ON OPERATOR ALGEBRAS AND INVARIANT SUBSPACES

CHANDLER DAVIS, HEYDAR RADJAVI, AND PETER ROSENTHAL

If \mathfrak{A} is a collection of operators on the complex Hilbert space \mathscr{H} , then the lattice of all subspaces of \mathscr{H} which are invariant under every operator in \mathfrak{A} is denoted by Lat \mathfrak{A} . An algebra \mathfrak{A} of operators on \mathscr{H} is defined (3; 4) to be *reflexive* if for every operator B on \mathscr{H} the inclusion Lat $\mathfrak{A} \subseteq$ Lat B implies $B \in \mathfrak{A}$.

Arveson (1) has proved the following theorem. (The abbreviation "m.a.s.a." stands for "maximal abelian self-adjoint algebra".)

ARVESON'S THEOREM. If \mathfrak{A} is a weakly closed algebra which contains an m.a.s.a., and if Lat $\mathfrak{A} = \{\{0\}, \mathcal{H}\}$, then \mathfrak{A} is the algebra of all operators on \mathcal{H} .

A generalization of Arveson's Theorem was given in (3). Another generalization is Theorem 2 below, an equivalent form of which is Corollary 3. This theorem was motivated by the following very elementary proof of a special case of Arveson's Theorem.[†]

THEOREM 1. If \mathfrak{A} is a weakly closed algebra of operators on \mathscr{H} containing an m.a.s.a. whose atoms span \mathscr{H} , and if Lat $\mathfrak{A} = \{\{0\}, \mathscr{H}\}$, then \mathfrak{A} is the algebra of all operators on \mathscr{H} .

Proof. By hypothesis, \mathscr{H} has an orthonormal basis $\{e_{\alpha}\}$ consisting of eigenvectors of the m.a.s.a. contained in \mathfrak{A} . Let P_{α} denote the projection onto e_{α} . Then P_{α} is in the m.a.s.a., and hence in \mathfrak{A} . Now, for each fixed α , $\{Ae_{\alpha}: A \in \mathfrak{A}\}$ is an invariant linear manifold for \mathfrak{A} , and hence is dense in \mathscr{H} . Thus if B is any operator on \mathscr{H} , then BP_{α} is in the strong closure of $\mathfrak{A}P_{\alpha}$. However, $\mathfrak{A}P_{\alpha} \subseteq \mathfrak{A}$. Hence BP_{α} is in \mathfrak{A} , and therefore so is B, the (weak) sum of the BP_{α} .

If (the ranges of) the projections P_1 and P_2 are in Lat \mathfrak{A} , then P_2 is said to *cover* P_1 in Lat \mathfrak{A} if $P_1 < P_2$ and if Lat \mathfrak{A} does not contain any projections properly between P_1 and P_2 .

THEOREM 2. Let \mathfrak{A} be a weakly closed algebra of operators on \mathscr{H} containing an m.a.s.a. and let

 $\mathscr{F}(\mathfrak{A}) = \{P_2 - P_1: P_2 \text{ covers } P_1 \text{ in Lat } \mathfrak{A}\}.$

If the projections in $\mathscr{F}(\mathfrak{A})$ span \mathscr{H} , then \mathfrak{A} is reflexive.

Received April 22, 1968.

 $^{^{\}dagger}Added$ in proof. Arveson has informed us (oral communication) that he too was aware of this simple proof.

Proof. Denote the m.a.s.a. by \mathfrak{N} . Since Lat $\mathfrak{A} \subseteq$ Lat \mathfrak{N} , $\mathscr{F}(\mathfrak{A})$ is commutative. We shall show that if P and Q are distinct members of $\mathscr{F}(\mathfrak{A})$, then PQ = 0. First observe that if P, P_1 , and P_2 are projections in Lat \mathfrak{A} and if $P_2 - P_1 \in \mathscr{F}(\mathfrak{A})$, then either P contains $P_2 - P_1$ or $P(P_2 - P_1) = 0$. (This is so since $(P \vee P_1)P_2 \in$ Lat \mathfrak{A} and $P_1 \leq (P \vee P_1)P_2 \leq P_2$. Since P_2 covers P_1 , $(P \vee P_1)P_2$ is either P_1 or P_2 .) Now if $Q = Q_1 - Q_2 \in \mathscr{F}(\mathfrak{A})$ with $Q_i \in$ Lat \mathfrak{A} , then $PQ = (P_2 - P_1)Q_2 - (P_2 - P_1)Q_1$, and applying the above observation twice we see that either PQ = 0 or $PQ = P_2 - P_1 = P$. Interchanging the roles of P_i with Q_i , we also see that either PQ = 0 or PQ = Q. Hence, if $PQ \neq 0$, then PQ = P = Q.

