# ON DIFFERENTIABLE ARCS AND CURVES, VI: SINGULAR OSCULATING SPACES OF GURVES OF ORDER $\boldsymbol{n}+1$ IN PROJECTIVE $\boldsymbol{n}$-SPACE 

PETER SCHERK

To Donald Coxeter on his sixtieth birthday
A closed curve $K^{n+1}$ of order $n+1$ in real projective $n$-space $R_{n}$ has a maximum number of $n+1$ points in common with any ( $n-1$ )-space. These curves are subjected to certain differentiability assumptions which make it possible to describe their singular points and to provide them with multiplicities in analogy with algebraic geometry. If $N^{n}{ }_{p}$ denotes the number of ( $n-p$ )-times singular points, then

$$
\sum_{0}^{n-1}(n-p) N_{p}^{n}\left\{\begin{array}{l}
\leqslant n+1,  \tag{1}\\
\equiv n+1 \quad(\bmod 2) ;
\end{array}\right.
$$

cf. (4). In (6), an interpretation of the difference

$$
n+1-\sum_{0}^{n-1}(n-p) N_{p}^{n}
$$

was given. Necessary and sufficient conditions for equality to hold in (1) can readily be stated (2;4).

The next step in the study of the $K^{n+1}$ would be the inclusion of certain singular pairs of points. A $p$-space in $R_{n}$ was called special (4) if it met the $K^{n+1}(p+2)$-times and if none of its $(p-1)$-subspaces met the curve $(p+1)$ times. Denote the number of special subspaces through exactly $j$ different points of $K^{n+1}$ which contain the osculating $p_{1}$-space of one of them, the osculating $p_{2}$-space of another, etc., by

$$
N_{p_{1, p_{2}}, \ldots, p_{j}}^{n} .
$$

We proved in (6) that the numbers $N^{n}{ }_{p q}$ are bounded for a given $n(p+q \leqslant$ $n-2$ ); and in (5) that

$$
\begin{equation*}
\sum_{0}^{n-1}(n-p) N_{p}^{n}+\sum_{0}^{n-2}(n-p-1) N_{p 0}^{n}<\frac{1}{4} n^{2}+\frac{3}{2} n . \tag{2}
\end{equation*}
$$

In the present paper we wish to improve (1) and (2) and to show that

$$
\begin{equation*}
\sum_{0}^{n-1}(n-p) N_{p}^{n}+\frac{1}{2} \sum_{1}^{n-2}(n-p-1) N_{p 0}^{n}+(n-1) N_{00}^{n} \leqslant n+1 . \tag{3}
\end{equation*}
$$

Received May 3, 1967

We conjecture that the factor $\frac{1}{2}$ can be dropped from the middle term; cf. 5.7.
Our discussion will yield the corollary that the numbers $N^{n}{ }_{p 00}$ are bounded for given $n(0 \leqslant p \leqslant n-4)$.

## 1. Arcs and curves.

1.1. A curve $C$ is a continuous image of the projective straight line in $R_{n}(n \geqslant 1)$. The images of distinct points of the parameter line are interpreted as different points of $C$ even if they coincide in $R_{n}$. Then the points of $C$ become the continuous 1-1 images of a parameter $s$ ranging through the parameter line. The point of $C$ with the parameter $s$ will also be denoted by $s$.
$\operatorname{An} \operatorname{arc} A$ is the continuous 1-1 image of a segment in $R_{n}$.
A neighbourhood of the parameter $s$ in the parameter space is mapped onto a neighbourhood of the point $s$ on $C$ (on $A$ ). If a sequence of parameter values converges to the parameter $s$, the corresponding sequence of points on $C$ (on $A$ ) is said to be convergent to the point $s$.
1.2. The order of $C$ (of $A$ ) is the least upper bound of the number of points that it has in common with an $(n-1)$-space. It obviously is not less than $n$. The order of a point $s$ is the order of a sufficiently small neighbourhood of $s$ on $C$ (on $A$ ).
1.3. We call $s$ a point of support (of intersection) with respect to an $(n-1)$ space $E$ if some neighbourhood of $s$ has no point $\neq s$ in common with $E$ and if the two arcs into which $s$ decomposes the neighbourhood lie on the same side (on opposite sides) of $E$. We then call $E$ a supporting (intersecting) ( $n-1$ )space at $s$. Thus $E$ supports if $s \notin E$.
1.4. The point $s$ is called differentiable if it has osculating spaces $L^{n}{ }_{p}(s)$ of all dimensions. Define $L^{n}{ }_{-1}(s)=\emptyset$. Suppose we have defined $L^{n}{ }_{p}(s)$ and postulated its existence. Then we require the $(p+1)$-spaces through $L^{n}{ }_{p}(s)$ and a point converging on $C$ (on $A$ ) to $s$ to converge. Their limit is then the osculating $(p+1)$-space $L^{n}{ }_{p+1}(s)$. Thus $L^{n}{ }_{0}(s)=s, L^{n}{ }_{n}(s)=R_{n}$.

A subspace is said to contain $L^{n}{ }_{p}(s)$ exactly if it contains $L^{n}{ }_{p}(s)$ but not $L^{n}{ }_{p+1}(s)$.

A curve or arc is called differentiable if each of its points is.
1.5. Let $s$ be a differentiable point on an arbitrary arc which meets $L^{n}{ }_{n-1}(s)$ only a finite number of times. Then there exists a one-row matrix,

$$
\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)
$$

the characteristic of $s$ with the following properties:
(i) each of the numbers $a_{i}$ is equal to 1 or 2 ;
(ii) if an $(n-1)$-space contains exactly $L^{n}{ }_{p}(s)$, then it supports (intersects) at $s$ if $a_{0}+a_{1}+\ldots+a_{p}$ is even (odd).

If $a_{0}=a_{1}=\ldots=a_{n-1}=1, s$ is called regular.

The projection of $s$ from a point on $L^{n}{ }_{p+1}(s) \backslash L^{n}{ }_{p}(s)$ has the characteristic

$$
\begin{array}{ll}
\left(a_{1}, a_{2}, \ldots, a_{n-1}\right) & \text { if } p=-1 \\
\left(a_{0}, a_{1}, \ldots, a_{n-2}\right) & \text { if } p=n-1, \\
\left(a_{0}, a_{1}, \ldots, a_{p-1}, a_{p}^{\prime}, a_{p+2}, \ldots, a_{n-1}\right) & \text { if }-1<p<n-1 ;
\end{array}
$$

here $a^{\prime}{ }_{p} \equiv a_{p}+a_{p+1}(\bmod 2)$.
If a subspace contains $L^{n}(s)$ exactly, we count $s$ with the multiplicity $a_{0}+a_{1}+\ldots+a_{p}$. In particular, $s$ is counted $(p+1)$-times if $s$ is regular.
2. Assumptions and lemmas. The subject of this paper is the differentiable curves $K^{n+1}$ in $R_{n}$ which are met at most $(n+1)$-times by any $(n-1)$-space; cf. (3, §3 and 4, p. 72).
2.1. The digits of the characteristic $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ of any point $s \in K^{n+1}$ are equal to one with at most one exception. The order of $s$ is equal to $n$ if and only if $s$ is regular. If $a_{p}=2$, we call $s(n-p)$-times singular. A cusp is $n$-times singular.

A singular point divides a small neighbourhood into two arcs of order $n$.
At a $p$-fold point, $p$ distinct points of a curve coincide; cf. 1.1. A $K^{n+1}$ has no more-than-twofold points. The two points which coincide in a double point are regular. If $n>1$, the total number $N^{n}{ }_{00}+N^{n}{ }_{0}$ of double points and cusps of a $K^{n+1}$, i.e. the number of special 0 -spaces, is 0 or 1 .
2.2. We denote by $C^{n}\left(B^{n}\right)$ a differentiable curve (arc) of order $n$ in $R_{n}$. All of its points are regular and simple. It is met by any $p$-space at most $(p+1)$ times. The sum of the multiplicities of the points that a $C^{n}$ has in common with an $(n-1)$-space is $\equiv n(\bmod 2)$. The projection of a $C^{n}\left(B^{n}\right)$ from one of its points is a $C^{n-1}\left(B^{n-1}\right)$.
2.3. A $p$-space spanned by osculating spaces of $K^{n+1}$ meets the curve either $(p+1)$ - or $(p+2)$-times. In the first case we call it regular; in the other case, abundant. Any $p$-space which meets $K^{n+1}(p+2)$-times is abundant. If it has no proper abundant subspaces, it is called special.
2.4. The projection of a $K^{n+1}$ from a regular (abundant) $p$-space is a $K^{n-p}$ (a $C^{n-p-1}$ ), $0 \leqslant p<n-1$. In particular, its projection from $L_{p}^{n}(s)$ is a $K^{n-p}$ if and only if $s$ is at most $(n-p-1)$-times singular and $L^{n}{ }_{p}(s)$ does not meet $K^{n+1}$ outside $s$. Thus the projection of $K^{n+1}$ from a double point or cusp is a $C^{n-1}$; from any other point of the curve, it is a $K^{n}$.
2.5. If each of a sequence of subspaces meets a $K^{n+1}$ or $C^{n}$ at least $p$-times (in points which converge to $s$ ), then any limit subspace will meet the curve at least $p$-times (at $s$ ). In particular, the osculating spaces of a $K^{n+1}$ or $C^{n}$ are continuous; cf. (3).

## 3. The mapping $t^{n}{ }_{n-3,0}$.

3.1. The mapping $t^{n}{ }_{n-1}$ associated with each point $s$ the point $t^{n}{ }_{n-1}(s)$ at which $L^{n}{ }_{n-1}(s)$ meets $K^{n+1}$ again; cf. (4).

In (6), we studied mappings which associated with each point $s \in K^{n+1}$ the set $t^{n}{ }_{m}(s)$ of those points which are projected from $L^{n}{ }_{m}(s)$ into singular points ( $m=0,1, \ldots, n-2$ ). It consists of at most $n-m$ points and may be void. We distinguish different points of this set by prefixed indices: $i i^{n}{ }_{m}(s)$.

If the projection of $t \neq s$ from $s$ is $q$-times singular, we call $t$ a $q$-fold image point. If $t$ is $(q+m-1)$-times singular, it is a $q$-fold improper image point of any $s \neq t$. Any other image point is called proper.

