ON OPERATOR ALGEBRAS AND INVARIANT SUBSPACES

CHANDLER DAVIS, HEYDAR RADJAVI, AND PETER ROSENTHAL

If \mathfrak{A} is a collection of operators on the complex Hilbert space \mathscr{H}, then the lattice of all subspaces of \mathscr{H} which are invariant under every operator in \mathfrak{A} is denoted by Lat \mathfrak{A}. An algebra \mathfrak{A} of operators on \mathscr{H} is defined $(3 ; 4)$ to be reflexive if for every operator B on \mathscr{H} the inclusion Lat $\mathfrak{A} \subseteq$ Lat B implies $B \in \mathfrak{N}$.

Arveson (1) has proved the following theorem. (The abbreviation "m.a.s.a." stands for "maximal abelian self-adjoint algebra".)

Arveson's Theorem. If \mathfrak{H} is a weakly closed algebra which contains an m.a.s.a., and if Lat $\mathfrak{A}=\{\{0\}, \mathscr{H}\}$, then \mathfrak{A} is the algebra of all operators on \mathscr{H}.

A generalization of Arveson's Theorem was given in (3). Another generalization is Theorem 2 below, an equivalent form of which is Corollary 3. This theorem was motivated by the following very elementary proof of a special case of Arveson's Theorem. ${ }^{\dagger}$

Theorem 1. If \mathfrak{A} is a weakly closed algebra of operators on \mathscr{H} containing an m.a.s.a. whose atoms span \mathscr{H}, and if Lat $\mathfrak{H}=\{\{0\}, \mathscr{H}\}$, then \mathfrak{A} is the algebra of all operators on \mathscr{H}.

Proof. By hypothesis, \mathscr{H} has an orthonormal basis $\left\{e_{\alpha}\right\}$ consisting of eigenvectors of the m.a.s.a. contained in \mathfrak{N}. Let P_{α} denote the projection onto e_{α}. Then P_{α} is in the m.a.s.a., and hence in \mathfrak{N}. Now, for each fixed $\alpha,\left\{A e_{\alpha}: A \in \mathfrak{X}\right\}$ is an invariant linear manifold for \mathfrak{H}, and hence is dense in \mathscr{H}. Thus if B is any operator on \mathscr{H}, then $B P_{\alpha}$ is in the strong closure of $\mathfrak{N} P_{\alpha}$. However, $\mathfrak{A} P_{\alpha} \subseteq \mathfrak{A}$. Hence $B P_{\alpha}$ is in \mathfrak{A}, and therefore so is B, the (weak) sum of the $B P_{\alpha}$.

If (the ranges of) the projections P_{1} and P_{2} are in Lat \mathfrak{Y}, then P_{2} is said to cover P_{1} in Lat \mathfrak{H} if $P_{1}<P_{2}$ and if Lat \mathfrak{U} does not contain any projections properly between P_{1} and P_{2}.

Theorem 2. Let \mathfrak{A} be a weakly closed algebra of operators on \mathscr{H} containing an m.a.s.a. and let

$$
\mathscr{F}(\mathfrak{H})=\left\{P_{2}-P_{1}: P_{2} \text { covers } P_{1} \text { in Lat } \mathfrak{U}\right\} \text {. }
$$

If the projections in $\mathscr{F}(\mathfrak{H})$ span \mathscr{H}, then \mathfrak{H} is reflexive.
Received April 22, 1968.
${ }^{\dagger}$ Added in proof. Arveson has informed us (oral communication) that he too was aware of this simple proof.