Next let B be any operator such that Lat $\mathfrak{A} \subseteq$ Lat B. In order to show that $B \in \mathfrak{A}$, we shall prove that $PBQ \in \mathfrak{A}$ for every P and Q in $\mathscr{F}(\mathfrak{A})$. This will suffice, since $B = \sum PBQ$ (in the weak sense) with P and Q varying over $\mathscr{F}(\mathfrak{A})$.

(i) We first show that $PBP \in \mathfrak{A}$ for every $P \in \mathscr{F}(\mathfrak{A})$. If $P \in \mathscr{F}(\mathfrak{A})$, then, since $P \in \mathfrak{N} \subseteq \mathfrak{A}$, $P\mathfrak{A}P$ is a subalgebra of \mathfrak{A} ; this subalgebra (when considered as an algebra of operators on the range of P) contains the m.a.s.a. $P\mathfrak{N}P$. We next show that $P\mathfrak{A}P$ has no proper invariant subspaces: let $P = P_2 - P_1$, where P_2 covers P_1 in Lat \mathfrak{A} , and let $Q \leq P$ such that (PAP)Q = Q(PAP)Q for all $A \in \mathfrak{A}$. Then $P_1 + Q \in Lat \mathfrak{A}$. (To see this, we note that PAQ = QAQ and

$$AQ = AP_2Q = P_2AP_2Q = (P_1 + P)AQ = P_1AQ + QAQ = (P_1 + Q)AQ.$$

Since $P_1 \perp Q$ and $AP_1 = P_1AP_1$, we obtain $P_1 + Q \in \text{Lat } \mathfrak{A}$.) It follows from the inequalities $P_1 \leq P_1 + Q \leq P_2$ that either Q = 0 or Q = P.

Arveson's Theorem now implies that $P\mathfrak{A}P = P\mathfrak{B}(\mathscr{H})P$, where $\mathfrak{B}(\mathscr{H})$ is the algebra of all operators on \mathscr{H} , since $P\mathfrak{A}P$ is weakly closed and contains an m.a.s.a. Hence $PBP \in P\mathfrak{A}P$, so that $PBP \in \mathfrak{A}$.

(ii) Let P and Q be two distinct projections in $\mathscr{F}(\mathfrak{A})$. If $Q\mathfrak{A}P = \{0\}$, then the \mathfrak{A} -invariant subspace $\{\mathfrak{A}Px: x \in \mathscr{H}\}$, which is also B-invariant by hypothesis, is orthogonal to Q. Hence QBP = 0.

We now assume that $A_0 \neq 0$, $A_0 \in Q\mathfrak{A}P$ for some A_0 . We shall prove that if x and y are two vectors in the ranges of P and Q, respectively, then there exists $A \in Q\mathfrak{A}P$ such that Ax = y and $A(\{x\} \perp) = 0$. This will then imply, since $Q\mathfrak{A}P$ is weakly closed, that $Q\mathfrak{A}P = Q\mathfrak{B}(\mathscr{H})P$ and, in particular, that $QBP \in \mathfrak{A}$.

By hypothesis, there exist x_0 and y_0 in the ranges of P and Q, respectively, such that $A_0x_0 = y_0 \neq 0$. Since, by (i) above, $P\mathfrak{A}P = P\mathfrak{B}(\mathscr{H})P$ and $Q\mathfrak{A}Q = Q\mathfrak{B}(\mathscr{H})Q$, there exist $A_1 \in P\mathfrak{A}P$ and $A_2 \in Q\mathfrak{A}Q$ such that $A_1x = x_0$, $A_1(\{x\} \cdot) = 0$, and $A_2y_0 = y$. Then $A_2A_0A_1 \in Q\mathfrak{A}P$, $A_2A_0A_1x = y$, and $A_2A_0A_1(\{x\} \cdot) = 0$. This completes the proof of the theorem.

It is perhaps worth noting here that the above proof establishes the following fact about \mathfrak{A} in terms of $\mathscr{F}(\mathfrak{A})$. If

 $\mathscr{C} = \{ (P, Q) : P \text{ and } Q \text{ in } \mathscr{F}(\mathfrak{A}) \text{ and } P\mathfrak{A}Q \neq \{0\} \},\$

then \mathfrak{A} is the weak sum of all the algebras $P\mathfrak{B}(\mathscr{H})Q$ with $(P, Q) \in \mathscr{C}$.

COROLLARY 1. Let \mathfrak{A} be a weakly closed algebra of operators containing an m.a.s.a. such that Lat \mathfrak{A} is finite. Then \mathfrak{A} is reflexive.

Proof. Use induction to form a chain

$$\{0\} = P_0 < P_1 < \ldots < P_{n-1} < P_n = \mathscr{H}$$

in Lat \mathfrak{A} with $P_j - P_{j-1} \in \mathscr{F}(\mathfrak{A})$.

COROLLARY 2. Every algebra of operators on a finite-dimensional Hilbert space which contains an m.a.s.a. is reflexive.

Proof. The lattice of invariant subspaces of an m.a.s.a. on a finite-dimensional Hilbert space is finite.