The original points $s$ can also be provided with multiplicities and $s$ becomes a $p$-fold original point of the $q$-fold proper image point $t \neq s$ if and only if $L^{n}{ }_{m+1-p}(s)$ and $L_{n-m-q}^{n}(t)$ span a special subspace $(0 \leqslant m \leqslant n-1,0<p \leqslant$ $m+1,0<q \leqslant n-m)$.
3.2. The simply singular points of a $K^{3}$ are its inflection points while a twice singular point is a cusp. There are three types of curves $K^{3}$ :
(i) three inflection points;
(ii) one inflection point and one cusp;
(iii) one inflection point and a double point;
cf. (4, 5.4 and 3.6). Thus if we count a cusp twice, there always exists a triple $t^{2}{ }_{-1}$ of points of $K^{3}$ which coincide with either a singular or a double point.

In the first two cases, the tangential mapping $t^{2}{ }_{1}$ is monotonically negative ("retrograde") with the degrees -2 and -1 , respectively. In the third case, the degree is zero. The double point then decomposes $K^{3}$ into two arcs $B^{+}$and $B^{-}$such that $t^{2}{ }_{1}$ is positive in $B^{+}$and negative in $B^{-}$; cf. (4, §3).

An improper image point of $t^{2}{ }_{0}$ is a cusp. As far as this mapping is proper, it is the inverse of $t^{2}{ }_{1} ; c f .(6,1.2)$. Thus in the first two cases it is defined on the entire $K^{3}$ and its proper image points are monotonically negative. In the third case, it is defined exactly in $B^{-}$. If $s$ moves through $B^{-}$, then one of the two points $t^{2}{ }_{0}(s)$ moves positively through $B^{+}$while the other one runs negatively through $B^{-}$, the inflection point being a fixed point. This yields: If the tangential mapping is negative at $s$, then one of the mappings ${ }_{i} t^{2}{ }_{0}$ is always negative. The other one is negative in case (i), improper in case (ii), and positive in case (iii). Thus if $s$ is any point of $K^{3}, s \notin t^{2}{ }_{-1}$, then $K^{3}$ has a double point if and only if one of the three mappings $t^{2}{ }_{1}, i t^{2}{ }_{0}$ is positive at $s$; cf. (6, 5.1 and 5.2).

In case (i), the three inflection points and the triple $s, t^{2}{ }_{0}(s)$ alternate. The pairs $s, t^{2}{ }_{1}(s)$ and $t^{2}{ }_{0}(s)$ separate one another.

In case (ii), the inflection point ${ }_{1} t^{2}{ }_{-1}$ and the cusp separate $s$ from its proper image ${ }_{1} t^{2}{ }_{0}(s)$. The latter lies between $t^{2}{ }_{1}(s)$ and ${ }_{1} t^{2}{ }_{-1}$.

In case (iii), if $s$ lies in $B^{-}$, the point ${ }_{1} t^{2}{ }_{0}(s)$, say, lies in $B^{+}$while ${ }_{2} t^{2}{ }_{0}(s)$ and $t^{2}{ }_{1}(s)$ lie in $B^{-}$. The inflection point separates $s$ from ${ }_{2} t^{2}(s)$ and $t^{2}{ }_{1}(s)$, and ${ }_{2} t^{2}{ }_{0}(s)$ separates $s$ from $t^{2}{ }_{1}(s)$. If $s$ lies in $B^{+}, t^{2}{ }_{1}(s)$ is in $B^{-}$.
3.3. If the projection of $K^{n+1}$ from $L^{n}{ }_{n-3}(s)$ is a curve $K^{3}$, the mapping $t^{n}{ }_{n-3,0}$ associates with $s$ those points which are projected into a double point or cusp of
$K^{3}$. Thus the set $t^{n}{ }_{n-3,0}(s)$ is either void or a pair $i_{i}{ }^{n}{ }_{n-3,0}(s)$ of distinct or equal points ( $i=1,2$ ). If $K^{n+1}$ has a double point or cusp $t$, then $t^{n}{ }_{n-3,0}(s)=t$ for all $s \notin t$. We then also define $t^{n}{ }_{n-3,0}(s)=t$ if $s \in t$ and call the mapping $t^{n}{ }_{n-3,0}$ improper. From now on we assume that $K^{n+1}$ has no special 0 -space.
3.31. Suppose the points $s,{ }_{1} t,{ }_{2} t$ are mutually distinct. Then $\left\{{ }_{1} t,{ }_{2} t\right\}=t^{n}{ }_{n-3,0}(s)$ if and only if ${ }_{1} t$ and ${ }_{2} t$ do not lie on $L^{n}{ }_{n-3}(s)$ and if there exists an $(n-2)$-space $E(s)$ through $L^{n}{ }_{n-3}(s),{ }_{1} t$, and ${ }_{2} t$. We call $s$ a $p$-fold original point of the mapping if $L^{n}{ }_{n-2-p}(s),{ }_{1} t$, and ${ }_{2} t$ span a special $(n-1-p)$-space. The point $s$ is at most simply singular, and ${ }_{1} t$ and ${ }_{2} t$ are at most $(n-p-2)$-times singular $(1 \leqslant p \leqslant$ $n-2$ ).
$E(s)$ is projected from $L^{n}{ }_{n-3}(s)$ into a double point and from ${ }_{1}$ tonto $L^{n-1}{ }_{n-3}(s)$; this space contains ${ }_{2} t$.
3.32. Let $s \neq t$. Then $\{t, t\}=t^{n}{ }_{n-3,0}(s)$ if and only if $t \notin L^{n}{ }_{n-3}(s)$ and if $L^{n}{ }_{n-3}(s)$ and $L^{n}{ }_{1}(t)$ span an $(n-2)$-space $E(s)$. The point $t$ is then called a double image point. We assign the multiplicity $p$ to $s$ if $L^{n}{ }_{n-2-p}(s)$ and $L^{n}{ }_{1}(t)$ span a special $(n-1-p)$-flat. The points $s$ and $t$ are then at most simply and ( $n-p-2$ )-times singular, respectively $(1 \leqslant p \leqslant n-2)$. $E(s)$ is projected from $L^{n}{ }_{n-3}(s)$ into a cusp.
3.33. The pair $s={ }_{1} t \neq{ }_{2} t$ is projected from $L^{n}{ }_{n-3}(s)$ into a double point if and only if ${ }_{2} t$ lies exactly on $L^{n}{ }_{n-2}(s)$. Extending our definition, we call $s$ a $p$-fold original point of the pair $\left\{s,{ }_{2} t\right\}$ if ${ }_{2} t$ lies exactly on $L^{n}{ }_{n-1-p}(s)(1 \leqslant p \leqslant$ $n-2)$.
The fixed point $s$ is then regular; $2 t$ is at most $(n-p-1)$-times singular.
In this case, we define $E(s)=L^{n}{ }_{n-2}(s)$. Thus $E(s)$ is projected from $L^{n}{ }_{n-3}(s)$ onto a double point if $p=1$. From $s, E(s)$ is projected onto $L^{n-1}{ }_{n-3}(s)$; this projection contains ${ }_{2} t$. The projection of $s$ from ${ }_{2} t$ is $(p+1)$-times singular for $p \leqslant n-2 ; E(s)$ is projected onto $L^{n-1}{ }_{n-3}(s)$.
3.4. Given $s$, we can now discuss the existence of the points $t^{n}{ }_{n-3,0}(s)$.
3.41. Let $L^{n}{ }_{n-2}(s)$ be regular; cf. 2.3. Thus $K^{n+1}$ is projected from $L^{n}{ }_{n-3}(s)$ into a curve $K^{3}$. By $3.2, K^{3}$ has a double point if and only if one of its mappings $t^{2}{ }_{1}$ and $t^{2}{ }_{0}$ is positive at $s$. By ( $6,4.6$ ), the mappings $t^{2}{ }_{m}$ and the corresponding mappings $t^{n}{ }_{n-2+m}$ of $K^{n+1}$ have the same direction at $s$. Thus there exists a pair of distinct points $1_{1} t^{n}{ }_{n-3,0}(s),{ }_{2} t^{n}{ }_{n-3,0}(s)$ if and only if one of the mappings

$$
\begin{equation*}
t^{n}{ }_{n-1}, \quad{ }_{1} t^{n}{ }_{n-2}, \quad{ }_{2} t^{n}{ }_{n-2} \tag{1}
\end{equation*}
$$

is positive at $s$.
3.42. By (6, 5.4), the mappings $t^{n}{ }_{m}(s)$ have only a bounded number of multiple original points. The point $s$ is a $p$-fold original point of $t \neq s$ at this mapping if and only if $t$ lies exactly on $L^{n}{ }_{n-p}(s)$; cf. (4, 3.7). It is then a $(p-1)$ fold original point of the pair $(s, t)$ at the mapping $t^{n}{ }_{n-3,0}(1<p \leqslant n-1)$.

By $3.1, t$ is a double image point of the $(p-1)$-fold original point $s$ at the mapping $t^{n}{ }_{n-2}$. Hence by ( $\mathbf{6}, 4.3$ ), exactly one of the mappings (1) will be positive near $s$.
3.43. Let $s$ be a $p$-fold original point of the simple image point $t$ at the mapping $t^{n}{ }_{n-2}(1<p<n)$. By 3.1 and 3.32, $t$ is then a double image point of the ( $p-1$ )-fold original point $s$ at the mapping $t^{n}{ }_{n-3,0}$. In a small neighbourhood of $s$, the mapping $t^{n}{ }_{n-2}$ exists and $t^{n}{ }_{n-1}$ is therefore negative. If $p$ is even, one of the two mappings $i_{i} t_{n-2}$, viz. the one that maps $s$ onto $t$, changes its direction at $s$. The other one will be negative at $s$. Thus there are two one-sided neighbourhoods of $s$ such that $t^{n}{ }_{n-3,0}$ is defined everywhere in one of them and nowhere in the other.