Proof. Denote the m.a.s.a. by \mathfrak{R}. Since Lat $\mathfrak{H} \subseteq$ Lat $\mathfrak{R}, \mathscr{F}(\mathfrak{H})$ is commutative. We shall show that if P and Q are distinct members of $\mathscr{F}(\mathscr{H})$, then $P Q=0$. First observe that if P, P_{1}, and P_{2} are projections in Lat \mathfrak{A} and if $P_{2}-P_{1} \in \mathscr{F}(\mathfrak{H})$, then either P contains $P_{2}-P_{1}$ or $P\left(P_{2}-P_{1}\right)=0$. (This is so since $\left(P \vee P_{1}\right) P_{2} \in$ Lat \mathfrak{A} and $P_{1} \leqq\left(P \vee P_{1}\right) P_{2} \leqq P_{2}$. Since P_{2} covers $P_{1},\left(P \vee P_{1}\right) P_{2}$ is either P_{1} or $\left.P_{2}.\right)$ Now if $Q=Q_{1}-Q_{2} \in \mathscr{F}$ (弌) with $Q_{i} \in$ Lat \mathfrak{N}, then $P Q=\left(P_{2}-P_{1}\right) Q_{2}-\left(P_{2}-P_{1}\right) Q_{1}$, and applying the above observation twice we see that either $P Q=0$ or $P Q=P_{2}-P_{1}=P$. Interchanging the roles of P_{i} with Q_{i}, we also see that either $P Q=0$ or $P Q=Q$. Hence, if $P Q \neq 0$, then $P Q=P=Q$.

Next let B be any operator such that Lat $\mathfrak{A} \subseteq$ Lat B. In order to show that $B \in \mathfrak{Y}$, we shall prove that $P B Q \in \mathfrak{A}$ for every P and Q in $\mathscr{F}(\mathfrak{H})$. This will suffice, since $B=\sum P B Q$ (in the weak sense) with P and Q varying over $\mathscr{F}(\mathfrak{H})$.
(i) We first show that $P B P \in \mathfrak{H}$ for every $P \in \mathscr{F}(\mathfrak{H})$. If $P \in \mathscr{F}(\mathfrak{H})$, then, since $P \in \mathfrak{R} \subseteq \mathfrak{A}, P \mathfrak{A} P$ is a subalgebra of \mathfrak{A}; this subalgebra (when considered as an algebra of operators on the range of P) contains the m.a.s.a. $P \Re P$. We next show that $P \mathfrak{A} P$ has no proper invariant subspaces: let $P=P_{2}-P_{1}$, where P_{2} covers P_{1} in Lat \mathfrak{A}, and let $Q \leqq P$ such that $(P A P) Q=Q(P A P) Q$ for all $A \in \mathfrak{N}$. Then $P_{1}+Q \in$ Lat \mathfrak{U}. (To see this, we note that $P A Q=Q A Q$ and
$A Q=A P_{2} Q=P_{2} A P_{2} Q=\left(P_{1}+P\right) A Q=P_{1} A Q+Q A Q=\left(P_{1}+Q\right) A Q$.
Since $P_{1} \perp Q$ and $A P_{1}=P_{1} A P_{1}$, we obtain $P_{1}+Q \in$ Lat \mathfrak{A}.) It follows from the inequalities $P_{1} \leqq P_{1}+Q \leqq P_{2}$ that either $Q=0$ or $Q=P$.

Arveson's Theorem now implies that $P \mathscr{H} P=P \mathfrak{B}(\mathscr{H}) P$, where $\mathfrak{B}(\mathscr{H})$ is the algebra of all operators on \mathscr{H}, since $P \mathscr{A} P$ is weakly closed and contains an m.a.s.a. Hence $P B P \in P\left\{\begin{aligned} \\ P\end{aligned}\right.$, so that $P B P \in \mathfrak{N}$.
(ii) Let P and Q be two distinct projections in $\mathscr{F}(\mathfrak{H})$. If $Q \mathscr{Q} P=\{0\}$, then the \mathfrak{N}-invariant subspace $\{\mathscr{H} P x: x \in \mathscr{H}\}$, which is also B-invariant by hypothesis, is orthogonal to Q. Hence $Q B P=0$.

