ON DIFFERENTIABLE ARCS AND CURVES, VI: SINGULAR OSCULATING SPACES OF CURVES OF ORDER n + 1 IN PROJECTIVE *n*-SPACE

PETER SCHERK

To Donald Coxeter on his sixtieth birthday

A closed curve K^{n+1} of order n + 1 in real projective *n*-space R_n has a maximum number of n + 1 points in common with any (n - 1)-space. These curves are subjected to certain differentiability assumptions which make it possible to describe their singular points and to provide them with multiplicities in analogy with algebraic geometry. If N_p^n denotes the number of (n - p)-times singular points, then

(1)
$$\sum_{0}^{n-1} (n-p) N_{p}^{n} \begin{cases} \leq n+1, \\ \equiv n+1 \pmod{2}; \end{cases}$$

cf. (4). In (6), an interpretation of the difference

$$n+1-\sum_{0}^{n-1}(n-p)N_{\mu}^{n}$$

was given. Necessary and sufficient conditions for equality to hold in (1) can readily be stated (2; 4).

The next step in the study of the K^{n+1} would be the inclusion of certain singular pairs of points. A *p*-space in R_n was called *special* (4) if it met the K^{n+1} (p + 2)-times and if none of its (p - 1)-subspaces met the curve (p + 1)times. Denote the number of special subspaces through exactly *j* different points of K^{n+1} which contain the osculating p_1 -space of one of them, the osculating p_2 -space of another, etc., by

$$N^n_{p_1,p_2,\ldots,p_j}$$
.

We proved in (6) that the numbers N_{pq}^{n} are bounded for a given $n (p + q \le n - 2)$; and in (5) that

(2)
$$\sum_{0}^{n-1} (n-p)N_{p}^{n} + \sum_{0}^{n-2} (n-p-1)N_{p0}^{n} < \frac{1}{4}n^{2} + \frac{3}{2}n.$$

In the present paper we wish to improve (1) and (2) and to show that

(3)
$$\sum_{0}^{n-1} (n-p)N_{p}^{n} + \frac{1}{2}\sum_{1}^{n-2} (n-p-1)N_{p0}^{n} + (n-1)N_{00}^{n} \leq n+1.$$

Received May 3, 1967

We conjecture that the factor $\frac{1}{2}$ can be dropped from the middle term; cf. 5.7.

Our discussion will yield the corollary that the numbers N_{p00}^{n} are bounded for given $n \ (0 \le p \le n-4)$.

1. Arcs and curves.

1.1. A curve C is a continuous image of the projective straight line in R_n $(n \ge 1)$. The images of distinct points of the parameter line are interpreted as different points of C even if they coincide in R_n . Then the points of C become the continuous 1–1 images of a parameter s ranging through the parameter line. The point of C with the parameter s will also be denoted by s.

An arc A is the continuous 1-1 image of a segment in R_n .

A neighbourhood of the parameter s in the parameter space is mapped onto a *neighbourhood* of the point s on C (on A). If a sequence of parameter values converges to the parameter s, the corresponding sequence of points on C(on A) is said to be *convergent* to the point s.

1.2. The order of C (of A) is the least upper bound of the number of points that it has in common with an (n - 1)-space. It obviously is not less than n. The order of a point s is the order of a sufficiently small neighbourhood of s on C (on A).

1.3. We call s a point of support (of intersection) with respect to an (n - 1)-space E if some neighbourhood of s has no point $\neq s$ in common with E and if the two arcs into which s decomposes the neighbourhood lie on the same side (on opposite sides) of E. We then call E a supporting (intersecting) (n - 1)-space at s. Thus E supports if $s \notin E$.

1.4. The point s is called *differentiable* if it has osculating spaces $L_p^n(s)$ of all dimensions. Define $L_{-1}^n(s) = \emptyset$. Suppose we have defined $L_p^n(s)$ and postulated its existence. Then we require the (p + 1)-spaces through $L_p^n(s)$ and a point converging on C (on A) to s to converge. Their limit is then the osculating (p + 1)-space $L_{p+1}^n(s)$. Thus $L_0^n(s) = s$, $L_n^n(s) = R_n$.

A subspace is said to contain $L_{p}^{n}(s)$ exactly if it contains $L_{p}^{n}(s)$ but not $L_{p+1}^{n}(s)$.

A curve or arc is called differentiable if each of its points is.

1.5. Let s be a differentiable point on an arbitrary arc which meets $L^{n}_{n-1}(s)$ only a finite number of times. Then there exists a one-row matrix,

$$(a_0, a_1, \ldots, a_{n-1}),$$

the *characteristic* of *s* with the following properties:

(i) each of the numbers a_i is equal to 1 or 2;

(ii) if an (n-1)-space contains exactly $L^n_p(s)$, then it supports (intersects) at s if $a_0 + a_1 + \ldots + a_p$ is even (odd).

If $a_0 = a_1 = \ldots = a_{n-1} = 1$, s is called regular.

The projection of s from a point on $L^n_{p+1}(s) \setminus L^n_p(s)$ has the characteristic

$$\begin{array}{ll} (a_1, a_2, \dots, a_{n-1}) & \text{if } p = -1, \\ (a_0, a_1, \dots, a_{n-2}) & \text{if } p = n-1, \\ (a_0, a_1, \dots, a_{p-1}, a'_p, a_{p+2}, \dots, a_{n-1}) & \text{if } -1$$

here $a'_p \equiv a_p + a_{p+1} \pmod{2}$.

If a subspace contains $L^n_p(s)$ exactly, we count s with the multiplicity $a_0 + a_1 + \ldots + a_p$. In particular, s is counted (p + 1)-times if s is regular.

2. Assumptions and lemmas. The subject of this paper is the differentiable curves K^{n+1} in R_n which are met at most (n + 1)-times by any (n - 1)-space; cf. (3, §3 and 4, p. 72).

2.1. The digits of the characteristic $(a_0, a_1, \ldots, a_{n-1})$ of any point $s \in K^{n+1}$ are equal to one with at most one exception. The order of s is equal to n if and only if s is regular. If $a_p = 2$, we call s (n - p)-times singular. A cusp is *n*-times singular.

A singular point divides a small neighbourhood into two arcs of order n.

At a *p*-fold point, *p* distinct points of a curve coincide; cf. 1.1. A K^{n+1} has no more-than-twofold points. The two points which coincide in a *double point* are regular. If n > 1, the total number $N^{n}_{00} + N^{n}_{0}$ of double points and cusps of a K^{n+1} , i.e. the number of special 0-spaces, is 0 or 1.

2.2. We denote by $C^n(B^n)$ a differentiable curve (arc) of order n in R_n . All of its points are regular and simple. It is met by any p-space at most (p + 1)-times. The sum of the multiplicities of the points that a C^n has in common with an (n - 1)-space is $\equiv n \pmod{2}$. The projection of a $C^n(B^n)$ from one of its points is a $C^{n-1}(B^{n-1})$.

2.3. A *p*-space spanned by osculating spaces of K^{n+1} meets the curve either (p + 1)- or (p + 2)-times. In the first case we call it *regular*; in the other case, *abundant*. Any *p*-space which meets K^{n+1} (p + 2)-times is abundant. If it has no proper abundant subspaces, it is called *special*.

2.4. The projection of a K^{n+1} from a regular (abundant) p-space is a K^{n-p} (a C^{n-p-1}), $0 \le p < n-1$. In particular, its projection from $L^n_p(s)$ is a K^{n-p} if and only if s is at most (n - p - 1)-times singular and $L^n_p(s)$ does not meet K^{n+1} outside s. Thus the projection of K^{n+1} from a double point or cusp is a C^{n-1} ; from any other point of the curve, it is a K^n .

2.5. If each of a sequence of subspaces meets a K^{n+1} or C^n at least *p*-times (in points which converge to *s*), then any limit subspace will meet the curve at least *p*-times (at *s*). In particular, the osculating spaces of a K^{n+1} or C^n are continuous; cf. (3).

3. The mapping $t^n_{n-3,0}$.

3.1. The mapping t_{n-1}^n associated with each point s the point $t_{n-1}^n(s)$ at which $L_{n-1}^n(s)$ meets K^{n+1} again; cf. (4).

In (6), we studied mappings which associated with each point $s \in K^{n+1}$ the set $t^n_m(s)$ of those points which are projected from $L^n_m(s)$ into singular points (m = 0, 1, ..., n - 2). It consists of at most n - m points and may be void. We distinguish different points of this set by prefixed indices: $t^n_m(s)$.