If $p$ is odd, then the mappings $t^{n}{ }_{n-2}$ are monotonic at $s$ and $t^{n}{ }_{n-3,0}$ is defined near $s$ if and only if one of them is positive at $s$; cf. (6,4.2).
3.44. The points at which the mappings $t^{n}{ }_{n-2}$ change their direction, i.e. the original points with even multiplicities of simple image points, decompose $K^{n+1}$ into a bounded number of arcs $A$; cf. (6,5.4). Thus they are monotonic at any interior point of $A$ where they exist. By 3.42 and (6,5.2), the number of points of the set $t^{n}{ }_{n-3}(s)$ is constant on $A$. It is equal to three or one depending on whether all the mappings (1) are negative on $A$ or not. This implies: The mapping $t^{n}{ }_{n-3}$ is either everywhere single-valued or everywhere triple-valued on an $\operatorname{arc} A$. In the first case, the points of $A$, including its end points, are at most simply singular (cf. 6, 4.4), and the mapping $t^{n}{ }_{n-3,0}$ is defined on $A$. By 3.42, every fixed point of $t^{n}{ }_{n-3,0}$ lies in the interior of such an arc $A$.

In the second case, A may contain original points $s$ of odd multiplicity $>1$ of simple image points $t$ at the mapping $t^{n}{ }_{n-2}$. Then $t^{n}{ }_{n-3,0}(s)=\{t, t\}$. But $t^{n}{ }_{n-3,0}$ is not defined elsewhere in $A$.
3.5. We continue the discussion of the first case of 3.44 and begin the proo ${ }^{\mathrm{f}}$ that $E(s)$ and $t^{n}{ }_{n-3,0}$ are continuous on $A$; cf. 3.3 and 3.8.

Suppose the sequence of points $s_{\lambda} \in A$ converges to $s_{0}$. For all but a finite number of indices, the points

$$
s_{\lambda}, \quad{ }_{1} t_{\lambda}={ }_{1} t^{n}{ }_{n-3,0}\left(s_{\lambda}\right), \quad \text { and } \quad{ }_{2} t={ }_{2} t^{n}{ }_{n-3,0}\left(s_{\lambda}\right)
$$

are mutually distinct. Thus $E\left(s_{\lambda}\right)$ is the $(n-2)$-space through $L_{n-3}^{n}\left(s_{\lambda}\right),{ }_{1} s_{\lambda}$, and ${ }_{2} S_{\lambda}$. We may assume that the points $i_{i}$ are convergent, say to ${ }_{i} t$, and that $E\left(s_{\lambda}\right)$ converges, say to $E$. By $2.5, E$ is abundant and contains $L^{n}{ }_{n-3}\left(s_{0}\right),{ }_{1} t$, and ${ }_{2} t ; c$ f. 2.3. Since $s_{0}$ lies in the closure of $A$, it is at most simply singular and the points $s_{0},{ }_{1} t$, and ${ }_{2} t$ are not all equal to each other. If $L^{n}{ }_{n-3}\left(s_{0}\right)$ does not meet $K^{n+1}$ elsewhere, then $E$ is projected from $L^{n}{ }_{n-3}\left(s_{0}\right)$ into a special 0 -space. Thus

$$
E=E\left(s_{0}\right) \quad \text { and } \quad\left\{{ }_{1} t,{ }_{2} t\right\}=t_{n-3,0}^{n}\left(s_{0}\right) .
$$

If $L^{n}{ }_{n-3}\left(s_{0}\right)$ meets $K^{n+1}$ at a second point $t_{0}$, then one of the points ${ }_{i} t$ is equal to
$t_{0}$. We shall show in 3.8 that the other point is equal to $s_{0}$ and shall thus complete our continuity proof.
3.6. In this section we prepare the discussion of the double image points and the fixed points of $t^{n}{ }_{n-3,0}$.

Suppose $L^{n}{ }_{n-3}(s)$ and $s^{\prime}$ span the regular $(n-2)$-space $P$; cf. 2.3. Then $K^{n+1}$ is projected from $L^{n}{ }_{n-3}(s)$ and $s^{\prime}$ into a $K^{3}$ and $K^{n}$, respectively. $P$ is projected into the regular subspaces $L^{2}{ }_{0}\left(s^{\prime}\right)$ and $L^{n-1}{ }_{n-3}(s)$, respectively. Let $t^{n-1}{ }_{m}\left(t^{2}{ }_{m}\right)$ denote the mappings of $K^{n}\left(K^{3}\right)$. Then

$$
\begin{equation*}
t^{2}{ }_{0}\left(s^{\prime}\right)=t^{n-1}{ }_{n-3}(s) \tag{2}
\end{equation*}
$$

3.61. If $t^{n-1}{ }_{n-2}$ is positive at $s$, then (2) is void; cf. ( $\mathbf{6}, 5.2$ ). Hence $t^{2}{ }_{1}$ is positive at $s^{\prime}$ and $K^{3}$ has a double point $t^{n}{ }_{n-3,0}(s)$. Its two points separate $s^{\prime}$ from the inflection point $t^{n}{ }_{n-3}(s)$ of $K^{3}$ and from the point $t^{n}{ }_{n-1}(s)=t^{2}{ }_{1}(s)$; cf. 3.2.
3.62. Suppose $t^{n-1}{ }_{n-2}$ is negative at $s$ and the points

$$
\begin{equation*}
i_{i}{ }^{n}{ }_{n-3,0}(s) \quad(i=1,2) \tag{3}
\end{equation*}
$$

exist and are distinct. Then the two points (2) exist. By 3.2, $t^{2}{ }_{1}$ is negative at $s^{\prime}$ and the pairs (2) and (3) alternate. The points (3) separate $s$ from $s^{\prime}$ if and only if $t^{2}{ }_{1}$ is positive at $s$. By $(4,3.42)$, this is equivalent to $t^{n}{ }_{n-1}$ being positive at $s$.
3.7. The double image points. Let

$$
t^{n}{ }_{n-3,0}\left(s_{0}\right)=\left\{t_{0}, t_{0}\right\}
$$

Let $B$ be a sufficiently small one-sided neighbourhood of $s_{0}$. Suppose $t^{n}{ }_{n-3,0}$ is defined in $B$. Then the two points $t^{n}{ }_{n-3,0}(s)$ converge to $t_{0}$ from opposite sides as $s$ tends to $s_{0}$.

Proof. By 3.32, $t_{0}$ is a double image point of $s_{0}$ at the mapping $t^{n}{ }_{n-3}$. Projection from $L^{n}{ }_{n-3}\left(s_{0}\right)$ shows that $s_{0}$ has a third image point ${ }_{1} t^{n}{ }_{n-3}\left(s_{0}\right) \neq t_{0}$ at this mapping. By 3.4, $t^{n}{ }_{n-3}$ is single valued on $B$. It then follows from $(6,4.3)$ that the mapping $t^{n-1}{ }_{n-2}$ of the projection of $K^{n+1}$ from $t_{0}$ is positive on $B$, and the point $t^{n}{ }_{n-3}(s)$ converges to ${ }_{1} t^{n}{ }_{n-3}\left(s_{0}\right)$ as $s$ tends to $s_{0}$ on $B$. Applying 3.61 to $s$ and $s^{\prime}=t_{0}$, we obtain that the points $t^{n}{ }_{n-3,0}(s)$ separate $t_{0}$ from $t^{n}{ }_{n-3}(s)$. By 3.5 they converge to $t_{0}$ as $s$ approaches $s_{0}$. This yields our statement.
3.8. The fixed points of $t^{n}{ }_{n-3,0}$. Let $t_{0} \in L^{n}{ }_{n-2}\left(s_{0}\right), t_{0} \neq s_{0}$. Thus

$$
t^{n}{ }_{n-3,0}\left(s_{0}\right)=\left\{s_{0}, t_{0}\right\} ; \quad \text { cf. } 3.33
$$

By 3.44, the mapping $t^{n}{ }_{n-3,0}$ is defined in a small neighbourhood $B$ of $s_{0}$. On account of 3.5 , we may assume that, for example, ${ }_{2} t^{n}{ }_{n-3,0}(s)$ converges to $t_{0}$ as $s$ tends to $s_{0}$.

On the projection $K^{n}$ of $K^{n+1}$ from $t_{0}$, the point $s_{0}$ is at least twice singular. Hence the three mappings

$$
t^{n-1}{ }_{n-2} \text { and } t^{n-1}{ }_{n-3}
$$

of $K^{n}$ exist on $B$ and have a fixed point at $s_{0}$. They are either negative on $B$ or improper.

Let $s \in B, s \neq s_{0}$. By 3.62 , the pairs $t^{n}{ }_{n-3,0}(s)$ and $t^{n-1}{ }_{n-3}(s)$ separate one another, i.e. $1^{n}{ }_{n-3,0}(s)$ lies between the two points $t^{n-1}{ }_{n-3}(s)$. If $s$ converges monotonically to $s_{0}$, the points $t^{n-1}{ }_{n-3}(s)$ converge to $s_{0}$ from the opposite direction. Hence the same applies to ${ }_{1} t^{n}{ }_{n-3,0}(s)$. Thus $1^{n}{ }_{n-3,0}$ is continuous and negative at its fixed point $s_{0}$. This completes, in particular, the proof of the continuity of $t^{n}{ }_{n-3,0}$.

The points ${ }_{2} t^{n}{ }_{n-3,0}(s)$ and $t^{n}{ }_{n-1}(s)$ lie near $t_{0}$. By $3.62, s$ and $t_{0}$ are separated by the points $t^{n}{ }_{n-3,0}(s)$ if and only if $t^{n}{ }_{n-1}$ is positive at $s$. This is the case if and only if it is positive between $s_{0}$ and $s$, i.e. if the pairs $\left\{s_{0}, t_{0}\right\}$ and $\left\{s, t^{n}{ }_{n-1}(s)\right\}$ separate one another. Since $s$ and ${ }_{1} t^{n}{ }_{n-3,0}(s)$ lie on opposite sides of $s_{0}$, we obtain first that the points $s_{0}$ and $t_{0}$ are separated by the pair $t^{n}{ }_{n-3,0}(s)$ if and only if they are separated by $s$ and $t^{n}{ }_{n-1}(s)$, and then that the points

$$
\begin{equation*}
{ }_{2} t^{n}{ }_{n-3,0}(s) \text { and } t^{n}{ }_{n-1}(s) \tag{4}
\end{equation*}
$$

lie on opposite sides of $t_{0}$. Hence the two points (4) converge to $t_{0}$ from opposite directions as s tends to $s_{0}$. We can now deduce from $(4,3.7)$ that ${ }_{2} t^{n}{ }_{n-3,0}$ changes its direction at $s_{0}$ if and only if $s_{0}$ is an original point of odd multiplicity; cf. 3.33.
3.9. Since the numbers $N^{n}{ }_{p q}(p+q<n-1)$ are finite, the mapping $t^{n}{ }_{n-3,0}$ has only a finite number of fixed points and double image points; cf. the introduction and 3.3. We wish to show that the numbers

$$
N_{p 00}^{n} \quad(0 \leqslant p<n-3)
$$

are finite. Thus this mapping has altogether only a finite number of multiple original points; cf. 5.1.