We now assume that $A_{0} \neq 0, A_{0} \in Q \mathcal{H} P$ for some A_{0}. We shall prove that if x and y are two vectors in the ranges of P and Q, respectively, then there exists $A \in Q\{P$ such that $A x=y$ and $A(\{x\} \perp)=0$. This will then imply, since $Q \mathfrak{U} P$ is weakly closed, that $Q \mathfrak{U} P=Q \mathfrak{B}(\mathscr{H}) P$ and, in particular, that $Q B P \in \mathfrak{N}$.

By hypothesis, there exist x_{0} and y_{0} in the ranges of P and Q, respectively, such that $A_{0} x_{0}=y_{0} \neq 0$. Since, by (i) above, $P \mathfrak{A} P=P \mathfrak{B}(\mathscr{H}) P$ and $Q \mathfrak{A} Q=Q \mathfrak{B}(\mathscr{H}) Q$, there exist $A_{1} \in P \mathfrak{H} P$ and $A_{2} \in Q \mathfrak{H} Q$ such that $A_{1} x=x_{0}$, $A_{1}(\{x\} \perp)=0$, and $A_{2} y_{0}=y$. Then $A_{2} A_{0} A_{1} \in Q\left\{P, A_{2} A_{0} A_{1} x=y\right.$, and $A_{2} A_{0} A_{1}(\{x\} \perp)=0$. This completes the proof of the theorem.

It is perhaps worth noting here that the above proof establishes the following fact about \mathfrak{A} in terms of $\mathscr{F}(\mathfrak{H})$. If

$$
\mathscr{C}=\{(P, Q): P \text { and } Q \text { in } \mathscr{F}(\mathfrak{H}) \text { and } P \mathfrak{A} Q \neq\{0\}\},
$$

then \mathfrak{A} is the weak sum of all the algebras $P \mathfrak{B}(\mathscr{H}) Q$ with $(P, Q) \in \mathscr{C}$.
Corollary 1. Let \mathfrak{H} be a weakly closed algebra of operators containing an m.a.s.a. such that Lat \mathfrak{H} is finite. Then \mathfrak{H} is reflexive.

Proof. Use induction to form a chain

$$
\{0\}=P_{0}<P_{1}<\ldots<P_{n-1}<P_{n}=\mathscr{H}
$$

in Lat \mathfrak{N} with $P_{j}-P_{j-1} \in \mathscr{F}(\mathfrak{H})$.
Corollary 2. Every algebra of operators on a finite-dimensional Hilbert space which contains an m.a.s.a. is reflexive.

Proof. The lattice of invariant subspaces of an m.a.s.a. on a finite-dimensional Hilbert space is finite.

Under certain hypotheses, the assumption that the algebra \mathfrak{A} in Theorem 2 contains an m.a.s.a. is not needed.

Theorem 3. Let \mathfrak{A} be a weakly closed algebra of operators containing the projections onto its invariant subspaces. If $\mathscr{F}(\mathfrak{H})$ contains a spanning subset of mutually orthogonal finite-dimensional projections, then \mathfrak{H} is reflexive.

Proof. We follow the lines in the proof of Theorem 2 using, instead of $\mathscr{F}(\mathfrak{H})$, the spanning subset described above. In proving that $P \mathfrak{A} P=P \mathfrak{B}(\mathscr{H}) P$ in part (i) of the proof of Theorem 2 we use Burnside's Theorem (2, p. 276) rather than Arveson's, thus not requiring the existence of an m.a.s.a. (Burnside's Theorem states that an algebra \mathfrak{H} of operators on a finite-dimensional space is $\mathfrak{B}(\mathscr{H})$ if and only if Lat $\mathfrak{H}=\{\{0\}, \mathscr{H}\}$.)