If the projection of $t \neq s$ from s is q-times singular, we call t a q-fold image point. If t is (q + m - 1)-times singular, it is a q-fold *improper* image point of any $s \neq t$. Any other image point is called *proper*.

The original points s can also be provided with multiplicities and s becomes a p-fold original point of the q-fold proper image point $t \neq s$ if and only if $L^{n}_{m+1-p}(s)$ and $L^{n}_{n-m-q}(t)$ span a special subspace $(0 \leq m \leq n-1, 0 .$

3.2. The simply singular points of a K^3 are its inflection points while a twice singular point is a cusp. There are three types of curves K^3 :

(i) three inflection points;

(ii) one inflection point and one cusp;

(iii) one inflection point and a double point;

cf. (4, 5.4 and 3.6). Thus if we count a cusp twice, there always exists a triple t^{2}_{-1} of points of K^{3} which coincide with either a singular or a double point.

In the first two cases, the tangential mapping t^{2_1} is monotonically negative ("retrograde") with the degrees -2 and -1, respectively. In the third case, the degree is zero. The double point then decomposes K^3 into two arcs B^+ and B^- such that t^{2_1} is positive in B^+ and negative in B^- ; cf. (4, §3).

An improper image point of t^{2}_{0} is a cusp. As far as this mapping is proper, it is the inverse of t^{2}_{1} ; cf. (6, 1.2). Thus in the first two cases it is defined on the entire K^{3} and its proper image points are monotonically negative. In the third case, it is defined exactly in B^{-} . If s moves through B^{-} , then one of the two points $t^{2}_{0}(s)$ moves positively through B^{+} while the other one runs negatively through B^{-} , the inflection point being a fixed point. This yields: If the tangential mapping is negative at s, then one of the mappings ${}_{i}t^{2}_{0}$ is always negative. The other one is negative in case (i), improper in case (ii), and positive in case (iii). Thus if s is any point of K^{3} , $s \notin t^{2}_{-1}$, then K^{3} has a double point if and only if one of the three mapping t^{2}_{1} , ${}_{i}t^{2}_{0}$ is positive at s; cf. (6, 5.1 and 5.2).

In case (i), the three inflection points and the triple s, $t^2_0(s)$ alternate. The pairs s, $t^2_1(s)$ and $t^2_0(s)$ separate one another.

In case (ii), the inflection point $_{1}t^{2}_{-1}$ and the cusp separate *s* from its proper image $_{1}t^{2}_{0}(s)$. The latter lies between $t^{2}_{1}(s)$ and $_{1}t^{2}_{-1}$.

In case (iii), if s lies in B^- , the point $_1t^2_0(s)$, say, lies in B^+ while $_2t^2_0(s)$ and $t^2_1(s)$ lie in B^- . The inflection point separates s from $_2t^2_0(s)$ and $t^2_1(s)$, and $_2t^2_0(s)$ separates s from $t^2_1(s)$. If s lies in B^+ , $t^2_1(s)$ is in B^- .

3.3. If the projection of K^{n+1} from $L^n_{n-3}(s)$ is a curve K^3 , the mapping $t^n_{n-3,0}$ associates with *s* those points which are projected into a double point or cusp of

 K^3 . Thus the set $t^{n}_{n-3,0}(s)$ is either void or a pair ${}_{i}t^{n}_{n-3,0}(s)$ of distinct or equal points (i = 1, 2). If K^{n+1} has a double point or cusp t, then $t^{n}_{n-3,0}(s) = t$ for all $s \notin t$. We then also define $t^{n}_{n-3,0}(s) = t$ if $s \in t$ and call the mapping $t^{n}_{n-3,0}$ improper. From now on we assume that K^{n+1} has no special 0-space.

3.31. Suppose the points s, t, t are mutually distinct. Then $\{t, t\} = t^{n}_{n-3,0}(s)$ if and only if t and t do not lie on $L^{n}_{n-3}(s)$ and if there exists an (n-2)-space E(s) through $L^{n}_{n-3}(s)$, t, and t. We call s a p-fold original point of the mapping if $L^{n}_{n-2-p}(s)$, t, and t span a special (n-1-p)-space. The point s is at most simply singular, and t and t are at most (n-p-2)-times singular $(1 \le p \le n-2)$.

E(s) is projected from $L^{n}_{n-3}(s)$ into a double point and from $_{1}t$ onto $L^{n-1}_{n-3}(s)$; this space contains $_{2}t$.

3.32. Let $s \neq t$. Then $\{t, t\} = t^n_{n-3,0}(s)$ if and only if $t \notin L^n_{n-3}(s)$ and if $L^n_{n-3}(s)$ and $L^n_1(t)$ span an (n-2)-space E(s). The point t is then called a double image point. We assign the multiplicity p to s if $L^n_{n-2-p}(s)$ and $L^n_1(t)$ span a special (n-1-p)-flat. The points s and t are then at most simply and (n-p-2)-times singular, respectively $(1 \leq p \leq n-2)$. E(s) is projected from $L^n_{n-3}(s)$ into a cusp.

3.33. The pair $s = {}_{1}t \neq {}_{2}t$ is projected from $L^{n}{}_{n-3}(s)$ into a double point if and only if ${}_{2}t$ lies exactly on $L^{n}{}_{n-2}(s)$. Extending our definition, we call s a p-fold original point of the pair $\{s, {}_{2}t\}$ if ${}_{2}t$ lies exactly on $L^{n}{}_{n-1-p}(s)$ $(1 \leq p \leq n-2)$.

The fixed point s is then regular; $_{2}t$ is at most (n - p - 1)-times singular.

In this case, we define $E(s) = L^{n}_{n-2}(s)$. Thus E(s) is projected from $L^{n}_{n-3}(s)$ onto a double point if p = 1. From s, E(s) is projected onto $L^{n-1}_{n-3}(s)$; this projection contains $_{2}t$. The projection of s from $_{2}t$ is (p + 1)-times singular for $p \leq n - 2$; E(s) is projected onto $L^{n-1}_{n-3}(s)$.

3.4. Given *s*, we can now discuss the existence of the points $t^{n}_{n-3,0}(s)$.

3.41. Let $L_{n-2}^{n}(s)$ be regular; cf. 2.3. Thus K^{n+1} is projected from $L_{n-3}^{n}(s)$ into a curve K^{3} . By 3.2, K^{3} has a double point if and only if one of its mappings t_{1}^{2} and t_{0}^{2} is positive at s. By (6, 4.6), the mappings t_{m}^{2} and the corresponding mappings t_{n-2+m}^{n} of K^{n+1} have the same direction at s. Thus there exists a pair of distinct points $t_{n-3,0}^{n}(s)$, $t_{m-3,0}^{n}(s)$ if and only if one of the mappings

(1) $t^{n}_{n-1}, \quad t^{n}_{n-2}, \quad 2t^{n}_{n-2}$

is positive at s.

3.42. By (6, 5.4), the mappings $t^n_m(s)$ have only a bounded number of multiple original points. The point s is a p-fold original point of $t \neq s$ at this mapping if and only if t lies exactly on $L^n_{n-p}(s)$; cf. (4, 3.7). It is then a (p-1)-fold original point of the pair (s, t) at the mapping $t^n_{n-3,0}$ (1 .

By 3.1, t is a double image point of the (p-1)-fold original point s at the mapping t^{n}_{n-2} . Hence by (6, 4.3), exactly one of the mappings (1) will be positive near s.

3.43. Let s be a p-fold original point of the simple image point t at the mapping t^{n}_{n-2} (1 . By 3.1 and 3.32, t is then a double image point of the <math>(p-1)-fold original point s at the mapping $t^{n}_{n-3,0}$. In a small neighbourhood of s, the mapping t^{n}_{n-2} exists and t^{n}_{n-1} is therefore negative. If p is even, one of the two mappings t^{n}_{n-2} , viz. the one that maps s onto t, changes its direction at s. The other one will be negative at s. Thus there are two one-sided neighbourhoods of s such that $t^{n}_{n-3,0}$ is defined everywhere in one of them and nowhere in the other.

If p is odd, then the mappings t_{n-2}^n are monotonic at s and $t_{n-3,0}^n$ is defined near s if and only if one of them is positive at s; cf. (6, 4.2).