Under certain hypotheses, the assumption that the algebra \mathfrak{A} in Theorem 2 contains an m.a.s.a. is not needed.

THEOREM 3. Let \mathfrak{A} be a weakly closed algebra of operators containing the projections onto its invariant subspaces. If $\mathscr{F}(\mathfrak{A})$ contains a spanning subset of mutually orthogonal finite-dimensional projections, then \mathfrak{A} is reflexive.

Proof. We follow the lines in the proof of Theorem 2 using, instead of $\mathscr{F}(\mathfrak{A})$, the spanning subset described above. In proving that $P\mathfrak{A}P = P\mathfrak{B}(\mathscr{H})P$ in part (i) of the proof of Theorem 2 we use Burnside's Theorem (2, p. 276) rather than Arveson's, thus not requiring the existence of an m.a.s.a. (Burnside's Theorem states that an algebra \mathfrak{A} of operators on a finite-dimensional space is $\mathfrak{B}(\mathscr{H})$ if and only if Lat $\mathfrak{A} = \{\{0\}, \mathscr{H}\}$.)

The following theorem provides an alternate description of $\mathscr{F}(\mathfrak{A})$. Letting $\mathfrak{A}^* = \{A : A^* \in \mathfrak{A}\}$, we note that $\mathfrak{A} \cap \mathfrak{A}^*$ is the largest von Neumann algebra contained in the weakly closed algebra \mathfrak{A} .

THEOREM 4. If \mathfrak{A} is a weakly closed algebra containing an m.a.s.a., and if \mathfrak{S} is the commutant of $\mathfrak{A} \cap \mathfrak{A}^*$, then P is in $\mathscr{F}(\mathfrak{A})$ if and only if P is an atomic projection in \mathfrak{S} .

Proof. Suppose first that $P \in \mathscr{F}(\mathfrak{A})$ and $P = P_2 - P_1$ with P_2 covering P_1 . Then $P_i \in \operatorname{Lat} \mathfrak{A}$ implies $P_i \in \operatorname{Lat}(\mathfrak{A} \cap \mathfrak{A}^*)$, and hence $P_i \in \mathfrak{S}$. Thus $P \in \mathfrak{S}$. To see that P is an atom, suppose that Q is a projection in \mathfrak{S} and that $Q \leq P$. As shown in the proof of Theorem 2, $P\mathfrak{A}P = P\mathfrak{B}(\mathscr{H})P$, so that $P\mathfrak{A}P \subseteq \mathfrak{A} \cap \mathfrak{A}^*$. Thus $Q \in \mathfrak{S}$ and $Q \leq P$ imply that Q commutes with $P\mathfrak{B}(\mathscr{H})P$. Hence Q = 0 or Q = P.

Conversely, suppose that P is an atom in \mathfrak{S} . Let P_2 be the smallest member of Lat \mathfrak{A} which contains P, and let P_1 be the largest member of Lat \mathfrak{A} which is contained in P_2 and is orthogonal to P. Let $P_0 = P_2 - P_1$. We must show that $P_0 \in \mathscr{F}(\mathfrak{A})$ and that $P_0 = P$.

1180

Suppose that $P_1 \leq Q \leq P_2$ and that Q is in Lat \mathfrak{A} . Then $PQ \in \mathfrak{S}$ and $PQ \leq P$. Thus PQ = P or PQ = 0. If PQ = P, then $Q \geq P$ and therefore $Q \geq P_2$; thus $Q = P_2$. If PQ = 0, then $Q \perp P$ and therefore $Q \leq P_1$, and then $Q = P_1$. This shows that $P_0 \in \mathscr{F}(\mathfrak{A})$.

It is clear that $P \leq P_0$. As we have seen in the first part of this proof, the fact that $P_0 \in \mathscr{F}(\mathfrak{A})$ implies that $P_0\mathfrak{A}P_0 = P_0\mathfrak{B}(\mathscr{H})P_0$. Thus P commutes with $P_0\mathfrak{B}(\mathscr{H})P_0$ and must be P_0 .

COROLLARY 3. If \mathfrak{A} is a weakly closed algebra containing an m.a.s.a., and if the collection of atomic projections in the commutant of $\mathfrak{A} \cap \mathfrak{A}^*$ spans \mathcal{H} , then \mathfrak{A} is reflexive.

Proof. This follows immediately from Theorems 2 and 4.

References

1. W. B. Arveson, A density theorem for operator algebras, Duke Math. J. 34 (1967), 635-647.

2. N. Jacobson, Lectures in abstract algebra, Vol. 2 (Van Nostrand, Princeton, N.J., 1953).

3. H. Radjavi and P. Rosenthal, Invariant subspaces and weakly closed algebras, Bull. Amer. Math. Soc. 74 (1968), 1013–1014.

4. ----- On invariant subspaces and reflexive algebras (to appear in Amer. J. Math.).

University of Toronto, Toronto, Ontario