.39 75 20.445 0.02 0.02

70.44 75 20.227 0.02 0.02

Conner et al. (1952) 12.42 60 13.23 0.13 0.018

15.48 73 15.17 0.15 0.018

18.6 86 15.79 0.16 0.018

20.7 99 17.33 0.17 0.018

21.78 112 17.38 0.17 0.018

24.9 125 18.23 0.18 0.018

28.02 138 19.7 0.2 0.018

29.1 151 20.13 0.2 0.018

31.2 163 21.8 0.22 0.018

33.24 175 22.91 0.23 0.018

34.26 189 21.59 0.21 0.018

37.38 201 23.8 0.24 0.018

40.5 213 25.31 0.25 0.018

41.58 225 25.72 0.26 0.018

43.68 237 25.93 0.26 0.018

45.72 249 25.9 0.26 0.018

46.8 261 25.44 0.25 0.018

49.98 273 26.83 0.27 0.018

54.18 285 25.53 0.26 0.018

56.22 297 26.6 0.27 0.018

58.26 309 25.89 0.26 0.018

62.4 321 24.61 0.25 0.018

65.4 333 23.43 0.23 0.018

66.6 345 22.9 0.23 0.018

69 357 21.82 0.22 0.018

75 369 19.23 0.2 0.018

80.4 381 16.97 0.17 0.018

81.6 393 16.6 0.17 0.018

± �ECM ± �Sstat Systematic

Reference E (keV) (eV) S (MeV.b) (MeV.b) uncertainty

85.8 405 14.96 0.15 0.018

87.6 417 14.27 0.14 0.018

91.8 429 12.9 0.13 0.018

93.6 441 12.33 0.12 0.018

97.2 453 11.02 0.11 0.018

100.2 465 10.63 0.11 0.018

103.8 477 9.91 0.1 0.018

109.8 489 8.99 0.09 0.018

123 501 6.79 0.07 0.018

136.2 513 5.44 0.05 0.018

150.6 526 4.43 0.04 0.018

165.6 540 3.55 0.04 0.018

181.2 553 2.89 0.03 0.018

197.4 570 2.51 0.03 0.018

214.2 600 2.16 0.02 0.018

Appendix B. The Data calculated and used for the T(d,n)4He
reaction rate diagram of Fig. 3.

T (GK) Reaction rate as 50th percentile of PDF (cm3mol-1s-1)

0.001 1.999× 10−7

0.002 1.447× 10−3

0.003 1.050× 10−1

0.004 1.541× 100

0.005 1.038× 101

0.006 4.410× 101

0.007 1.400× 102

0.008 3.619× 102

0.009 8.071× 102

0.010 1.618× 103

0.011 2.940× 103

0.012 4.999× 103

0.013 8.054× 103

0.014 1.244× 104

0.015 1.835× 104

0.016 2.615× 104

0.017 3.500× 104

0.018 4.995× 104

0.020 8.420× 104

0.025 2.502× 105

0.030 5.746× 105

0.040 1.950× 106
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T (GK) Reaction rate as 50th percentile of PDF (cm3mol-1s-1)

0.050 4.641× 106

0.060 9.016× 106

0.070 1.533× 107

0.080 2.351× 107

0.090 3.362× 107

0.100 4.540× 107

0.110 5.880× 107

0.120 7.333× 107

0.130 8.880× 107

0.140 1.060× 108

0.150 1.220× 108

0.160 1.392× 108

0.170 1.551× 108

0.180 1.735× 108

0.190 1.893× 108

0.200 2.077× 108

0.250 2.850× 108

0.300 3.500× 108

0.350 4.002× 108

0.400 4.380× 108

0.450 4.700× 108

0.500 4.881× 108

0.600 5.122× 108

0.700 5.215× 108

0.800 5.212× 108

0.900 5.160× 108

1.000 5.071× 108
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