3.44. The points at which the mappings t^{n}_{n-2} change their direction, i.e. the original points with even multiplicities of simple image points, decompose K^{n+1} into a bounded number of arcs A; cf. (6, 5.4). Thus they are monotonic at any interior point of A where they exist. By 3.42 and (6, 5.2), the number of points of the set $t^{n}_{n-3}(s)$ is constant on A. It is equal to three or one depending on whether all the mappings (1) are negative on A or not. This implies: The mapping t^{n}_{n-3} is either everywhere single-valued or everywhere triple-valued on an arc A. In the first case, the points of A, including its end points, are at most simply singular (cf. 6, 4.4), and the mapping $t^{n}_{n-3,0}$ is defined on A. By 3.42, every fixed point of $t^{n}_{n-3,0}$ lies in the interior of such an arc A.

In the second case, A may contain original points s of odd multiplicity > 1 of simple image points t at the mapping t^{n}_{n-2} . Then $t^{n}_{n-3,0}(s) = \{t, t\}$. But $t^{n}_{n-3,0}$ is not defined elsewhere in A.

3.5. We continue the discussion of the first case of 3.44 and begin the proof that E(s) and $t^n_{n-3,0}$ are continuous on A; cf. 3.3 and 3.8.

Suppose the sequence of points $s_{\lambda} \in A$ converges to s_0 . For all but a finite number of indices, the points

$$s_{\lambda}$$
, $_{1}t_{\lambda} = {}_{1}t^{n}{}_{n-3,0}(s_{\lambda})$, and $_{2}t = {}_{2}t^{n}{}_{n-3,0}(s_{\lambda})$

are mutually distinct. Thus $E(s_{\lambda})$ is the (n-2)-space through $L^{n}_{n-3}(s_{\lambda})$, $_{1}s_{\lambda}$, and $_{2}s_{\lambda}$. We may assume that the points $_{i}t_{\lambda}$ are convergent, say to $_{i}t$, and that $E(s_{\lambda})$ converges, say to E. By 2.5, E is abundant and contains $L^{n}_{n-3}(s_{0})$, $_{1}t$, and $_{2}t$; cf. 2.3. Since s_{0} lies in the closure of A, it is at most simply singular and the points s_{0} , $_{1}t$, and $_{2}t$ are not all equal to each other. If $L^{n}_{n-3}(s_{0})$ does not meet K^{n+1} elsewhere, then E is projected from $L^{n}_{n-3}(s_{0})$ into a special 0-space. Thus

$$E = E(s_0)$$
 and $\{_1t, _2t\} = t^n_{n-3,0}(s_0).$

If $L^{n}_{n-3}(s_0)$ meets K^{n+1} at a second point t_0 , then one of the points it is equal to

 t_0 . We shall show in 3.8 that the other point is equal to s_0 and shall thus complete our continuity proof.

3.6. In this section we prepare the discussion of the double image points and the fixed points of $t^{n}_{n-3,0}$.

Suppose $L_{n-3}^{n}(s)$ and s' span the regular (n-2)-space P; cf. 2.3. Then K^{n+1} is projected from $L_{n-3}^{n}(s)$ and s' into a K^{3} and K^{n} , respectively. P is projected into the regular subspaces $L_{0}^{2}(s')$ and $L^{n-1}_{n-3}(s)$, respectively. Let $t^{n-1}_{m}(t^{2}_{m})$ denote the mappings of $K^{n}(K^{3})$. Then

(2)
$$t^{2}_{0}(s') = t^{n-1}_{n-3}(s).$$

3.61. If t^{n-1}_{n-2} is positive at *s*, then (2) is void; cf. (6, 5.2). Hence t^{2}_{1} is positive at *s'* and K^{3} has a double point $t^{n}_{n-3,0}(s)$. Its two points separate *s'* from the inflection point $t^{n}_{n-3}(s)$ of K^{3} and from the point $t^{n}_{n-1}(s) = t^{2}_{1}(s)$; cf. 3.2.

3.62. Suppose t^{n-1}_{n-2} is negative at *s* and the points

(3)
$$i^{t^n}_{n-3,0}(s)$$
 $(i = 1, 2)$

exist and are distinct. Then the two points (2) exist. By 3.2, t^{2}_{1} is negative at s' and the pairs (2) and (3) alternate. The points (3) separate s from s' if and only if t^{2}_{1} is positive at s. By **(4**, 3.42**)**, this is equivalent to t^{n}_{n-1} being positive at s.

3.7. The double image points. Let

$$t^{n}_{n-3,0}(s_{0}) = \{t_{0}, t_{0}\}.$$

Let B be a sufficiently small one-sided neighbourhood of s_0 . Suppose $t^n_{n-3,0}$ is defined in B. Then the two points $t^n_{n-3,0}(s)$ converge to t_0 from opposite sides as s tends to s_0 .

Proof. By 3.32, t_0 is a double image point of s_0 at the mapping t^n_{n-3} . Projection from $L^n_{n-3}(s_0)$ shows that s_0 has a third image point $_1t^n_{n-3}(s_0) \neq t_0$ at this mapping. By 3.4, t^n_{n-3} is single valued on *B*. It then follows from **(6**, 4.3) that the mapping t^{n-1}_{n-2} of the projection of K^{n+1} from t_0 is positive on *B*, and the point $t^n_{n-3}(s)$ converges to $_1t^n_{n-3}(s_0)$ as *s* tends to s_0 on *B*. Applying 3.61 to *s* and $s' = t_0$, we obtain that the points $t^n_{n-3,0}(s)$ separate t_0 from $t^n_{n-3}(s)$. By 3.5 they converge to t_0 as *s* approaches s_0 . This yields our statement.

3.8. The fixed points of $t^n_{n-3,0}$. Let $t_0 \in L^n_{n-2}(s_0)$, $t_0 \neq s_0$. Thus

$$t^{n}_{n-3,0}(s_{0}) = \{s_{0}, t_{0}\};$$
 cf. 3.33.

By 3.44, the mapping $t^{n}_{n-3,0}$ is defined in a small neighbourhood B of s_{0} . On account of 3.5, we may assume that, for example, ${}_{2}t^{n}_{n-3,0}(s)$ converges to t_{0} as s tends to s_{0} .

On the projection K^n of K^{n+1} from t_0 , the point s_0 is at least twice singular. Hence the three mappings

$$t^{n-1}_{n-2}$$
 and t^{n-1}_{n-3}

https://doi.org/10.4153/CJM-1967-095-7 Published online by Cambridge University Press

of K^n exist on B and have a fixed point at s_0 . They are either negative on B or improper.

Let $s \in B$, $s \neq s_0$. By 3.62, the pairs $t^{n}_{n-3,0}(s)$ and $t^{n-1}_{n-3}(s)$ separate one another, i.e. $_{1}t^{n}_{n-3,0}(s)$ lies between the two points $t^{n-1}_{n-3}(s)$. If s converges monotonically to s_0 , the points $t^{n-1}_{n-3}(s)$ converge to s_0 from the opposite direction. Hence the same applies to $_{1}t^{n}_{n-3,0}(s)$. Thus $_{1}t^{n}_{n-3,0}$ is continuous and negative at its fixed point s_0 . This completes, in particular, the proof of the continuity of $t^{n}_{n-3,0}$.

The points $_{2}t^{n}_{n-3,0}(s)$ and $t^{n}_{n-1}(s)$ lie near t_{0} . By 3.62, s and t_{0} are separated by the points $t^{n}_{n-3,0}(s)$ if and only if t^{n}_{n-1} is positive at s. This is the case if and only if it is positive between s_{0} and s, i.e. if the pairs $\{s_{0}, t_{0}\}$ and $\{s, t^{n}_{n-1}(s)\}$ separate one another. Since s and $_{1}t^{n}_{n-3,0}(s)$ lie on opposite sides of s_{0} , we obtain first that the points s_{0} and t_{0} are separated by the pair $t^{n}_{n-3,0}(s)$ if and only if they are separated by s and $t^{n}_{n-1}(s)$, and then that the points

(4)
$$_{2}t^{n}_{n-3,0}(s)$$
 and $t^{n}_{n-1}(s)$

lie on opposite sides of t_0 . Hence the two points (4) converge to t_0 from opposite directions as s tends to s_0 . We can now deduce from (4, 3.7) that $_{2}t^n_{n-3,0}$ changes its direction at s_0 if and only if s_0 is an original point of odd multiplicity; cf. 3.33.