Suppose our assertion was false. Then there exists a convergent sequence of multiple original points $s_{\lambda} \rightarrow s_{0}$. We may assume that the points $s_{\lambda}, t^{n}{ }_{n-3,0}\left(s_{\lambda}\right)$ are mutually distinct. Since $t^{n}{ }_{n-3,0}$ is continuous, the pairs $t_{n-3,0}^{n}\left(s_{\lambda}\right)$ converge to

$$
\left\{1 t_{0},{ }_{2} t_{0}\right\}=t^{n}{ }_{n-3,0}\left(s_{C}\right) .
$$

At least one of the ${ }_{i} t_{0}$ 's, say ${ }_{1} t_{0}$, is distinct from $s_{0}$. Project $K^{n+1}$ from ${ }_{1} t_{0}$ into a $K^{n}$. Since the numbers $N^{n-1}{ }_{p 0}$ are finite for $p \leqslant n-3$, we can have

$$
\begin{equation*}
{ }_{1} t^{n}{ }_{n-3,0}\left(s_{\lambda}\right) \in L^{n-1}{ }_{n-3}\left(s_{\lambda}\right) \tag{5}
\end{equation*}
$$

only a finite number of times. Thus we may assume that (5) does not occur. Hence

$$
\begin{equation*}
{ }_{1} t_{0} \notin t^{n}{ }_{n-3,0}\left(s_{\lambda}\right) \quad \text { and } \quad t^{n-1}{ }_{n-4,0}\left(s_{\lambda}\right)=t^{n}{ }_{n-3,0}\left(s_{\lambda}\right) \tag{6}
\end{equation*}
$$

for all $\lambda$ 's. In particular, the points $s_{\lambda}, t^{n-1}{ }_{n-4,0}\left(s_{\lambda}\right)$ are mutually distinct. Since $t^{n-1}{ }_{n-4,0}$ is continuous, we obtain from (6)

$$
t^{n-1}{ }_{n-4,0}\left(s_{0}\right)=t_{n-3,0}^{n}\left(s_{0}\right)
$$

By $2.4, s_{0}$ is a multiple original point of $t^{n}{ }_{n-3,0}$.
If ${ }_{2} t_{0}=s_{0}$, then ${ }_{1} t_{0} \in L^{n}{ }_{n-3}\left(s_{0}\right)$ and $s_{0}$ would be a multiple singular point of $K^{n}$. Since the mapping $t^{n-1}{ }_{n-4,0}$ is proper by (6), this is impossible; cf. 3.3.

Suppose then that ${ }_{2} t_{0} \neq s_{0}$. If ${ }_{1} t_{0} \neq{ }_{2} t_{0}$, then $L^{n}{ }_{n-4}\left(s_{0}\right),{ }_{1} t_{0}$, and ${ }_{2} t_{0}$ lie in an ( $n-3$ )-space and $\left\{1_{0},{ }_{2} t_{0}\right\}$ becomes a double point of the projection $K^{4}$ of $K^{n+1}$ from $L^{n}{ }_{n-4,0}\left(s_{0}\right)$. The projection of $K^{n}$ from $L^{n-1}{ }_{n-4}\left(s_{0}\right)$ is identical with that of $K^{4}$ from ${ }_{1} t_{0}$. Thus it is a $C^{3}$; cf. 2.4. But, $t^{n-1}{ }_{n-4,0}$ being proper, this is not possible for ${ }_{2} t_{0} \neq s_{0}$.

The case ${ }_{1} t_{0}={ }_{2} t_{0}$ is similar.
4. The direction of $t^{n}{ }_{n-3,0}$. The discussion of the directions of the mappings $i_{i}{ }^{n}{ }_{n-3,0}$ will be based on the decomposition of $K^{n+1}$ into the $\operatorname{arcs} A$ introduced in 3.44 .
4.1. We start out with the case $n=3$ and assume that $K^{4}$ has neither a double point nor a cusp. Thus the three points

$$
\begin{equation*}
s, \quad t^{3}{ }_{00}(s)=\left\{{ }_{1} t^{3}{ }_{00}(s),{ }_{2} t^{3}{ }_{00}(s)\right\} \tag{1}
\end{equation*}
$$

lie on a special straight line. Obviously, the relation between them is symmetric, and no point of $K^{4}$ lies on more than one such line.

If the points (1) are mutually distinct, the mappings $i_{i}{ }^{3}{ }_{00}$ are locally one-toone and hence monotonic. Their fixed points are those points whose tangents meet $K^{4}$ again. Thus they are identical with the points where the mapping $t^{3}{ }_{2}$ changes its direction. The end points of the arcs $A$, i.e. the points where one of the mappings $t^{3}{ }_{1}$ changes its direction, are those points which lie on the tangents of other points.

If $t^{3}{ }_{2}$ is negative on the entire $K^{4}$, then it has fixed points. They are the singular points of $K^{4}$ and the fixed points of the mappings $t^{3}{ }_{1}$. The latter are defined and monotonic everywhere. In fact, being negative at their fixed points, they are monotonically negative, and the two points $i^{t^{3}}{ }_{1}(s)$ are distinct outside a double singular point. By ( $6,5.2$ ), the mapping $t^{3}{ }_{0}$ is triple-valued on $K^{4}$; it is the inverse of $t^{3}{ }_{2}$. By 3.4, $t^{n}{ }_{n-3,0}$ is nowhere defined. For such a $K^{4}$, we have

$$
\sum_{0}^{3}(3-m) N^{n}{ }_{m}=4 .
$$

If $t^{3}{ }_{2}$ is monotonically positive, then $t^{3}{ }_{00}$ is defined on the whole curve. Since no tangent meets $K^{4}$ three times, the mappings $i^{3}{ }^{3}{ }_{00}$ are monotonic. Having no fixed points, they are monotonically positive.

Suppose the mappings $t^{3}{ }_{2}$ are not monotonic. Then there are points $s_{0}$ whose tangents meet the curve again, say at $t_{0}$. If $s$ passes monotonically through $s_{0}$, then one of the points $t^{3}{ }_{00}(s)$ moves through $s_{0}$ in the opposite sense while the other one changes its direction at $t_{0}$; more accurately, it is separated from $t^{3}{ }_{2}(s)$ by $t_{0}$. If $s$ moves from $t_{0}$ into an arc $A$, then the two points $t^{3}{ }_{00}(s)$ move from $s_{0}$ in opposite directions; cf. 3.7 and 3.8. Since the number of the points $s_{0}, t_{0}$ is finite and since the mappings $i_{i}{ }^{3}{ }_{00}$ are monotonic elsewhere, we obtain: If $t^{3}{ }_{2}$
is negative and one of the mappings $t^{3}{ }_{1}$ is positive, then the two mappings $t^{3}{ }_{00}$ have opposite directions.
4.2. Suppose the mapping $t_{n-3,0}^{n}$ is defined at $s_{0}$ and proper, and the three points $s_{0}, t^{n}{ }_{n-3,0}\left(s_{0}\right)$ are mutually distinct. Then there exists a closed arc $B$ which contains $s_{0}$ in its interior and a neighbourhood $C$ of $s_{0}$ with the following property: If $s \in C, s \neq s_{0}$, then the mappings $t^{3}{ }_{00}$ of the projection of $K^{n+1}$ from $L_{n-4}^{n}(s)$ are defined in $B$ and proper. In $B$, they are monotonic and without fixed points.

Proof. By our assumptions, $L^{n}{ }_{n-2}\left(s_{0}\right)$ is regular. Hence $L^{n}{ }_{n-4}\left(s_{0}\right)$ is so too and the projection of $K^{n+1}$ from $L^{n}{ }_{n-4}\left(s_{0}\right)$ is a curve $K^{4}$. The abundant ( $n-2$ )spaces through $L^{n}{ }_{n-4}\left(s_{0}\right)$ are projected into abundant straight lines; cf. 2.3.

By our assumptions, the points

$$
s_{0}, \quad t^{3}{ }_{00}\left(s_{0}\right)=t^{n}{ }_{n-3,0}\left(s_{0}\right)
$$

are mutually distinct. Thus $L^{3}{ }_{1}\left(s_{0}\right)$ is regular and any abundant straight line meets $K^{4}$ outside $s_{0}$ at least twice. Since $K^{4}$ has only a finite number of abundant tangents, we obtain: All of the abundant $(n-2)$-spaces through $L^{n}{ }_{n-4}\left(s_{0}\right)$ meet $K^{n+1}$ outside $s_{0}$ at least twice; only a finite number of them meet $K^{n+1}$ at only two points $\neq s_{0}$. We choose the closed neighbourhood $B$ such that it contains none of these points.

Let $C$ be a sufficiently small neighbourhood of $s_{0}$. By 3.44 and 3.8 , the mapping $t^{n}{ }_{n-3,0}$ is defined and continuous in $C$ and proper. Thus we may assume that the points

$$
s, \quad t^{n}{ }_{n-3,0}(s)
$$

are mutually distinct for all $s \in C$. On account of 3.9 , we may assume that each $s$ is a simple original point of $t^{n}{ }_{n-3,0}$. If we project $K^{n+1}$ from the regular subspace $L^{n}{ }_{n-4}(s)$, then

$$
t^{n}{ }_{n-3,0}(s)=t^{3}{ }_{00}(s)
$$

will be a proper pair of distinct image points of $s$. Thus the mapping $t^{3}{ }_{00}$ is defined near $s$ and proper and the three points $s^{\prime}, t^{3}{ }_{00}\left(s^{\prime}\right)$ are mutually distinct if $s^{\prime}$ is near $s$.

