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Introduction. Let T, E be two sets and £ C Wl,1 ® C $ (£ ) two 
tribes. For every n Ç iV* denote by En the product £ { i - - -^ }

 a n d by Sn the 
tribe @{l"--'w}. For every x £ E let wz be a mapping of T into T. For 
x = (xi,... , xn) Ç £ n define wx = w%o . . . owZl and suppose that {(/, xi, . . . , x j 
IttU! a:n)(0 e A] eZ®& ior all n G ,¥* and .4 Ç £ . 

Let 90? be the Banach space of functions defined on T, real-valued, bounded 
and ï-measurable with norm 

11/11= sup 1/(01. 
teT 

For any sequence S = (an)neN* of positive numbers, denote by Wls the part 
of Tl consisting of the functions / satisfying the inequality \f(ux(ti)) — 
f(ux(t>>))\ < an for every n f A7*, x Ç En and th t2 G r . 

Let p be a real-valued function defined on T X ë having the properties: 
(1) 0 < p{t, A) < p(t, E) = 1 for (*, 4 ) G T X @; 
(2) ,1 —> p(t, A) is a completely additive measure for every t Ç. T; 
(3) t—> p{t, A) belongs, for every A Ç 6, to the same set 90îs, where 

5 = (a„)neN* is such that 

Define on 95? the operator U by the equality 

Uf(t) = i p(t,dx)f(ux(t)). 

U is a linear operator of norm one which maps 9ft into d)l. Operators such as 
U occur in the study of certain stochastic models, especially in the theory 
of chains of infinite order (1-4; 6-10; 12; 14; 15). In this paper, under supple­
mentary hypotheses, two ergodic properties of the sequence {Un)neN will be 
proved. Under restrictive conditions it will be shown that the functions 
/ —> p(t, A) are conditional probabilities of a stationary mixing stochastic 
process (8, Theorem G). Two other results, a non-homogeneous ergodic theorem 
and a central limit theorem, will also be given. 

Received March 4, 1958. This research was supported by the United States Air Force, 
through the Office of Scientific Research of the Air Research and Development Command 
(Contract AF 49 (638)-153). 

ISome of the notations used in this paper are explained in paragraph 9 at the end of the 
paper. 
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A CLASS OF OPERATORS 113 

1. For every n G N let pij7l be the function defined on T X @n by 

phn(t,A) = I p(t,dxi) I . . . J M%i X„-I)(0»^;»)*A(*I, • • • ,xn), n > 1; 
•JE *J E *J E 

pi,n = P, n = 1. 

For any bounded sequence C = (cn)neN* write C = (cn)n€N* where 

cn = 4 J2 a ; + SUP £y> w G iV*. 

The following three results will be needed below: 
(i) for every n G A7*, £i.w has the properties (1) to (3) if we replace (g by 

@w and 5 = (ak)keN* by 

\ k<j<k+n / keN* • k<j<k+n / À; «AT* 

(ii) for every « G iV*, w G iV* and / G 2», / G T, 

^ + 7 ( 0 = f Pi,n(t,dx)Umf(ux(t)); 
•J En 

(iii) if/ G 3ftc where C = feWv* then, for every » G Y*, t/»/ G 2»,f/„ + a. 

2. Let us say that p satisfies condition (K) if there is on S a completely 
additive measure /x, with value one on the whole space, and a constant X > 0 
such that p(t, A) > \n(A) for every (/, .4) G T X @. 

THEOREM 1. If p satisfies condition (K) and f G 2)?c where C = (cn)neN* has 
the property 

lim cn = 0 

£/^n //zere is a constant function Uœf and a constant 0 < h = hc < I satisfying 
for every n G Y7* the inequality 

(4) ||t/"/ - C/7II < ll/ir inf (?,/(l - h) + 2/î
("/s)-1). 

Choose an r G Y7* such that 

and for every n G N* let /x« = M1© • • • ©Mn where /x1 = • • • = MW = M- For 
any « G A7* and (t, A) G r X (Sn let /xn(J, 4 ) = nn(A) if » < r and 

jL£„(*, ^4) = I IXridx) I p1>n-r(u(xi Xf) (t), J ( x r + 1 , . . . , X n ) ) <j>A (xh . . . , Xn) 
•J Er *J En~r 

if n > r. From the choice of r and property (i) it follows that |/z„(Ji, ^4) — 
ju„(fe, A)\ < J for any n G A7*, *i, fe G Tand 4 G @n. Using this inequality and 
condition (K) we obtain 

(5) />i,n(/i, A) > Xr/i»(*i, -4) > XWfc, 4 ) - iXr. 
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For every n £ A'*, th h € T and A G Sn, write qn(th t2\ A) = pi,n(/i, /l) 
— pi,n(t2, A). Let P , Q be two disjoint ©"-measurable sets whose union is 
Ew, such that qn(th t2\ A) > 0 if A C P, and qn(th /2; /I) < 0 if A C Q; we 
have then 

B = qn(tht2;P) = qn(t2,h;Q) 

because qn(th t2; E
n) = 0 (P, <2, and J5 depend on w £ .¥* and /, , /2 É 7"). 