3.9. Since the numbers N_{pq}^{n} (p + q < n - 1) are finite, the mapping $t_{n-3,0}^{n}$ has only a finite number of fixed points and double image points; cf. the introduction and 3.3. We wish to show that *the numbers*

$$N^{n}{}_{p00} \qquad (0 \le p < n-3),$$

are finite. Thus this mapping has altogether only a finite number of multiple original points; cf. 5.1.

Suppose our assertion was false. Then there exists a convergent sequence of multiple original points $s_{\lambda} \rightarrow s_0$. We may assume that the points s_{λ} , $t_{n-3,0}^n(s_{\lambda})$ are mutually distinct. Since $t_{n-3,0}^n$ is continuous, the pairs $t_{n-3,0}^n(s_{\lambda})$ converge to

$$\{ {}_{1}t_{0}, {}_{2}t_{0} \} = t^{n}_{n-3,0}(s_{0}).$$

At least one of the $_{i}t_{0}$'s, say $_{1}t_{0}$, is distinct from s_{0} . Project K^{n+1} from $_{1}t_{0}$ into a K^{n} . Since the numbers $N^{n-1}{}_{p0}$ are finite for $p \leq n-3$, we can have

(5)
$${}_{1}t^{n}{}_{n-3,0}(s_{\lambda}) \in L^{n-1}{}_{n-3}(s_{\lambda})$$

only a finite number of times. Thus we may assume that (5) does not occur. Hence

(6)
$$_{1}t_{0} \notin t^{n}_{n-3,0}(s_{\lambda})$$
 and $t^{n-1}_{n-4,0}(s_{\lambda}) = t^{n}_{n-3,0}(s_{\lambda})$

for all λ 's. In particular, the points s_{λ} , $t^{n-1}_{n-4,0}(s_{\lambda})$ are mutually distinct. Since $t^{n-1}_{n-4,0}$ is continuous, we obtain from (6)

$$t^{n-1}_{n-4,0}(s_0) = t^n_{n-3,0}(s_0).$$

By 2.4, s_0 is a multiple original point of $t^n_{n-3,0}$.

If $_{2}t_{0} = s_{0}$, then $_{1}t_{0} \in L^{n}_{n-3}(s_{0})$ and s_{0} would be a multiple singular point of K^{n} . Since the mapping $t^{n-1}_{n-4,0}$ is proper by (6), this is impossible; cf. 3.3.

Suppose then that $_{2t_0} \neq s_0$. If $_{1t_0} \neq _{2t_0}$, then $L^n_{n-4}(s_0)$, $_{1t_0}$, and $_{2t_0}$ lie in an (n-3)-space and $_{1t_0, 2t_0}$ becomes a double point of the projection K^4 of K^{n+1} from $L^n_{n-4,0}(s_0)$. The projection of K^n from $L^{n-1}_{n-4}(s_0)$ is identical with that of K^4 from $_{1t_0}$. Thus it is a C^3 ; cf. 2.4. But, $t^{n-1}_{n-4,0}$ being proper, this is not possible for $_{2t_0} \neq s_0$.

The case $_{1}t_{0} = _{2}t_{0}$ is similar.

4. The direction of $l^{n}_{n-3,0}$. The discussion of the directions of the mappings $_{i}l^{n}_{n-3,0}$ will be based on the decomposition of K^{n+1} into the arcs A introduced in 3.44.

4.1. We start out with the case n = 3 and assume that K^4 has neither a double point nor a cusp. Thus the three points

(1)
$$s, t^{3}_{00}(s) = \{ t^{3}_{00}(s), t^{3}_{00}(s) \}$$

lie on a special straight line. Obviously, the relation between them is symmetric, and no point of K^4 lies on more than one such line.

If the points (1) are mutually distinct, the mappings ${}_{i}t^{3}{}_{00}$ are locally one-toone and hence monotonic. Their fixed points are those points whose tangents meet K^{4} again. Thus they are identical with the points where the mapping $t^{3}{}_{2}$ changes its direction. The end points of the arcs A, i.e. the points where one of the mappings $t^{3}{}_{1}$ changes its direction, are those points which lie on the tangents of other points.

If $t^{3}{}_{2}$ is negative on the entire K^{4} , then it has fixed points. They are the singular points of K^{4} and the fixed points of the mappings $t^{3}{}_{1}$. The latter are defined and monotonic everywhere. In fact, being negative at their fixed points, they are monotonically negative, and the two points ${}_{i}t^{3}{}_{1}(s)$ are distinct outside a double singular point. By (6, 5.2), the mapping $t^{3}{}_{0}$ is triple-valued on K^{4} ; it is the inverse of $t^{3}{}_{2}$. By 3.4, $t^{n}{}_{n-3,0}$ is nowhere defined. For such a K^{4} , we have

$$\sum_{0}^{3} (3-m)N_{m}^{n} = 4.$$

If t^{3}_{2} is monotonically positive, then t^{3}_{00} is defined on the whole curve. Since no tangent meets K^{4} three times, the mappings ${}_{i}t^{3}{}_{00}$ are monotonic. Having no fixed points, they are monotonically positive.

Suppose the mappings t_2^3 are not monotonic. Then there are points s_0 whose tangents meet the curve again, say at t_0 . If *s* passes monotonically through s_0 , then one of the points $t_{00}^3(s)$ moves through s_0 in the opposite sense while the other one changes its direction at t_0 ; more accurately, it is separated from $t_2^3(s)$ by t_0 . If *s* moves from t_0 into an arc *A*, then the two points $t_{00}^3(s)$ move from s_0 in opposite directions; cf. 3.7 and 3.8. Since the number of the points s_0 , t_0 is finite and since the mappings $t_{00}^3(s)$ are monotonic elsewhere, we obtain: If t_2^3

https://doi.org/10.4153/CJM-1967-095-7 Published online by Cambridge University Press

is negative and one of the mappings t^{3}_{1} is positive, then the two mappings t^{3}_{00} have opposite directions.

4.2. Suppose the mapping $t^{n}_{n-3,0}$ is defined at s_{0} and proper, and the three points s_{0} , $t^{n}_{n-3,0}(s_{0})$ are mutually distinct. Then there exists a closed arc B which contains s_{0} in its interior and a neighbourhood C of s_{0} with the following property: If $s \in C$, $s \neq s_{0}$, then the mappings t^{3}_{00} of the projection of K^{n+1} from $L^{n}_{n-4}(s)$ are defined in B and proper. In B, they are monotonic and without fixed points.

Proof. By our assumptions, $L^{n}_{n-2}(s_0)$ is regular. Hence $L^{n}_{n-4}(s_0)$ is so too and the projection of K^{n+1} from $L^{n}_{n-4}(s_0)$ is a curve K^4 . The abundant (n-2)-spaces through $L^{n}_{n-4}(s_0)$ are projected into abundant straight lines; cf. 2.3. By our assumptions, the points

$$s_0, t^3{}_{00}(s_0) = t^n{}_{n-3,0}(s_0)$$

are mutually distinct. Thus $L^{s_1}(s_0)$ is regular and any abundant straight line meets K^4 outside s_0 at least twice. Since K^4 has only a finite number of abundant tangents, we obtain: All of the abundant (n-2)-spaces through $L^{n}_{n-4}(s_0)$ meet K^{n+1} outside s_0 at least twice; only a finite number of them meet K^{n+1} at only two points $\neq s_0$. We choose the closed neighbourhood B such that it contains none of these points.

Let *C* be a sufficiently small neighbourhood of s_0 . By 3.44 and 3.8, the mapping $t^n_{n-3,0}$ is defined and continuous in *C* and proper. Thus we may assume that the points

$$t_{n-3,0}^{n}(s)$$

are mutually distinct for all $s \in C$. On account of 3.9, we may assume that each s is a simple original point of $t^{n}_{n-3,0}$. If we project K^{n+1} from the regular subspace $L^{n}_{n-4}(s)$, then

$$t^{n}_{n-3,0}(s) = t^{3}_{00}(s)$$

will be a proper pair of distinct image points of s. Thus the mapping t^{3}_{00} is defined near s and proper and the three points s', $t^{3}_{00}(s')$ are mutually distinct if s' is near s.