Suppose our assertion were false for $B$ and for every choice of $C$. Then there would exist a sequence of points $s_{\lambda} \rightarrow s_{0}, s_{\lambda} \neq s_{0}$, such that the projection of $K^{n+1}$ from each $L^{n}{ }_{n-4}\left(s_{\lambda}\right)$ would possess abundant tangents which would meet this projection in $B$. Hence each $L^{n}{ }_{n-4}\left(s_{\lambda}\right)$ would lie in some abundant $(n-2)$ space which would meet $K^{n+1}$ in not more than two points outside $s_{\lambda}$ such that at least one of them would lie in $B$. A limit space of these $(n-2)$-spaces would be an abundant ( $n-2$ )-space through $L^{n}{ }_{n-4}\left(s_{0}\right)$ and not more than two points distinct from $s_{0}$, at least one of which would lie in $B$. Such subspaces have been excluded by our construction of $B$.
4.3. Suppose $t^{n}{ }_{n-3,0}$ is defined at $s_{0}$ and proper, and the three points

$$
s_{0}, \quad t^{n}{ }_{n-3,0}\left(s_{0}\right)
$$

are mutually distinct and non-collinear. Let $t^{n-1}{ }_{n-4,0}$ denote the mapping of the projection $K^{n}$ of $K^{n+1}$ from $s_{0}$. Thus

$$
t^{n-1}{ }_{n-4,0}\left(s_{0}\right)=t^{n}{ }_{n-3,0}\left(s_{0}\right),
$$

$t^{n-1}{ }_{n-4,0}$ is proper, and the mappings

$$
\begin{equation*}
t_{n-3,0}^{n} \text { and } t^{n-1}{ }_{n-4,0} \tag{2}
\end{equation*}
$$

are defined and continuous near $s_{0}$. We label them such that

$$
{ }_{i} t={ }_{i} t^{n}{ }_{n-3,0}\left(s_{0}\right)={ }_{i} t^{n-1}{ }_{n-4,0}\left(s_{0}\right) \quad(i=1,2) .
$$

Then the point ${ }_{i} t^{t-1}{ }_{n-4,0}(s)$ lies between ${ }_{i} t$ and $i_{i} i^{n}{ }_{n-3,0}(s)$ for every $s$ sufficiently close to $s_{0}\left(s \neq s_{0}\right)$. In particular,

$$
i_{i} t^{n-3,0} \text { and }_{i} i^{n-1}{ }_{n-4,0}
$$

have the same direction at $s_{0}$.
Proof. Choose the neighbourhoods $B$ and $C$ of $s_{0}$ according to 4.2 . We may assume that ${ }_{1} t$ and ${ }_{2} t$ do not lie in $B$, that $C \subset B$, and that the mappings (2) exist in $C$. Construct small neighbourhoods $C_{i}$ about ${ }_{i} t$ such that $B, C_{1}, C_{2}$ are mutually disjoint and make $C$ so small that

$$
\left\{i_{i} t_{n-3,0}^{n}(s),{ }_{i} i^{n-1}{ }_{n-4,0}(s)\right\} \subset C_{i} \quad \text { for all } s \in C ; i=1,2
$$

If we project $K^{n+1}$ from ${ }_{1} t$, then ${ }_{2} t \in L^{n-1}{ }_{n-3}\left(s_{0}\right)$. Thus the mapping $\bar{t}^{n-1}{ }_{n-4,0}$ of this projection is proper and

$$
\bar{t}^{n-1}{ }_{n-4,0}\left(s_{0}\right)=\left\{s_{0},{ }_{2} t\right\} .
$$

The mapping $\bar{t}^{n-1}{ }_{n-4,0}$ is defined at any point $s_{1}$ sufficiently close to $s_{0}$. One of the points $\bar{t}^{n-1}{ }_{n-4,0}\left(s_{1}\right)$, say ${ }_{1} \bar{t}$, lies in $B$ and is separated from $s_{1}$ by $s_{0}$ while the other one, ${ }_{2} \bar{t}$, lies in $C_{2} ;$ cf. 3.8. We finally make $C$ so small that this is the case for every $s_{1} \in C, s_{1} \neq s_{0}$, and that $L^{n}{ }_{n-4}\left(s_{1}\right)$ and $s_{0}$, as well as $L^{n}{ }_{n-4}\left(s_{1}\right)$ and ${ }_{1} t$, span regular $(n-3)$-spaces for all these $s_{1}$.

Let $s_{1} \in C$ now be fixed $\left(s_{1} \neq s_{0}\right)$. Let $t^{3}{ }_{00}$ denote the mapping of the projection of $K^{n+1}$ from $L^{n}{ }_{n-4}\left(s_{1}\right)$. Thus

$$
t^{3}{ }_{00}\left(s_{1}\right)=t^{n}{ }_{n-3,0}\left(s_{1}\right) .
$$

Choose the notation such that

$$
{ }_{i} t^{3}{ }_{00}\left(s_{1}\right)={ }_{i} t^{n}{ }_{n-3,0}\left(s_{1}\right) \quad(i=1,2)
$$

By our construction

$$
\begin{equation*}
t^{3}{ }_{00}\left({ }_{1} \bar{t}\right)=\left\{{ }_{1} t,{ }_{2} \bar{t}\right\} \quad \text { and } \quad t^{3}{ }_{00}\left(s_{0}\right)=t^{n-1}{ }_{n-4,0}\left(s_{1}\right) \tag{3}
\end{equation*}
$$

Let $s$ move on $B$ from $s_{1}$ to ${ }_{1} \bar{t}$. Then the two points $t^{3}{ }_{00}(s)$ depend continuously and monotonically on $s$, and the three points $s, t^{3}{ }_{00}(s)$ remain mutually distinct;
cf. 4.2. Hence their order on the oriented curve remains unchanged and (3) implies that

$$
{ }_{1} t_{00}\left({ }_{1} \bar{t}\right)={ }_{1} t, \quad{ }_{2} t_{00}\left({ }_{1} \bar{t}\right)={ }_{2} \bar{t} .
$$

Since $s_{0}$ lies between $s_{1}$ and ${ }_{1} \bar{t}$, the point ${ }_{i} t^{3}{ }_{00}\left(s_{0}\right)$ lies between ${ }_{i} t^{3}{ }_{00}\left(s_{1}\right)$ and ${ }_{i} t^{3}{ }_{00}\left({ }_{1} \bar{t}\right)$ In particular, it lies in $C_{i}$. Hence, (3) yields

$$
{ }_{i} t^{3}{ }_{00}\left(s_{0}\right)={ }_{i} t^{n-1}{ }_{n-4,0}\left(s_{1}\right) \quad(i=1,2) ;
$$

and the point ${ }_{1} t^{n-1}{ }_{n-4,0}\left(s_{1}\right)$ lies between the points

$$
{ }_{1} t^{3}{ }_{00}\left(s_{1}\right)={ }_{1} t^{n}{ }_{n-3,0}\left(s_{1}\right) \quad \text { and } \quad{ }_{1} t^{3}{ }_{00}\left({ }_{1} \bar{t}\right)={ }_{1} t .
$$

Since ${ }_{2} t^{n-1}{ }_{n-4,0}\left(s_{1}\right)$ lies between

$$
{ }_{2} t^{3}{ }_{00}\left(s_{1}\right)={ }_{2} t^{n}{ }_{n-3,0}\left(s_{1}\right) \quad \text { and } \quad{ }_{2} t^{3}{ }_{00}(\overline{1} \bar{t})={ }_{2} t^{n-1}{ }_{n-4,0}\left(s_{1}\right),
$$

we note that ${ }_{2} t^{n}{ }_{n-3,0}\left(s_{1}\right)$ and ${ }_{2} t^{n-1}{ }_{n-4,0}\left(s_{1}\right)$ lie on the same side of $2 t$.
4.4. Combining the last remark with 3.8 , we readily obtain conditions for $t^{n}{ }_{n-3,0}$ to change its directions. But the following discussion will yield more detailed information.

Suppose $t^{n}{ }_{n-3,0}$ is defined at $s_{0}$ and proper, and the three points

$$
\begin{equation*}
s_{0}, \quad t^{n}{ }_{n-3,0}\left(s_{0}\right) \tag{4}
\end{equation*}
$$

are mutually distinct. Using 4.1 and 4.3 , we readily verify by induction that the mappings $i^{t^{n}{ }_{n-3,0}}$ are monotonic at $s_{0}$ if $s_{0}$ is a simple original point. Thus they can change their directions only at multiple original points or at those points $s_{0}$ where two of the points (4) coincide; cf. 3.7 and 3.8 . By 3.9 , the number of these points is finite. We prove:

Let slie sufficiently close to $s_{0}$. Then the two pairs of points

$$
t_{n-3,0}^{n}(s) \quad \text { and } \quad t_{n-3,0}^{n}\left(s_{0}\right)
$$

alternate if and only if the mapping $t^{n}{ }_{n-1}$ is positive at $s_{0}$. This implies: If the mappings $i_{i}{ }^{n}{ }_{n-3,0}$ are monotonic at $s_{0}$, then they have the same or opposite directions depending on whether $t^{n}{ }_{n-1}$ is positive or negative at $s_{0}$. If one of the two changes its direction at $s_{0}$, then so does the other.

By 4.1, our assertion is true for $n=3$. Suppose it has been proved up to $n-1$. Choose a small neighbourhood $B$ of $s_{0}$ with the following properties: The mappings $t^{n}{ }_{n-3,0}$ are defined in $B$, and the points

$$
s, \quad t^{n}{ }_{n-3,0}(s) \quad(s \in B)
$$

are mutually distinct; with the possible exception of $s_{0}, B$ contains no multiple original points. Thus these mappings are monotonic on the two subarcs into which $B$ is decomposed by $s_{0}$.