Using the inequality (5) we obtain 

(6) B < inf (1 - pltn(tit P) , 1 - pltn(h, Q)) < h = 1 - iXr. 

Let us write the difference Unf(h) — Unf(t2) in the form 

(7) ( qs(tij2;dx)Un-sf(ux(h))+{ Pi,s(t2}dx)(Un-sf(ux(h)) - Un-J(ux(h))) 
•J E* *J Es 

where 1 < s < n. The second term in the sum (7) is less than or equal to 
11/11"%. If B y* 0, the first term in the sum (7) can be written as 

B\J (qs(tllt2;dx)/B)Un-sf(ux(h)) - J (q,(t2,h;dx)/B)U^9f(ux(h))) 

and it follows from (6) that it is less than or equal to h(fn~s —fn~s). This 
inequality is obviously true if B = 0. Here, for every k f V, 

f = sup Ukf(t), f = inf U*f(t). 
tcT teT 

We obtain fn - fn < \\f \\+cs + h(fn-s - f n - s ) . Hence for every integer 
p > 1 such that ps < n, 

(8) /w - / " < ||jf | |+(1 + A + . . . + h*-*)c9 + W>(]n-*s -fn-ps). 

If we remark that the sequence {]n)ntN is decreasing and that the sequence 
{fn)n*N is increasing, then the existence of Uœf and the inequality (4) follows 
from (8). 

Remarks. 1° Denote by Wi the union of the sets 39?̂  where C — (cw)neiv* 
has the property 

lim cn = 0. 

Wfli is a linear space and Uœ is a linear form on SOÎi. 

2° For every n £ N*, k £ iV* let us define the function pk
l%v on T X ëre 

by the equalities: pki>n = pitU if k = 1, and 

%J E 

if A > 1. If we write E° X A = A, then for every «, è Ç ,¥*, / Ç P and 
^ € <g», />*!.»(*, 4 ) = />i,»+*-l(/, fi*"1 X ,4). 
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We deduce from Theorem 1 that for every n £ N* there is on Sn a measure 
p°°i n, completely additive and with value one on the whole space, such that 
( * > i ) 

(9) \pF\t,A) ~ Ptn(A)\ < inf (e £ T ^ T + 2hw,)-1) . 

3° If for any n 6 N*, an = aw, cn = cn where 0 < a, c < 1, then the second 
member in the inequality (4) is dominated by | | / | |+^4iexp (— qy/n) where 
Ai = Ai(a, c, X) and q = q(a, c, X) > 0. 

3. Let us suppose in this paragraph that E is a finite set, and that for 
every n £ N* and t £ 71 there is x £ Ew and 4 G 7", such that ux(tn) = /. 
Under these hypotheses we can prove: 

THEOREM 2. For every / Ç 9fti JÂere w a function Uœf € 9ft i wAicft satisfies 
the equality 

' ' l 
(10) lim E tf'/ - 07 = 0. 

Let to £ T and denote by T0 the set {ux(tQ) \ x £ En, n Ç TV*}. As T0 is 
denumerable, there is a strictly increasing subsequence of N*, (nj)jeN* such 
that the sequence 

G- s two) 
KKcc 

is convergent for every t 6 TV Using property (iii) we deduce that there 
exists a function Uœf Ç 9fti satisfying the equality 

nj 

lim 
./-*x> 

~ E # */ - ^7 = o. 

As 11 Uj\ | = 1 for every j Ç TV, the mean ergodic theorem of Yosida and 
Kakutani (16) implies (10). 

f/°° can be extended uniquely to the closure of 9ft i in 9ft, 9fti, and (10) 
remains valid for / Ç 9fti. 