Suppose our assertion were false for B and for every choice of C. Then there would exist a sequence of points $s_{\lambda} \rightarrow s_0$, $s_{\lambda} \neq s_0$, such that the projection of K^{n+1} from each $L^{n}_{n-4}(s_{\lambda})$ would possess abundant tangents which would meet this projection in B. Hence each $L^{n}_{n-4}(s_{\lambda})$ would lie in some abundant (n-2)space which would meet K^{n+1} in not more than two points outside s_{λ} such that at least one of them would lie in B. A limit space of these (n-2)-spaces would be an abundant (n-2)-space through $L^{n}_{n-4}(s_{0})$ and not more than two points distinct from s_{0} , at least one of which would lie in B. Such subspaces have been excluded by our construction of B.

4.3. Suppose $t^{n}_{n-3,0}$ is defined at s_{0} and proper, and the three points

$$s_0, t^n_{n-3,0}(s_0)$$

are mutually distinct and non-collinear. Let $t^{n-1}_{n-4,0}$ denote the mapping of the projection K^n of K^{n+1} from s_0 . Thus

$$t^{n-1}_{n-4,0}(s_0) = t^n_{n-3,0}(s_0),$$

 $t^{n-1}_{n-4,0}$ is proper, and the mappings

(2)
$$t^{n}_{n-3,0}$$
 and $t^{n-1}_{n-4,0}$

are defined and continuous near s_0 . We label them such that

$$_{i}t = _{i}t^{n}_{n-3,0}(s_{0}) = _{i}t^{n-1}_{n-4,0}(s_{0}) \qquad (i = 1, 2).$$

Then the point $_{i}t^{n-1}_{n-4,0}(s)$ lies between $_{i}t$ and $_{i}t^{n}_{n-3,0}(s)$ for every s sufficiently close to s_{0} ($s \neq s_{0}$). In particular,

$$_{i}t^{n}_{n-3,0}$$
 and $_{i}t^{n-1}_{n-4,0}$

have the same direction at s_0 .

Proof. Choose the neighbourhoods B and C of s_0 according to 4.2. We may assume that $_1t$ and $_2t$ do not lie in B, that $C \subset B$, and that the mappings (2) exist in C. Construct small neighbourhoods C_i about $_it$ such that B, C_1 , C_2 are mutually disjoint and make C so small that

$$\{i_{n-3,0}^{t^{n}}(s), i_{n-4,0}^{t^{n-1}}(s)\} \subset C_{i}$$
 for all $s \in C; i = 1, 2$.

If we project K^{n+1} from $_1t$, then $_2t \in L^{n-1}{}_{n-3}(s_0)$. Thus the mapping $\bar{t}^{n-1}{}_{n-4,0}$ of this projection is proper and

$$\bar{t}^{n-1}_{n-4,0}(s_0) = \{s_0, \, {}_2t\}.$$

The mapping $\bar{t}^{n-1}_{n-4,0}$ is defined at any point s_1 sufficiently close to s_0 . One of the points $\bar{t}^{n-1}_{n-4,0}(s_1)$, say $_1\bar{t}$, lies in B and is separated from s_1 by s_0 while the other one, $_2\bar{t}$, lies in C_2 ; cf. 3.8. We finally make C so small that this is the case for every $s_1 \in C$, $s_1 \neq s_0$, and that $L^n_{n-4}(s_1)$ and s_0 , as well as $L^n_{n-4}(s_1)$ and $_1t$, span regular (n-3)-spaces for all these s_1 .

Let $s_1 \in C$ now be fixed $(s_1 \neq s_0)$. Let t^{3}_{00} denote the mapping of the projection of K^{n+1} from $L^n_{n-4}(s_1)$. Thus

$$t^{3}_{00}(s_{1}) = t^{n}_{n-3,0}(s_{1}).$$

Choose the notation such that

$$_{i}t^{3}_{00}(s_{1}) = _{i}t^{n}_{n-3,0}(s_{1}) \qquad (i = 1, 2).$$

By our construction

(3)
$$t^{3}_{00}(_{1}\overline{t}) = \{_{1}t, _{2}\overline{t}\}$$
 and $t^{3}_{00}(s_{0}) = t^{n-1}_{n-4,0}(s_{1}).$

Let s move on B from s_1 to $_1\overline{t}$. Then the two points $t^{3}_{00}(s)$ depend continuously and monotonically on s, and the three points s, $t^{3}_{00}(s)$ remain mutually distinct; cf. 4.2. Hence their order on the oriented curve remains unchanged and (3) implies that

$$_{1}t_{00}(_{1}\overline{t}) = _{1}t, \qquad _{2}t_{00}(_{1}\overline{t}) = _{2}\overline{t}.$$

Since s_0 lies between s_1 and $_1\overline{t}$, the point $_it^{3}{}_{00}(s_0)$ lies between $_it^{3}{}_{00}(s_1)$ and $_it^{3}{}_{00}(_1\overline{t})$ In particular, it lies in C_i . Hence, (3) yields

$$_{i}t^{3}_{00}(s_{0}) = _{i}t^{n-1}_{n-4,0}(s_{1}) \qquad (i = 1, 2);$$

and the point $_{1}t^{n-1}_{n-4,0}(s_1)$ lies between the points

$$_{1}t^{3}_{00}(s_{1}) = _{1}t^{n}_{n-3,0}(s_{1})$$
 and $_{1}t^{3}_{00}(_{1}\bar{t}) = _{1}t.$

Since $_{2}t^{n-1}_{n-4,0}(s_{1})$ lies between

$$_{2}t^{3}_{00}(s_{1}) = _{2}t^{n}_{n-3,0}(s_{1})$$
 and $_{2}t^{3}_{00}(_{1}\bar{t}) = _{2}\bar{t}^{n-1}_{n-4,0}(s_{1}),$

we note that $_{2}t^{n}_{n-3,0}(s_{1})$ and $_{2}\overline{t}^{n-1}_{n-4,0}(s_{1})$ lie on the same side of $_{2}t$.

4.4. Combining the last remark with 3.8, we readily obtain conditions for $t^{n}_{n-3,0}$ to change its directions. But the following discussion will yield more detailed information.

Suppose $t^{n}_{n-3,0}$ is defined at s_{0} and proper, and the three points

(4)
$$s_0, \quad t^n_{n-3,0}(s_0)$$

are mutually distinct. Using 4.1 and 4.3, we readily verify by induction that the mappings $_{i}t^{n}{}_{n-3,0}$ are monotonic at s_{0} if s_{0} is a simple original point. Thus they can change their directions only at multiple original points or at those points s_{0} where two of the points (4) coincide; cf. 3.7 and 3.8. By 3.9, the number of these points is finite. We prove:

Let s lie sufficiently close to s_0 . Then the two pairs of points

$$t^{n}_{n-3,0}(s)$$
 and $t^{n}_{n-3,0}(s_{0})$

alternate if and only if the mapping t^{n}_{n-1} is positive at s_0 . This implies. If the mappings ${}_{i}t^{n}_{n-3,0}$ are monotonic at s_0 , then they have the same or opposite directions depending on whether t^{n}_{n-1} is positive or negative at s_0 . If one of the two changes its direction at s_0 , then so does the other.

By 4.1, our assertion is true for n = 3. Suppose it has been proved up to n - 1. Choose a small neighbourhood B of s_0 with the following properties: The mappings $t_{n-3,0}^n$ are defined in B, and the points

$$s, \quad t^n_{n-3,0}(s) \qquad (s \in B)$$

are mutually distinct; with the possible exception of s_0 , *B* contains no multiple original points. Thus these mappings are monotonic on the two subarcs into which *B* is decomposed by s_0 .

Let $s_1 \in B$, $s_1 \neq s_0$; and let t^{n-1} denote mappings of the projection of K^{n+1} from s_1 . Choose s between s_0 and s_1 sufficiently close to s_1 . By our induction assumption, the pairs of points

$$t^{n-1}_{n-4,0}(s)$$
 and $t^{n-1}_{n-4,0}(s_1) = t^n_{n-3,0}(s_1)$

alternate if and only if t^{n-1}_{n-2} is positive at s_1 . By (4; 3.42), this mapping and t^n_{n-1} have the same direction at s_1 . Since *B* contains no multiple original points of the latter, it is monotonic in *B*; cf. (4; 3.7). Thus t^{n-1}_{n-2} is positive at s_1 if and only if t^n_{n-1} is positive at s_0 . Since s_1 is a simple original point of $t^n_{n-3,0}$, 4.3 implies that the two points

$$_{i}t^{n-1}_{n-4,0}(s)$$
 and $_{i}t^{n}_{n-3,0}(s)$

lie on the same side of $_{i}t^{n}_{n-3,0}(s_{1})$ (i = 1, 2). Altogether, the pairs

 $t^{n}_{n-3,0}(s)$ and $t^{n}_{n-3,0}(s_{1})$

alternate if and only if t^{n}_{n-1} is positive at s_0 . The mappings ${}_{i}t^{n}_{n-3,0}$ being monotonic between s_0 and s_1 , we can now drop the restriction that s be close to s_1 . Letting s tend to s_0 , we obtain our statement.