Let $s_{1} \in B, s_{1} \neq s_{0}$; and let $t^{n-1} *$ denote mappings of the projection of $K^{n+1}$ from $s_{1}$. Choose $s$ between $s_{0}$ and $s_{1}$ sufficiently close to $s_{1}$. By our induction assumption, the pairs of points

$$
t^{n-1}{ }_{n-4, \mathrm{e}}(s) \quad \text { and } \quad t^{n-1}{ }_{n-4,0}\left(s_{1}\right)=t^{n}{ }_{n-3,0}\left(s_{1}\right)
$$

alternate if and only if $t^{n-1}{ }_{n-2}$ is positive at $s_{1}$. By $(4 ; 3.42)$, this mapping and $t^{n}{ }_{n-1}$ have the same direction at $s_{1}$. Since $B$ contains no multiple original points of the latter, it is monotonic in $B$; cf. ( $4 ; 3.7$ ). Thus $t^{n-1}{ }_{n-2}$ is positive at $s_{1}$ if and only if $t^{n}{ }_{n-1}$ is positive at $s_{0}$. Since $s_{1}$ is a simple original point of $t^{n}{ }_{n-3,0}$, 4.3 implies that the two points

$$
i_{i} i^{n-1}{ }_{n-4,0}(s) \quad \text { and }{ }_{i} i^{n}{ }_{n-3,0}(s)
$$

lie on the same side of $i^{i^{n}}{ }_{n-3,0}\left(s_{1}\right)(i=1,2)$. Altogether, the pairs

$$
t^{n}{ }_{n-3,0}(s) \text { and } t^{n}{ }_{n-3,0}\left(s_{1}\right)
$$

alternate if and only if $t^{n}{ }_{n-1}$ is positive at $s_{0}$. The mappings $i^{t^{n}{ }_{n-3,0} \text { being mono- }}$ tonic between $s_{0}$ and $s_{1}$, we can now drop the restriction that $s$ be close to $s_{1}$. Letting $s$ tend to $s_{0}$, we obtain our statement.
4.5. Suppose the points

$$
\begin{equation*}
s_{0}, \quad{ }_{1} t={ }_{1} t^{n}{ }_{n-3,0}\left(s_{0}\right), \quad{ }_{2} t={ }_{2} t^{n}{ }_{n-3,0}\left(s_{0}\right) \tag{5}
\end{equation*}
$$

are mutually distinct but collinear. The following remark is a substitute for 4.3: Let $B$ be a closed neighbourhood of $s_{0}$ which does not contain ${ }_{1} t$ and ${ }_{2} t$. Suppose the neighbourhood $C$ of $s_{0}$ is sufficiently small ( $s_{1} \in C, s_{1} \neq s_{0}$ ). Then the mappings $t^{n-1}{ }_{n-4,0}$ of the projection of $K^{n+1}$ from $s_{1}$ are defined on $B$ and proper. They are monotonic outside $s_{0}$ and the three points

$$
\begin{equation*}
s, \quad t^{n-1}{ }_{n-4,0}(s) \tag{6}
\end{equation*}
$$

are mutually distinct.
Proof. By 3.4 and 3.8, the mapping $t^{n}{ }_{n-3,0}$ is defined and continuous in a neighbourhood $C$ of $s_{0}$. By 3.9 , we may choose $C$ so small that it contains no multiple original points $\neq s_{0}$. Thus $t^{n-1}{ }_{n-4,0}$ will be defined at $s_{1}$ and proper.

Suppose there is a sequence of points $s_{1} \rightarrow s_{0}, s_{1} \neq s_{0}$ and to each $s_{1}$ a point $s \in B$ such that two of the points (6) are identical. Thus to each $s_{1}$ of this sequence there exists an abundant $(n-2)$-space through $s_{1}$ and through not more than two other points of $K^{n+1}$, not more than one of them lying outside B. Letting $s_{1}$ tend to $s_{0}$, we obtain an abundant $(n-2)$-space through $s_{0}$ with the same property. It is projected from $s_{0}$ into an abundant $(n-3)$-space $F$ which meets the projection $K^{n}$ of $K^{n+1}$ from $s_{0}$ at most once outside $B$. Since the points ${ }_{1} t,{ }_{2} t$ are projected into a double point of $K^{n}$ and lie outside $B, F$ cannot contain the double point. The $(n-2)$-flat through $F$ and that point would meet $K^{n}$ not less than $[(n-1)+2]$-times.

We can now choose $C \subset B$ so small that for every point $s_{1} \in C$, $s_{1} \neq s_{0}$, and for every $s \in B$, the points (6) are mutually distinct if they exist. But 3.4 implies now that $t^{n-1}{ }_{n-4,0}$ is defined not only at $s_{1}$ but in the whole of $B$.

It remains to be shown that the mappings $i^{t^{n-1}{ }_{n-4,0}}$ are monotonic outside $s_{0}$. Let $s \in B, s \neq s_{0}$. If one of our mappings would change its direction at $s$, then $s$ would be a multiple original point. Thus $L^{n}{ }_{n-5}(s), s_{1}$, and the two points
$t^{n-1}{ }_{n-4,0}(s)$ would lie in an abundant $(n-3)$-space. It is projected from $L^{n}{ }_{n-5}(s)$ onto an abundant straight line through $s_{1}$ and the points $i^{n-1}{ }_{n-4,0}(s)$. This line and the straight line through the projections of the points (5) are distinct. They span a subspace of dimension $\leqslant 3$. It would meet the projection $K^{5}$ of $K^{n+1}$ at least six times (at least five times) if its dimension were three (were two).
4.6. Suppose the mappings $t^{n}{ }_{n-3,0}$ are defined at $s_{0}$ and proper and the three points

$$
\begin{equation*}
s_{0}, \quad{ }_{i} t={ }_{i} t^{n}{ }_{n-3,0}\left(s_{0}\right) \quad(i=1,2) \tag{7}
\end{equation*}
$$

are mutually distinct. Then these mappings change their directions at $s_{0}$ if and only if the multiplicity of $s_{0}$ is even.

Let $s_{0}$ be a $p$-fold original point. Thus $L^{n}{ }_{n-p-2}\left(s_{0}\right)$ and the ${ }_{i} t$ span a special subspace. Projecting from $L^{n}{ }_{n-p-3}\left(s_{0}\right)$ and making use of 4.3 , we reduce our assertion to the case $p=n-2$. Thus we may assume that the points (7) are collinear, and we have to show that the mappings $t^{n}{ }_{n-3,0}$ change their directions if and only if $n$ is even.

We choose a closed neighbourhood $B$ and a neighbourhood $C \subset B$ of $s_{0}$ such that $t^{n}{ }_{n-3,0}$ is defined in $C$ and monotonic outside $s_{0}$ and that we can apply 4.2 and 4.5. It is sufficient to prove: Let $C$ be sufficiently small. Then if $s^{\prime}$ and $s^{\prime \prime}$ lie in $C$ and are separated by $s_{0}$, the points

$$
{ }_{i} t^{\prime}={ }_{i} t^{n}{ }_{n-3,0}\left(s^{\prime}\right) \quad \text { and } \quad{ }_{i} t^{\prime \prime}={ }_{i} t^{n}{ }_{n-3,0}\left(s^{\prime \prime}\right)
$$

lie on the same side of ${ }_{i} t$ if and only if $n$ is even $(i=1,2)$.
Let $t^{3}{ }_{00}$ and $t^{n-1}{ }_{n-4,0}$ denote the mappings of the projections of $K^{n+1}$ from $L^{n}{ }_{n-4}\left(s^{\prime}\right)$ and $s^{\prime \prime}$, respectively. We number them such that

$$
\begin{equation*}
{ }_{i} t^{3}{ }_{00}\left(s_{0}\right)={ }_{i} t^{n-1}{ }_{n-4,0}\left(s_{0}\right)={ }_{i} t \quad(i=1,2) . \tag{8}
\end{equation*}
$$

Obviously,

$$
t^{3}{ }_{00}\left(s^{\prime}\right)=t^{n}{ }_{n-3,0}\left(s^{\prime}\right) \quad \text { and } \quad t^{n-1}{ }_{n-4,0}\left(s^{\prime \prime}\right)=t^{n}{ }_{n-3,0}\left(s^{\prime \prime}\right)
$$

By 4.2, $L^{n}{ }_{n-4}\left(s^{\prime}\right)$ and $s^{\prime \prime}$ span a regular $(n-3)$-space. Hence

$$
t^{n-1}{ }_{n-4,0}\left(s^{\prime}\right)=t^{3}{ }_{00}\left(s^{\prime \prime}\right)
$$

If $s$ moves on $C$ from $s_{0}$ to $s^{\prime}$ or to $s^{\prime \prime}$, then the points $t^{3}{ }_{00}(s)$ and $t^{n-1}{ }_{n-4,0}(s)$ move continuously, and $s$ and its image points remain mutually distinct. Hence, their order on the oriented curve remains unchanged. Therefore

$$
\begin{equation*}
{ }_{i} t^{3}{ }_{00}(s)={ }_{i} t^{\prime}, \quad{ }_{i} t^{n-1}{ }_{n-4,0}\left(s^{\prime \prime}\right)={ }_{i} t^{\prime \prime} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
i_{i}{ }^{n-1}{ }_{n-4,0}\left(s^{\prime}\right)={ }_{i} t^{3}{ }_{00}\left(s^{\prime \prime}\right) \quad(i=1,2) \tag{10}
\end{equation*}
$$

Choose small neighbourhoods of the points ${ }_{i} t$ and make $C$ so small that the points (9) lie in these neighbourhoods $(i=1,2)$. If $s^{\prime}$ and $s^{\prime \prime}$ converge to $s_{0}$,
then the abundant $(n-2)$-space through $L^{n}{ }_{n-4}\left(s^{\prime}\right), s^{\prime \prime}$, and the two points (10) will have an abundant limit space through $L_{n-3}^{n}\left(s_{0}\right)$, i.e. it will converge to the $(n-2)$-space through $L^{n}{ }_{n-3}\left(s_{0}\right),{ }_{1} t$, and ${ }_{2} t$. Hence the pair $t^{3}{ }_{00}\left(s^{\prime \prime}\right)$ converges to the pair $\left\{{ }_{1} t,{ }_{2} t\right\}$. Since the triples $s^{\prime \prime}, t^{3}{ }_{00}\left(s^{\prime \prime}\right)$ and $s_{0}, t^{3}{ }_{00}\left(s_{0}\right)$ have the same order on the oriented curve, the points (10) must converge to ${ }_{i} t$. Hence we may choose $C$ so small that ${ }_{i} t^{3}{ }_{00}\left(s^{\prime \prime}\right)$ lies in the neighbourhood of ${ }_{i} t(i=1,2)$.