4. For any n £ Z let £n be a real-valued function defined on T X @, having 
the properties: 

(11) 0 < pH(t, A) < pH(t, E) = 1 for (̂ , i4) Ç T X (g; 
(12) 4̂ —» £„(/, ^4) is a completely additive measure for every / Ç T\ 
(13) / —» £„(/, ^4) belongs, for every n ^ Z and yl G (g, to the same set 3RS 

where 5 = (ak)keN* is such that 

E an < °° • 

For every w £ Z define on 9ft the operator JJn~l,n by the equality 

*J E 
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For (n, m) Ç S = Î (», *»)|w 6 Z, m Ç Z, w < m) write £/w-™ = Un'n+lo . . . 
o Z7w"1,m if n < m and Un'm = J if » = m. Let us say that the family (£„)neZ 

satisfies condition (K) if there is on ® a family (fjLn)neZ of completely additive 
measures, having value one on the whole space, and a constant X > 0 such 
that pn(t, A) > \fin(A) for every ( U ) ^ X Ê and n Ç Z. By an argument 
similar to the one used in the proof of Theorem 1, but somewhat more in­
volved, we can obtain: 

THEOREM 3. / / the family (pn)n(Z satisfies condition (K) and f £ Mc, then 
there is a constant 0 < h = hc < 1 satisfying for every (n, m) ^ ^, n < m, 
and t\,h the inequality 

(14) \Un-mf(h) - U"'mf(h)\ < | | / | r inf (c s /( l - h) + *«"->/•>-»). 
l<s<ra—n 

Here C does not necessarily satisfy any supplementary condition. 
If the sequence C = (cr,)neN* is such that 

lim cn = 0 

then it follows from (14) that 

lim (Un'mf(h) - Un'mf(t2)) = 0 
m—n-)œ 

uniformly with respect to t\, t2 £ T and / in a given bounded part of tyJlc-

5. Suppose now that: 

(15) E is metric complete and separable and S is the tribe of Borel parts 
of E; 

(16) r = E~N and £ = <grN where - 2V = {. . . , - 1, 0} ; 

(17) â-, x Ç £ , is defined on 7" by: wz((. . . , x_i, x0)) = (. . . , XQ, X). 

For every (n, m) £ 3 define the function £>°°n,m on (Su w} by the equality 
(we identify g™-^1 with (£<».•••.*>): £ ^ ( , 4 ) = £°°liro__n+1(,4), and for every 
( » , w ) € 3 and K Â * define the function p\%m on T X ®!n m} by: 
Pn,mr(t,A) = P^^^it^A). 

THEOREM 4. / / £> satisfies condition (K), then there is one and only one 
stochastic process (Ez, ©z, pz) such that the equality 

(18) pZ{pr£i(A)\pr{...,n](a) = t) = £(*,4) 

w satisfied almost everywhere for any n £ Z aw^ 4̂ Ç @. TTze stochastic process 
(Ez, (Sz, ^>z) is stationary and strongly mixing. 

Let us remark that if (n, m), (nf, m') £ 3 and 

pr~w,...,m'\(B) = prJn\...,m}(A) £ <gz 

then 
pn,m{A) = p™im>{B). 
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Hence there is one and only one stochastic process (Ez, (gz, pz) such that 
Pz(pr\n....,m)(A)) = p™n,m{A) for (n,m) G S and pr-\nt,„n](A) G (g*. Hypo­
thesis (15) is used here only. We leave to the reader to verify that the process 
is stationary. 

For every (sf m) G $ let us define the function pSJfl on E{s'--->m] X ® by 
the equality ps,m(x, A) = p(ux(to), A) where to G T is a fixed element. For 
n < s < m, A £ & and M G (£<«•••• ^ we have then 

J pz(do))p(pru,,,m}(o))J A) = M m - m + J pz(dœ)ps,m(pr{s TOÏ(o>), A) 

= 6iam-s+i+ I pn,m(dx)ps>m(xs>m,A) = 0iaw_s+i + lim I pn+m(t,dx)ps>m(xStm, A) 

where the first two integrals are taken over pr~l
[nt_mtfn](M)1 |0i| < 1, and 

Xs,m = (#«, . . . , xm) if x = (x„' , . . . , xm) and w' < 5 < m. For any r £ Z 

J Pn,m\h d%)Ps,m\?Cs,mi A ) = I pn—r}m\tj dX)pSim\XStmj A. ) 

M J M{r) 

= d2am-s+i + pn-T.m(t, dx)p(ux(t), A) = d2am-s+1 + pntm+i(t, M X A) 
J M{r) 

where M(r) = jS(n~r «-1* X M, and |02| < 1. It follows that 

pz(dœ)p(pr{...,m](œ), A) = e&m-s+i + lim pr
n,m+i(t, M X A) 

= 03am_s+1 + ^ m + i ( M X A) = 9fc-H-i + ^z(^7re
1...,ml(M) Pi ^ + i ( ^ ) ) , 

the integral being taken over pr~l\„ m)(M), and |0;»| < 2. But 

prin....,mt(M) = ^ „,(£'"' "" l l X M) i f» ' < »; 

hence 5 can be allowed to tend to — °o in the above formula. It follows that 
(18) is satisfied almost everywhere. 