4.5. Suppose the points

(5)
$$s_0, \quad t = t^n_{n-3,0}(s_0), \quad t = t^n_{n-3,0}(s_0)$$

are mutually distinct but collinear. The following remark is a substitute for 4.3: Let *B* be a closed neighbourhood of s_0 which does not contain $_1t$ and $_2t$. Suppose the neighbourhood *C* of s_0 is sufficiently small ($s_1 \in C, s_1 \neq s_0$). Then the mappings $t^{n-1}_{n-4,0}$ of the projection of K^{n+1} from s_1 are defined on *B* and proper. They are monotonic outside s_0 and the three points

(6)
$$s, t^{n-1}_{n-4,0}(s)$$

are mutually distinct.

Proof. By 3.4 and 3.8, the mapping $t^{n}_{n-3,0}$ is defined and continuous in a neighbourhood *C* of s_{0} . By 3.9, we may choose *C* so small that it contains no multiple original points $\neq s_{0}$. Thus $t^{n-1}_{n-4,0}$ will be defined at s_{1} and proper.

Suppose there is a sequence of points $s_1 \rightarrow s_0$, $s_1 \neq s_0$ and to each s_1 a point $s \in B$ such that two of the points (6) are identical. Thus to each s_1 of this sequence there exists an abundant (n-2)-space through s_1 and through not more than two other points of K^{n+1} , not more than one of them lying outside B. Letting s_1 tend to s_0 , we obtain an abundant (n-2)-space through s_0 with the same property. It is projected from s_0 into an abundant (n-3)-space F which meets the projection K^n of K^{n+1} from s_0 at most once outside B. Since the points $_1t$, $_2t$ are projected into a double point of K^n and lie outside B, F cannot contain the double point. The (n-2)-flat through F and that point would meet K^n not less than [(n-1) + 2]-times.

We can now choose $C \subset B$ so small that for every point $s_1 \in C$, $s_1 \neq s_0$, and for every $s \in B$, the points (6) are mutually distinct if they exist. But 3.4 implies now that $t^{n-1}_{n-4,0}$ is defined not only at s_1 but in the whole of B.

It remains to be shown that the mappings ${}_{i}t^{n-1}{}_{n-4,0}$ are monotonic outside s_0 . Let $s \in B$, $s \neq s_0$. If one of our mappings would change its direction at s, then s would be a multiple original point. Thus $L^n_{n-5}(s)$, s_1 , and the two points

 $t^{n-1}_{n-4,0}(s)$ would lie in an abundant (n-3)-space. It is projected from $L^{n}_{n-5}(s)$ onto an abundant straight line through s_1 and the points ${}_{i}t^{n-1}_{n-4,0}(s)$. This line and the straight line through the projections of the points (5) are distinct. They span a subspace of dimension ≤ 3 . It would meet the projection K^{5} of K^{n+1} at least six times (at least five times) if its dimension were three (were two).

4.6. Suppose the mappings $t^{n}_{n-3,0}$ are defined at s_{0} and proper and the three points

(7)
$$s_0, \quad it = it_{n-3,0}^n(s_0) \quad (i = 1, 2)$$

are mutually distinct. Then these mappings change their directions at s_0 if and only if the multiplicity of s_0 is even.

Let s_0 be a *p*-fold original point. Thus $L^n_{n-p-2}(s_0)$ and the ${}_it$ span a special subspace. Projecting from $L^n_{n-p-3}(s_0)$ and making use of 4.3, we reduce our assertion to the case p = n - 2. Thus we may assume that the points (7) are collinear, and we have to show that the mappings $t^n_{n-3,0}$ change their directions if and only if n is even.

We choose a closed neighbourhood B and a neighbourhood $C \subset B$ of s_0 such that $t^n_{n-3,0}$ is defined in C and monotonic outside s_0 and that we can apply 4.2 and 4.5. It is sufficient to prove: Let C be sufficiently small. Then if s' and s'' lie in C and are separated by s_0 , the points

$$_{i}t' = _{i}t^{n}_{n-3,0}(s')$$
 and $_{i}t'' = _{i}t^{n}_{n-3,0}(s'')$

lie on the same side of it if and only if n is even (i = 1, 2).

Let t^{3}_{00} and $t^{n-1}_{n-4,0}$ denote the mappings of the projections of K^{n+1} from $L^{n}_{n-4}(s')$ and s'', respectively. We number them such that

(8)
$$_{i}t^{3}_{00}(s_{0}) = _{i}t^{n-1}_{n-4,0}(s_{0}) = _{i}t$$
 $(i = 1, 2).$

Obviously,

$$t^{3}_{00}(s') = t^{n}_{n-3,0}(s')$$
 and $t^{n-1}_{n-4,0}(s'') = t^{n}_{n-3,0}(s'')$.

By 4.2, $L_{n-4}^{n}(s')$ and s'' span a regular (n - 3)-space. Hence

$$t^{n-1}_{n-4,0}(s') = t^{3}_{00}(s'').$$

If s moves on C from s_0 to s' or to s'', then the points $t^{3}_{00}(s)$ and $t^{n-1}_{n-4,0}(s)$ move continuously, and s and its image points remain mutually distinct. Hence, their order on the oriented curve remains unchanged. Therefore

(9)
$${}_{i}t^{3}{}_{00}(s) = {}_{i}t', {}_{n-4,0}(s'') = {}_{i}t'',$$

and

(10)
$$_{i}t^{n-1}_{n-4,0}(s') = _{i}t^{3}_{00}(s'') \quad (i = 1, 2).$$

Choose small neighbourhoods of the points it and make C so small that the points (9) lie in these neighbourhoods (i = 1, 2). If s' and s'' converge to s_0 ,

then the abundant (n-2)-space through $L^{n}_{n-4}(s')$, s'', and the two points (10) will have an abundant limit space through $L^{n}_{n-3}(s_0)$, i.e. it will converge to the (n-2)-space through $L^{n}_{n-3}(s_0)$, $_{1}t$, and $_{2}t$. Hence the pair $t^{3}_{00}(s'')$ converges to the pair $\{_{1}t, _{2}t\}$. Since the triples $s'', t^{3}_{00}(s'')$ and $s_{0}, t^{3}_{00}(s_{0})$ have the same order on the oriented curve, the points (10) must converge to $_{i}t$. Hence we may choose C so small that $_{i}t^{3}_{00}(s'')$ lies in the neighbourhood of $_{i}t$ (i = 1, 2).

For n = 3, our assertion follows from 4.1. Suppose it is proved up to n - 1. Thus the points ${}_{i}t^{n-1}{}_{n-4,0}(s')$ and ${}_{i}t^{n-1}{}_{n-4,0}(s'')$, i.e. the points ${}_{i}t^{3}{}_{00}(s'')$ and ${}_{i}t''$, lie on the same side of ${}_{i}t$ if and only if n - 1 is even. The mappings $t^{3}{}_{00}$ being monotonic in C, the points ${}_{i}t^{3}{}_{00}(s') = {}_{i}t'$ and ${}_{i}t^{3}{}_{00}(s'')$ are separated by ${}_{i}t^{3}{}_{00}(s_{0}) = {}_{i}t$; cf. (8). Combining these two observations, we obtain our assertion.

5. Some global properties of the mapping $t^{n}_{n-3,0}$.

5.1. The numbers N^n_{p00} are bounded for given $n \ (0 \le p \le n-4)$.

Trivially, $N_{000}^4 \leq 1$. Suppose our statement has been proved up to n-1. By 3.9, the numbers N_{p00}^n were finite. Project K^{n+1} from a point which is neither a fixed point nor a multiple original point of $t_{n-3,0}^n$. If s is such a multiple original point, then

(1)
$$t^{n-1}_{n-4,0}(s) = t^n_{n-3,0}(s).$$

Our projection has decreased the multiplicity of *s* by one.