The following theorem provides an alternate description of $\mathscr{F}(\mathfrak{H})$. Letting $\mathfrak{Y}^{*}=\left\{A: A^{*} \in \mathfrak{A}\right\}$, we note that $\mathfrak{H} \cap \mathfrak{U}^{*}$ is the largest von Neumann algebra contained in the weakly closed algebra \mathfrak{A}.

Theorem 4. If \mathfrak{A} is a weakly closed algebra containing an m.a.s.a., and if \mathfrak{S} is the commutant of $\mathfrak{A} \cap \mathfrak{U}^{*}$, then P is in $\mathscr{F}(\mathfrak{H})$ if and only if P is an atomic projection in \subseteq.

Proof. Suppose first that $P \in \mathscr{F}(\mathfrak{H})$ and $P=P_{2}-P_{1}$ with P_{2} covering P_{1}. Then $P_{i} \in$ Lat \mathfrak{A} implies $P_{i} \in \operatorname{Lat}\left(\mathfrak{H} \cap \mathfrak{H}^{*}\right)$, and hence $P_{i} \in \mathbb{S}$. Thus $P \in \mathbb{S}$. To see that P is an atom, suppose that Q is a projection in $\subseteq \subseteq$ and that $Q \leqq P$. As shown in the proof of Theorem $2, P \mathfrak{H} P=P \mathfrak{B}(\mathscr{H}) P$, so that $P \mathfrak{A} P \subseteq \mathfrak{H} \cap \mathfrak{H}^{*}$. Thus $Q \in \mathbb{S}$ and $Q \leqq P$ imply that Q commutes with $P \mathfrak{B}(\mathscr{H}) P$. Hence $Q=0$ or $Q=P$.

Conversely, suppose that P is an atom in \mathfrak{S}. Let P_{2} be the smallest member of Lat \mathfrak{A} which contains P, and let P_{1} be the largest member of Lat \mathfrak{A} which is contained in P_{2} and is orthogonal to P. Let $P_{0}=P_{2}-P_{1}$. We must show that $P_{0} \in \mathscr{F}(\mathfrak{H})$ and that $P_{0}=P$.

Suppose that $P_{1} \leqq Q \leqq P_{2}$ and that Q is in Lat \mathfrak{A}. Then $P Q \in \mathbb{S}$ and $P Q \leqq P$. Thus $P Q=P$ or $P Q=0$. If $P Q=P$, then $Q \geqq P$ and therefore $Q \geqq P_{2}$; thus $Q=P_{2}$. If $P Q=0$, then $Q \perp P$ and therefore $Q \leqq P_{1}$, and then $Q=P_{1}$. This shows that $P_{0} \in \mathscr{F}(\mathfrak{H})$.

It is clear that $P \leqq P_{0}$. As we have seen in the first part of this proof, the fact that $P_{0} \in \mathscr{F}(\mathfrak{H})$ implies that $P_{0} \mathscr{H} P_{0}=P_{0} \mathfrak{B}(\mathscr{H}) P_{0}$. Thus P commutes with $P_{0} \mathfrak{B}(\mathscr{H}) P_{0}$ and must be P_{0}.

Corollary 3. If \mathfrak{H} is a weakly closed algebra containing an m.a.s.a., and if the collection of atomic projections in the commutant of $\mathfrak{H} \cap \mathfrak{U}^{*}$ spans \mathscr{H}, then \mathfrak{A} is reflexive.

Proof. This follows immediately from Theorems 2 and 4.

References

1. W. B. Arveson, A density theorem for operator algebras, Duke Math. J. 34 (1967), 635-647.
2. N. Jacobson, Lectures in abstract algebra, Vol. 2 (Van Nostrand, Princeton, N.J., 1953).
3. H. Radjavi and P. Rosenthal, Invariant subspaces and weakly closed algebras, Bull. Amer. Math. Soc. 74 (1968), 1013-1014.
4. - On invariant subspaces and reflexive algebras (to appear in Amer. J. Math.).
[^0]
[^0]: University of Toronto, Toronto, Ontario