For $n=3$, our assertion follows from 4.1. Suppose it is proved up to $n-1$. Thus the points $i^{t{ }^{n-1}}{ }_{n-4,0}\left(s^{\prime}\right)$ and ${ }_{i} t^{n-1}{ }_{n-4,0}\left(s^{\prime \prime}\right)$, i.e. the points $i_{i} t^{3} 00\left(s^{\prime \prime}\right)$ and $i_{i} t^{\prime \prime}$, lie on the same side of ${ }_{i} t$ if and only if $n-1$ is even. The mappings $t^{3}{ }_{00}$ being monotonic in $C$, the points ${ }_{i} t^{3}{ }_{00}\left(s^{\prime}\right)={ }_{i} t^{\prime}$ and ${ }_{i} t^{3}{ }_{00}\left(s^{\prime \prime}\right)$ are separated by ${ }_{i} t^{3}{ }_{00}\left(s_{0}\right)={ }_{i} t$; cf. (8). Combining these two observations, we obtain our assertion.

## 5. Some global properties of the mapping $t^{n}{ }_{n-3,0}$.

5.1. The numbers $N^{n}{ }_{p 00}$ are bounded for given $n(0 \leqslant p \leqslant n-4)$.

Trivially, $N^{4}{ }_{000} \leqslant 1$. Suppose our statement has been proved up to $n-1$.
By 3.9, the numbers $N^{n}{ }_{p 00}$ were finite. Project $K^{n+1}$ from a point which is neither a fixed point nor a multiple original point of $t^{n}{ }_{n-3,0}$. If $s$ is such a multiple original point, then

$$
\begin{equation*}
t^{n-1}{ }_{n-4,0}(s)=t^{n}{ }_{n-3,0}(s) . \tag{1}
\end{equation*}
$$

Our projection has decreased the multiplicity of $s$ by one.
These points $s$ decompose $K^{n+1}$ into a finite number of arcs $B$. We divide the set of these arcs into two classes. $B$ shall belong to the first class if and only if all the mappings

$$
\begin{equation*}
i^{t^{n}}{ }_{n-3,0} \text { and } i i^{t-1}{ }_{n-4,0} \tag{2}
\end{equation*}
$$

are defined and monotonic on $B$ and have no fixed points in $B$. Thus any arc $B$ of the second class either contains multiple original points of $i^{t-1}{ }_{n-4,0}$ or fixed points of one of the mappings (2). By our induction assumption and the introduction, the number of these points and hence that of the arcs $B$ of the second class is bounded.

Let $B$ be an arc of the first class. We wish to show that the mappings

$$
\begin{equation*}
\mathrm{I}^{t^{n-3,0}} \quad \text { and } \quad \mathrm{I}^{t^{n-1}}{ }_{n-4,0} \tag{3}
\end{equation*}
$$

have the same direction on $B$. Since exactly one of them changes its direction at an end point of $B$, an arc adjacent to $B$ cannot belong to the first class; cf. 4.6. Thus the number of the arcs of the first class is not greater than that of the second and it is bounded too.

If $s$ moves on $B$, the three mutually distinct points $s$ and $t^{n}{ }_{n-3,0}(s)$ ( $s$ and $\left.t^{n-1}{ }_{n-4,0}(s)\right)$ move continuously on the curve. Hence their order on the oriented curve remains unchanged. Furthermore, (1) holds true if $s$ is equal to one of the end points $s^{\prime}$ and $s^{\prime \prime}$ of $B$. Hence the mappings (3) can be labelled such that

$$
i^{i} t_{n-3,0}(s)={ }_{i} t^{n-1}{ }_{n-4,0}(s) \quad \text { for } s=s^{\prime} \text { and } s=s^{\prime \prime} ; i=1,2 .
$$

If $s$ moves from $s^{\prime}$ through $B$ to $s^{\prime \prime}$, the points

$$
{ }_{1} t^{n}{ }_{n-3,0}(s) \quad \text { and }{ }_{1} t^{n-1}{ }_{n-4,0}(s)
$$

move continuously and monotonically from a common initial point to a common end point. Since neither mapping has a fixed point, they must be monotonic in the same direction. This completes our proof.
5.2. The mapping $t^{n}{ }_{n-3}$ was extended in $(\mathbf{6} ; 5.3)$ to a mapping $\bar{t}^{n}{ }_{n-3}$ which was triple-valued and continuous on the whole curve. The additional image points were the positive image points of the mappings $t_{n-1}^{n}$ and $t_{n-2}^{n}$, each of them counted twice.

On account of 3.4, we can complete $t^{n}{ }_{n-3}$ in another fashion to a mapping $\tilde{t}^{n}{ }_{n-3}$ which is triple-valued and continuous everywhere. Define $\tilde{t}^{n}{ }_{n-3}(s)=t^{n}{ }_{n-3}(s)$ if $t^{n}{ }_{n-3}(s)$ consists of three points. If $t^{n}{ }_{n-3}$ is single-valued at $s$, define

$$
\tilde{t}_{n-3}^{n}(s)=\left\{t_{n-3}^{n}(s), t_{n-3,0}^{n}(s)\right\} .
$$

This mapping could be discontinuous only when the number of image points of $t^{n}{ }_{n-3}$ changes. That is the case at $s_{0}$ if and only if the multiplicity of $s_{0}$ is odd and that of its image point $t_{0}$ is two. But if $s$ converges monotonically to $s_{0}$, then either two points $i_{i} t_{n-3}^{n}(s)$ or two points $i^{t^{n}}{ }_{n-3,0}(s)$ converge to $t_{0}$ from opposite directions; cf. 3.8 and ( $6 ; 4.2$ and 4.3 ). Thus these points $s_{0}$ are exactly those points where pairs $t^{n}{ }_{n-3,0}(s)$ change into pairs $t_{n-3}^{n}(s)$ and vice versa. Thus $\tilde{t}^{n}{ }_{n-3}$ remains continuous at $s_{0}$. If $s$ passes through $s_{0}$, two of the points $\tilde{t}^{n}{ }_{n-3}(s)$ move through $t_{0}$ monotonically in opposite directions.

The improper image points of $\tilde{t}^{n}{ }_{n-3}$ are the cusps (counted twice), the $(n-1)$-times singular points, and the double points. By the introduction, each point of $K^{n+1}$ is the proper image point of a bounded number of points.

The proper fixed points of $\tilde{i}_{n-3}$ are the multiple original points of $t^{n}{ }_{n-1}$, each of them counted once, and the singular points; cf. 3.8. Simple singular points and cusps have to be counted once; the twice or ( $n-1$ )-times singular points are counted twice; any other singular point is counted three times; cf. $(6 ; 3.1)$. By $(6 ; 4.4)$, a $q$-fold fixed point of $\tilde{t}_{n-3}^{n}$ is the fixed point of $q$

5.3. Suppose $t$ is not a fixed point of the mapping $\tilde{t}_{n-3}$. Then the number of the negative original points of $t$ at this mapping minus that of its positive ones is equal to

$$
\begin{equation*}
N_{n-1}^{n}+2 N_{n-2}^{n}+3 \sum_{0}^{n-3} N_{m}^{n}+\sum_{1}^{n-2} N^{n}{ }_{m 0}+2 N^{n}{ }_{00}-3 \quad(n \geqslant 3) \tag{4}
\end{equation*}
$$

Proof. Let $h$ denote the sum of the multiplicities of any improper images of $\tilde{t}_{n-3}^{n}$; thus

$$
h=N^{n}{ }_{1}+2 N^{n}{ }_{0}+2 N^{n}{ }_{00} .
$$

The proper part of $\tilde{t}^{n}{ }_{n-3}$ being $(3-h)$-valued, we can uniformize it to a single-valued continuous mapping of the $(3-h)$-times covered $K^{n+1}$ into itself.

Its fixed points decompose the covering curve into a finite number of arcs $B$ which have no fixed points in their interiors. The new mapping still being negative at its fixed points, the number of negative original points of the point $t$ exceeds that of its positive ones by one in each arc $B$ which does not contain $t$. For each of the $3-h \operatorname{arcs} B$ which contain $t$, these two numbers are equal. Thus our difference is equal to the number of arcs $B$ minus $(3-h)$. But the number of these arcs is equal to the number of the fixed points of $\tilde{t}^{n}{ }_{n-3^{\prime}}$ each of them counted with its multiplicity, i.e. it is equal to

$$
N_{n-1}^{n}+2 N_{n-2}^{n}+3 \sum_{2}^{n-3} N_{m}^{n}+2 N^{n}{ }_{1}+N_{0}^{n}+\sum_{1}^{n-2} N_{m 0}^{n}
$$

cf. 5.2. Subtracting $3-h$, we obtain (4).

### 5.4. Suppose the point thas no multiple original points at the mappings

$$
\begin{equation*}
t_{n-1}^{n} \quad \text { and } \quad t^{n}{ }_{n-2} . \tag{5}
\end{equation*}
$$

Then the number of its negative original points at the mapping $t^{n}{ }_{n-3,0}$ minus that of its positive ones is equal to

$$
\begin{equation*}
\sum_{1}^{n-2} N^{n}{ }_{m 0}+2 N^{n}{ }_{00} \tag{6}
\end{equation*}
$$

minus twice the number of its positive original points at the mappings (5).
Proof. Suppose first that $t$ is in addition regular and that the original points of $t$ at the mapping $t_{n-3}^{n}$ are simple. By ( $6 ; 5.1$ ), the number of negative original points of $t$ at that mapping minus that of its positive ones is equal to

$$
N^{n}{ }_{n-1}+2 N_{n-2}^{n}+3 \sum_{0}^{n-3} N^{n}{ }_{m}-3
$$

plus twice the number of positive original points of $t$ at the mappings (5). Comparing this relation with 5.3 , we obtain our assertion for these points, i.e. for all the points $t \in K^{n+1}$ with a finite number of exceptions.

If we assume only that the original points of $t$ at the mappings (5) are simple, then both the difference before (6) and the expression following it are the same for $t$ as they are for points near $t$. Thus our remark remains valid under these weaker assumptions.
5.5. Let $n \geqslant 3$. Suppose $t$ has no multiple original points at the mappings (5) or at $t^{n}{ }_{n-3,0}$. Project $K^{n+1}$ from $t$ into a $K^{n}$.