These points s decompose K^{n+1} into a finite number of arcs B. We divide the set of these arcs into two classes. B shall belong to the first class if and only if all the mappings

(2)
$$_{i}t^{n}_{n-3,0}$$
 and $_{i}t^{n-1}_{n-4,0}$

are defined and monotonic on B and have no fixed points in B. Thus any arc B of the second class either contains multiple original points of ${}_{i}l^{n-1}{}_{n-4,0}$ or fixed points of one of the mappings (2). By our induction assumption and the introduction, the number of these points and hence that of the arcs B of the second class is bounded.

Let *B* be an arc of the first class. We wish to show that the mappings

(3)
$${}_{1}t^{n}{}_{n-3,0}$$
 and ${}_{1}t^{n-1}{}_{n-4,0}$

have the same direction on B. Since exactly one of them changes its direction at an end point of B, an arc adjacent to B cannot belong to the first class; cf. 4.6. Thus the number of the arcs of the first class is not greater than that of the second and it is bounded too.

If s moves on B, the three mutually distinct points s and $t^{n}_{n-3,0}(s)$ (s and $t^{n-1}_{n-4,0}(s)$) move continuously on the curve. Hence their order on the oriented curve remains unchanged. Furthermore, (1) holds true if s is equal to one of the end points s' and s'' of B. Hence the mappings (3) can be labelled such that

$$it_{n-3,0}^{n}(s) = it_{n-4,0}^{n-1}(s)$$
 for $s = s'$ and $s = s''; i = 1, 2$

If s moves from s' through B to s'', the points

$$_{1}t^{n}_{n-3,0}(s)$$
 and $_{1}t^{n-1}_{n-4,0}(s)$

move continuously and monotonically from a common initial point to a common end point. Since neither mapping has a fixed point, they must be monotonic in the same direction. This completes our proof.

5.2. The mapping t^{n}_{n-3} was extended in (6; 5.3) to a mapping \bar{t}^{n}_{n-3} which was triple-valued and continuous on the whole curve. The additional image points were the positive image points of the mappings t^{n}_{n-1} and t^{n}_{n-2} , each of them counted twice.

On account of 3.4, we can complete t^{n}_{n-3} in another fashion to a mapping \tilde{t}^{n}_{n-3} which is triple-valued and continuous everywhere. Define $\tilde{t}^{n}_{n-3}(s) = t^{n}_{n-3}(s)$ if $t^{n}_{n-3}(s)$ consists of three points. If t^{n}_{n-3} is single-valued at s, define

$$\tilde{t}^{n}_{n-3}(s) = \{t^{n}_{n-3}(s), t^{n}_{n-3,0}(s)\}.$$

This mapping could be discontinuous only when the number of image points of t^{n}_{n-3} changes. That is the case at s_0 if and only if the multiplicity of s_0 is odd and that of its image point t_0 is two. But if s converges monotonically to s_0 , then either two points $t^{n}_{n-3}(s)$ or two points $t^{n}_{n-3,0}(s)$ converge to t_0 from opposite directions; cf. 3.8 and **(6**; 4.2 and 4.3**)**. Thus these points s_0 are exactly those points where pairs $t^{n}_{n-3,0}(s)$ change into pairs $t^{n}_{n-3}(s)$ and vice versa. Thus \tilde{t}^{n}_{n-3} remains continuous at s_0 . If s passes through s_0 , two of the points $\tilde{t}^{n}_{n-3}(s)$ move through t_0 monotonically in opposite directions.

The improper image points of \tilde{t}^n_{n-3} are the cusps (counted twice), the (n-1)-times singular points, and the double points. By the introduction, each point of K^{n+1} is the proper image point of a bounded number of points.

The proper fixed points of \tilde{t}_{n-3}^{n} are the multiple original points of t_{n-1}^{n} , each of them counted once, and the singular points; cf. 3.8. Simple singular points and cusps have to be counted once; the twice or (n-1)-times singular points are counted twice; any other singular point is counted three times; cf. (6; 3.1). By (6; 4.4), a *q*-fold fixed point of \tilde{t}_{n-3}^{n} is the fixed point of *q* different mappings $t_{n-3}^{n}, q > 1$. Each mapping t_{n-3}^{n} is negative at a fixed point.

5.3. Suppose t is not a fixed point of the mapping \tilde{l}^n_{n-3} . Then the number of the negative original points of t at this mapping minus that of its positive ones is equal to

(4)
$$N_{n-1}^{n} + 2N_{n-2}^{n} + 3\sum_{0}^{n-3}N_{m}^{n} + \sum_{1}^{n-2}N_{m0}^{n} + 2N_{00}^{n} - 3 \qquad (n \ge 3).$$

Proof. Let *h* denote the sum of the multiplicities of any improper images of \tilde{t}^{n}_{n-3} ; thus

$$h = N^{n_1} + 2N^{n_0} + 2N^{n_{00}}.$$

The proper part of \tilde{t}_{n-3}^{n} being (3-h)-valued, we can uniformize it to a single-valued continuous mapping of the (3-h)-times covered K^{n+1} into itself.

Its fixed points decompose the covering curve into a finite number of arcs B which have no fixed points in their interiors. The new mapping still being negative at its fixed points, the number of negative original points of the point t exceeds that of its positive ones by one in each arc B which does not contain t. For each of the 3 - h arcs B which contain t, these two numbers are equal. Thus our difference is equal to the number of arcs B minus (3 - h). But the number of these arcs is equal to the number of the fixed points of $\tilde{t}^{n}_{n-3'}$ each of them counted with its multiplicity, i.e. it is equal to

$$N_{n-1}^{n} + 2N_{n-2}^{n} + 3\sum_{2}^{n-3}N_{m}^{n} + 2N_{1}^{n} + N_{0}^{n} + \sum_{1}^{n-2}N_{m0}^{n};$$

cf. 5.2. Subtracting 3 - h, we obtain (4).

5.4. Suppose the point t has no multiple original points at the mappings

(5)
$$t^{n}_{n-1}$$
 and t^{n}_{n-2} .

Then the number of its negative original points at the mapping $t_{n-3,0}^{n}$ minus that of its positive ones is equal to

(6)
$$\sum_{1}^{n-2} N^{n}_{\ m0} + 2N^{n}_{\ 00}$$

minus twice the number of its positive original points at the mappings (5).

Proof. Suppose first that t is in addition regular and that the original points of t at the mapping t^{n}_{n-3} are simple. By (6; 5.1), the number of negative original points of t at that mapping minus that of its positive ones is equal to

$$N_{n-1}^{n} + 2N_{n-2}^{n} + 3 \sum_{0}^{n-3} N_{m}^{n} - 3$$

plus twice the number of positive original points of t at the mappings (5). Comparing this relation with 5.3, we obtain our assertion for these points, i.e. for all the points $t \in K^{n+1}$ with a finite number of exceptions.

If we assume only that the original points of t at the mappings (5) are simple, then both the difference before (6) and the expression following it are the same for t as they are for points near t. Thus our remark remains valid under these weaker assumptions.

5.5. Let $n \ge 3$. Suppose *t* has no multiple original points at the mappings (5) or at $t^{n}_{n-3,0}$. Project K^{n+1} from *t* into a K^{n} .

A regular point $s \neq t$ of K^n is at most simply singular on K^{n+1} . The osculating space $L^{n-1}{}_m(s)$ is special if and only if the subspace through t and $L^n{}_m(s)$ is abundant while that through t and $L^n{}_{m-1}(s)$ is not. Hence $L^{n-1}{}_m(s)$ is special if and only if either $L^n{}_m(s)$ or the subspace through $L^n{}_m(s)$ and t is special. This yields

(7)
$$\begin{cases} N^{n-1}{}_{n-3,0} = N^{n}{}_{n-3,0} + \text{ no. of orig. pts. of } t \text{ at the mapping } t^{n}{}_{n-3,0} \text{ if } n > 3, \\ N^{n-1}{}_{m0} = N^{n}{}_{m0} \qquad (0 \le m < n - 3). \\ 2N^{2}{}_{00} = 2N^{3}{}_{00} + \text{ no. of orig. pts. of } t \text{ at } t^{3}{}_{00}. \end{cases}$$

Hence, by 5.4,

(8)
$$\sum_{1}^{n-2} (n-m-1)N_{m0}^{n} + 2(n-1)N_{00}^{n}$$
$$= \left[\sum_{1}^{n-3} (n-m-2)N_{m,0}^{n} + 2(n-2)N_{00}^{n}\right] + \left[\sum_{1}^{n-2} N_{m0}^{n} + 2N_{00}^{n}\right]$$
$$= \sum_{1}^{n-3} (n-m-2)N_{m,0}^{n-1} + 2(n-2)N_{00}^{n-1}$$
$$- 2 \times \text{ number of pos. orig. pts. of } t \text{ at the mapping } t_{n-3,0}^{n}$$
$$+ 2 \times \text{ number of pos. orig. pts. of } t \text{ at the mapping } (5).$$

By induction, we obtain from (8) that

$$\sum_{1}^{n-2} (n - m - 1) N^{n}_{m0}$$

is even.

By (4; 3.9), we have

(9)
$$\sum_{0}^{n-1} (n-m)N_{m}^{n} = \sum_{0}^{n-2} (n-m+1)N_{m}^{n-1} + 1$$

 $-2 \times$ number of pos. orig. pts. of t at the mapping t^{n}_{n-1} .

Define

$$\sum_{n} = \sum_{0}^{n-1} (n-m) N_{m}^{n} + \frac{1}{2} \sum_{1}^{n-2} (n-m-1) N_{m0}^{n} + (n-1) N_{00}^{n} \qquad (n=2,3,\ldots).$$

Then (8) and (9) yield

(10)
$$\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \sum_{n=1}^{\infty}$$

- number of pos. orig. pts. of t at the mapping t^{n}_{n-1}

- + number of pos. orig. pts. of t at the mapping $t_n^{n}_{-2}$
- number of pos. orig. pts. of t at the mapping $t^{n}_{n-3,0}$.

If we drop the assumption that t has no multiple original points at the mapping $t^{n}_{n-3,0}$, then (7) has to be replaced by the relations:

$$N^{n-1}{}_{m0} = N^{n}{}_{m0} + \text{number of } (n - m - 2) \text{-fold original points of } t \text{ at the}$$

mappings $t^{n}{}_{n-3,0}, \qquad 0 < m \leq n - 3;$

 $2N^{n-1}_{00} = 2N^n_{00} + \text{number of } (n-2)\text{-fold original points of } t \text{ at this mapping.}$ We then have to replace the equality signs in (8) and (10) by " \leq ."

5.6. Suppose the point t is regular, that it is a simple proper image point at all the mappings t^n_m , and that all of its original points at these mappings are simple (m = 0, 1, ..., n - 1). Thus $L^n_{n-2}(t)$ is regular.

Let $3 \leq p < n$. Project K^{n+1} from $L^{n}_{n-p-1}(t)$ into a K^{p+1} . A multiple original point of t at the mapping t^{p}_{m} would also be a multiple original point of t at the mapping t^{n}_{m} . Hence the original points s of t at each t^{p}_{m} are simple. If

$$_{i}t^{p}_{m}(s) = _{i}t^{n}_{m}(s) = t$$

then $_{i}t^{p}_{m}$ and $_{i}t^{n}_{m}$ have the same direction at s; cf. (6; 4.2).

We apply 5.5 to each K^{p+1} and add over $p = 3, 4, \ldots, n$, obtaining

$$\begin{split} \sum_n &\leqslant \sum_2 + (n-2) \\ &- \text{ number of pos. orig. pts. of } t \text{ at the mappings } t^n_{2}, \dots, t^n_{n-1} \\ &+ \text{ number of pos. orig. pts. of } t \text{ at the mappings } t^n_{1}, \dots, t^n_{n-2} \\ &- \text{ number of pos. orig. pts. of } t \text{ at all the } t^p_{p-3,0} \quad (p = 3, 4, \dots, n) \\ &= (\sum_2 + \text{ number of pos. orig. pts. of } t \text{ at the mapping } t^2_1) \\ &+ (n-2) - \text{ number of pos. orig. pts. of } t \text{ at the mapping } t^n_{n-1} \\ &- \text{ number of pos. orig. pts. of } t \text{ at all the } t^p_{p-3,0} \quad (p = 3, 4, \dots, n). \end{split}$$

By 3.2, the parenthesis is equal to 3 - number of positive image points of t at the same mapping and hence also at the mapping t^{n}_{n-1} . This finally yields that

(11) $\sum_{n \leq n+1} = n$ umber of positive original and image points of t at the mapping t^{n}_{n-1}

- number of pos. orig. pts. of t at all the $t^{p}_{p-3,0}$ $(p = 3, 4, \ldots, n)$.

In particular,

$$\sum_n \leqslant n+1.$$

Equality holds in (11) if and only if the original points of *t* at all the mappings $t^{p}_{p-3,0}$ are simple.

5.7. Suppose the point *t* satisfies the assumptions of 5.5. Let

$$S_n = \sum_{0}^{n-1} (n-m)N_m^n + \sum_{1}^{n-2} (n-m-1)N_{m0}^n \qquad (n \ge 2).$$

By (8) and (9)

(12) $S_n = S_{n-1} + 1 + 2 \times \text{number of pos. orig. pts. of } t \text{ at the mapping } t^n_{n-2} - 2 \times \text{number of pos. orig. pts. of } t \text{ at } t^n_{n-3,0} - 2(n-1)N^n_{00} + 2(n-2)N^{n-1}_{00}.$

If t satisfies the assumptions of 5.6, we deduce, for example, from (11) that

(13)
$$S_n \leq 2n + 1 - \sum_{0}^{n-2} (n - 1 - m) N^{n-1}{}_m$$

 $-2 \times$ number of positive *image* points of t at $t^{n}_{n-3,0}$

 $-2 \times$ number of pos. orig. pts. of t at all the $t^{p}_{p-3,0}$ (p = 3, 4, ..., n).

Again, equality will hold if and only if the original points of t at all the mappings $t^{p}_{p-3,0}$ are simple.

1.

We conjecture that

$$(14) S_n \leqslant n +$$

Trivially, $S_2 + 2N_{00}^2 = 3$. It is not hard to prove that

$$S_3 = \begin{cases} 4 - 2N^3_{00} & \text{if } K^4 \text{ is homotopic to zero,} \\ 0 & \text{otherwise.} \end{cases}$$

(14) is trivial if K^{n+1} has a cusp or double point.

Let n > 3. With some effort, the K^{n+1} have been determined with

$$N^{n}_{10} + N^{n}_{000} > 0$$

If $N^{n}_{10} > 0$, then

$$S_n = N^n_{n-1} + 2N^n_{n-2} + N^n_{n-2,0} + (n-2)N^n_{10} = n+1.$$

Similarly if $N^{n}_{000} > 0$, then

$$S_n = N_{n-1}^n + 2N_{n-2}^n + N_{n-2,0}^n = \begin{cases} 3 & \text{if } n \text{ is even,} \\ 0 \text{ or } 4 & \text{if } n \text{ is odd.} \end{cases}$$

These results imply the formula for K^5

$$S_4 + 2N_{000}^4 + 4N_{00}^4 = 5.$$

An approach to (14) via (12) faces the difficulty that $S_n > S_{n-1} + 1$ can occur. In order to utilize (13), it seems that certain more general and rather difficult mappings t^n_{m0} would have to be studied. Using these mappings the author could at least prove the finiteness of the numbers

$$N^n_{pqr}, \qquad p+q+r \leqslant n-4.$$

References

- O. Haupt, Ein Satz über die reellen Raumkurven vierter Ordnung und seine Verallgemeinerung, Math. Ann., 108 (1933), 126–142.
- Wm. F. Pohl, On a theorem related to the four-vertex theorem, Ann. of Math., 84 (1966), 356– 367.
- **3.** P. Scherk, Ueber differenzierbare Kurven und Bögen III. Ueber Punkte (n + 1)-ter Ordnung auf Bögen im R_n , Annali di Mat. (4), 17 (1938), 291–305.
- **4.** On differentiable arcs and curves IV. On the singular points of curves of order n + 1 in projective n-space, Ann. of Math., 46 (1945), 68–82.
- 5. ——— same title IVa. On certain singularities of curves of order n + 1 in projective n-space, Ann. of Math., 46 (1945), 175–181.
- 6. ——— same title V. On a class of mappings of the curves of order n + 1 in projective n-space into themselves, Ann. of Math., 47 (1946), 786–805.

University of Toronto