A regular point $s \neq t$ of $K^{n}$ is at most simply singular on $K^{n+1}$. The osculating space $L^{n-1}{ }_{m}(s)$ is special if and only if the subspace through $t$ and $L^{n}{ }_{m}(s)$ is abundant while that through $t$ and $L^{n}{ }_{m-1}(s)$ is not. Hence $L^{n-1}{ }_{m}(s)$ is special if and only if either $L^{n}{ }_{m}(s)$ or the subspace through $L^{n}{ }_{m}(s)$ and $t$ is special. This yields

$$
\left\{\begin{array}{l}
N^{n-1}{ }_{n-3,0}=N^{n}{ }_{n-3,0}+\text { no. of orig. pts. of } t \text { at the mapping } t^{n}{ }_{n-3,0} \text { if } n>3,  \tag{7}\\
N^{n-1}{ }_{m 0}=N^{n}{ }_{m 0} \quad(0 \leqslant m<n-3) . \\
2 N^{2}{ }_{00}=2 N^{3}{ }_{00}+\text { no. of orig. pts. of } t \text { at } t^{3}{ }_{00} .
\end{array}\right.
$$

Hence, by 5.4,
(8) $\quad \sum_{1}^{n-2}(n-m-1) N^{n}{ }_{m 0}+2(n-1) N^{n}{ }_{00}$

$$
=\left[\sum_{1}^{n-3}(n-m-2) N^{n}{ }_{m, 0}+2(n-2) N_{00}^{n}\right]+\left[\sum_{1}^{n-2} N^{n}{ }_{m 0}+2 N^{n}{ }_{00}\right]
$$

$$
=\sum_{1}^{n-3}(n-m-2) N_{m, 0}^{n-1}+2(n-2) N_{00}^{n-1}
$$

$-2 \times$ number of pos. orig. pts. of $t$ at the mapping $t^{n}{ }_{n-3,0}$
$+2 \times$ number of pos. orig. pts. of $t$ at the mappings (5).
By induction, we obtain from (8) that

$$
\sum_{1}^{n-2}(n-m-1) N_{m 0}^{n}
$$

is even.
By $(4 ; 3.9)$, we have
(9) $\quad \sum_{0}^{n-1}(n-m) N^{n}{ }_{m}=\sum_{0}^{n-2}(n-m+1) N^{n-1}{ }_{m}+1$
$-2 \times$ number of pos. orig. pts. of $t$ at the mapping $t^{n}{ }_{n-1}$.

## Define

$\sum_{n}=\sum_{0}^{n-1}(n-m) N^{n}{ }_{m}+\frac{1}{2} \sum_{1}^{n-2}(n-m-1) N^{n}{ }_{m 0}+(n-1) N^{n}{ }_{00} \quad(n=2,3, \ldots)$.
Then (8) and (9) yield
(10) $\quad \sum_{n}=\sum_{n-1}+1$

- number of pos. orig. pts. of $t$ at the mapping $t^{n}{ }_{n-1}$
+ number of pos. orig. pts. of $t$ at the mapping $t_{n}{ }^{n}-2$
- number of pos. orig. pts. of $t$ at the mapping $t^{n}{ }_{n-3,0}$.

If we drop the assumption that $t$ has no multiple original points at the mapping $t^{n}{ }_{n-3,0}$, then (7) has to be replaced by the relations:
$N^{n-1}{ }_{m 0}=N^{n}{ }_{m 0}+$ number of $(n-m-2)$-fold original points of $t$ at the mappings $t^{n}{ }_{n-3,0}, \quad 0<m \leqslant n-3$;
$2 N^{n-1}{ }_{00}=2 N^{n}{ }_{00}+$ number of $(n-2)$-fold original points of $t$ at this mapping.
We then have to replace the equality signs in (8) and (10) by " $\leqslant$."
5.6. Suppose the point $t$ is regular, that it is a simple proper image point at all the mappings $t^{n}$, and that all of its original points at these mappings are simple ( $m=0,1, \ldots, n-1$ ). Thus $L_{n-2}^{n}(t)$ is regular.

Let $3 \leqslant p<n$. Project $K^{n+1}$ from $L_{n-p-1}^{n}(t)$ into a $K^{p+1}$. A multiple original point of $t$ at the mapping $t^{p}{ }_{m}$ would also be a multiple original point of $t$ at the mapping $t^{n}{ }_{m}$. Hence the original points $s$ of $t$ at each $t^{p}{ }_{m}$ are simple. If

$$
{ }_{i} t^{p}{ }_{m}(s)={ }_{i} t_{m}^{n}(s)=t,
$$

then ${ }_{i} t^{p}{ }_{m}$ and $i_{i}{ }^{n}{ }_{m}$ have the same direction at $s$; cf. (6;4.2).
We apply 5.5 to each $K^{p+1}$ and add over $p=3,4, \ldots, n$, obtaining $\sum_{n} \leqslant \sum_{2}+(n-2)$

- number of pos. orig. pts. of $t$ at the mappings $t^{n}{ }_{2}, \ldots, t^{n}{ }_{n-1}$
+ number of pos. orig. pts. of $t$ at the mappings $t^{n}{ }_{1}, \ldots, t^{n}{ }_{n-2}$
- number of pos. orig. pts. of $t$ at all the $t^{p}{ }_{p-3,0} \quad(p=3,4, \ldots, n)$
$=\left(\sum_{2}+\right.$ number of pos. orig. pts. of $t$ at the mapping $\left.t^{2}{ }_{1}\right)$
$+(n-2)$ - number of pos. orig. pts. of $t$ at the mapping $t^{n}{ }_{n-1}$
- number of pos. orig. pts. of $t$ at all the $t^{p}{ }_{p-3,0} \quad(p=3,4, \ldots, n)$.

By 3.2, the parenthesis is equal to 3 - number of positive image points of $t$ at the same mapping and hence also at the mapping $t^{n}{ }_{n-1}$. This finally yields that
$\sum_{n} \leqslant n+1-n u m b e r$ of positive original and image points of $t$ at the mapping $t^{n}{ }_{n-1}$

- number of pos. orig. pts. of tat all the $t^{p}{ }_{p-3,0} \quad(p=3,4, \ldots, n)$.

In particular,

$$
\sum_{n} \leqslant n+1
$$

Equality holds in (11) if and only if the original points of $t$ at all the mappings $t^{p}{ }_{p-3,0}$ are simple.
5.7. Suppose the point $t$ satisfies the assumptions of 5.5 . Let

$$
S_{n}=\sum_{0}^{n-1}(n-m) N_{m}^{n}+\sum_{1}^{n-2}(n-m-1) N_{m 0}^{n} \quad(n \geqslant 2) .
$$

By (8) and (9)
(12) $\quad S_{n}=S_{n-1}+1+2 \times$ number of pos. orig. pts. of $t$ at the mapping $t_{n-2}^{n}$

$$
\begin{aligned}
& -2 \times \text { number of pos. orig. pts. of } t \text { at } t^{n}{ }_{n-3,0} \\
& -2(n-1) N^{n}{ }_{00}+2(n-2) N^{n-1}{ }_{00} .
\end{aligned}
$$

If $t$ satisfies the assumptions of 5.6 , we deduce, for example, from (11) that

$$
\begin{equation*}
S_{n} \leqslant 2 n+1-\sum_{0}^{n-2}(n-1-m) N_{m}^{n-1} \tag{13}
\end{equation*}
$$

$-2 \times$ number of positive image points of $t$ at $t^{n}{ }_{n-3,0}$
$-2 \times$ number of pos. orig. pts. of $t$ at all the $t^{p}{ }_{p-3,0} \quad(p=3,4, \ldots, n)$.
Again, equality will hold if and only if the original points of $t$ at all the mappings $t^{p}{ }_{p-3,0}$ are simple.

We conjecture that

$$
\begin{equation*}
S_{n} \leqslant n+1 \tag{14}
\end{equation*}
$$

Trivially, $S_{2}+2 N^{2}{ }_{00}=3$. It is not hard to prove that

$$
S_{3}=\left\{\begin{array}{cl}
4-2 N^{3}{ }_{00} & \text { if } K^{4} \text { is homotopic to zero, } \\
0 & \text { otherwise. }
\end{array}\right.
$$

## (14) is trivial if $K^{n+1}$ has a cusp or double point.

Let $n>3$. With some effort, the $K^{n+1}$ have been determined with

$$
N^{n}{ }_{10}+N^{n}{ }_{600}>0 .
$$

If $N^{n}{ }_{10}>0$, then

$$
S_{n}=N_{n-1}^{n}+2 N_{n-2}^{n}+N_{n-2,0}^{n}+(n-2) N^{n}{ }_{10}=n+1
$$

Similarly if $N^{n}{ }_{000}>0$, then

$$
S_{n}=N^{n}{ }_{n-1}+2 N^{n}{ }_{n-2}+N^{n}{ }_{n-2,0}= \begin{cases}3 & \text { if } n \text { is even } \\ 0 \text { or } 4 & \text { if } n \text { is odd }\end{cases}
$$

These results imply the formula for $K^{5}$

$$
S_{4}+2 N^{4}{ }_{000}+4 N^{4}{ }_{00}=5 .
$$

An approach to (14) via (12) faces the difficulty that $S_{n}>S_{n-1}+1$ can occur. In order to utilize (13), it seems that certain more general and rather difficult mappings $t^{n}{ }_{m 0}$ would have to be studied. Using these mappings the author could at least prove the finiteness of the numbers

$$
N^{n}{ }_{p q r}, \quad p+q+r \leqslant n-4
$$

## Referencss

1. O. Haupt, Ein Satz über die reellen Raumkurven vierter Ordnung und seine Verallgemeinerung, Math. Ann., 108 (1933), 126-142.
2. Wm. F. Pohl, On a theorem related to the four-vertex theorem, Ann. of Math., 84 (1966), 356367.
3. P. Scherk, Ueber differenzierbare Kurven und Bögen III. Ueber Punkte ( $n+1$ )-ter Ordnung auf Bögen im $R_{n}$, Annali di Mat. (4), 17 (1938), 291-305.
4.     - On differentiable arcs and curves IV. On the singular points of curves of order $n+1$ in projective $n$-space, Ann. of Math., 46 (1945), 68-82.
5.     - same title IVa. On certain singularities of curves of order $n+1$ in projective $n$-space, Ann. of Math., 46 (1945), 175-181.
6. -_ same title V. On a class of mappings of the curves of order $n+1$ in projective $n$-space into themselves, Ann. of Math., 47 (1946), 786-805.

## University of Toronto