Suppose now that (Ez, (§z, p) is a stochastic process such that the equality 
p{pir~1n+i(A)\pr~1{_mtn](o)) = t) = p(t, A) is satisfied almost everywhere for 
any n G Z and A G @. Then for (w, m) G £, r > 1 and ^ G g u > - ^ ! we have 

x p(dw)^_ r ,m(^1 . . . ,n_ r_1 )(w) ,£ ("- r "-11 X 4 ) = p(/»f»*....»iG4)). 

If we let r tend to oo and use (9) we obtain p(pr~l
[n m\(A)) = pz{pr~l{n,...m\ 

(A)); therefore p = pz. 
It remains to prove that (Ez, Sz , pz) is strongly mixing. For this it is 

sufficient to show that 

\impz(rn(A)r)B) =pz(A)pz(B) t 

for every A = pr-\Vt...tZ](Ai) € ®Z and B = pr~l
{!t,...,t](Bi) G <gz. But if we 

remark that rn(A) = pr~l
{v_n^_jZ^n]{A^) we obtain that 

lim pz(rn(A) HB) = lim f pz(dœ)p^n+ht(pr{...,^n}(œ), E{z'ri+1 -"xBJ 
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is equal to pz(A)pz(B). Hence the process is strongly mixing and so the 
theorem is proved. 

6. Let us suppose that the conditions under which Theorem 4 has been 
proved are satisfied and also that 

\* 
< oo. l 4 I a J 

n>l \ j>^ / 

Let / be a function, real-valued, (5'-measurable, defined on Er. For every 
n e A7* write fn = fopr{n n+r_1} (we identify E{n - • • "n+r-l] with Er and 
(gl*,...,»+r-i> w i t h gr^ W e h a y e t h e n . 

THEOREM 5. Suppose £ ( / i ) = 0 and £ ( | / | a ) < *> for an a > 2. Then: 

(j) /Ae smes 

P = £(/x2) + 2 E £( / i / i + < ) 

converges absolutely and, for n —> <», E( ( / i + . . . + fn)
2/n) = ^ + 0 ( l /«) ; 

(jj) if D 7e 0 we have uniformly in a 

(19) l i m ^ ( i / i - ± - y + /» ) < a ) = (1/(2TTP)*) f % x p ( - t2/2D)dt. 

The expectations are calculated with respect to the measure £z . Once the 
existence of the stationary process (Ez, ©z, pz) is established, the theorem 
can be obtained by the method used by Doob to prove the central limit 
theorem for Markoff process (5, 221-32). We shall not give details here. 

7. The first explicit and systematic study of chains of infinite order was 
made in (15). The transition probabilities of the chains studied in (15, 6-11), 
as well as the transition probabilities of chains of type (-4) introduced in (4) 
and of chains of type (B) introduced in (2), (3), and (4) satisfy conditions 
(l)-(3). It follows that the theorems A and D (2), the ergodic theorem 
proved in (15, 6-11), the formulas given in (4, 139) (the evaluations are 
slightly different from those given by formula (9)), and the theorem J3, (6, 
423-6) (in the case when \<j>i\ < 1 for every i) are particular cases of Theorem 
1. The convergence property of the transition probabilities, established in 
Theorem II, (4, 137) is also a consequence of Theorem 1. For chains of 
type (-4) some stronger results, expressed by formula (22), are valid. Under 
different conditions the d convergence of the sequence (prif7l)reK* has been 
proved in (8, Theorem 6,c). This result is not contained in, nor does it contain 
the one proved in Theorem 2. If E is a finite set, results similar to Theorem 4 
are given in (8), under weaker conditions. Various kinds of central limit 
theorems, having points of contact with Theorem 5 have been given in (2; 
3; 7; 14). 
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8. Suppose now that T is a compact metric space, X the tribe'of Borel 
parts of T and p a real-valued function defined on T X S having the proper­
ties (1), (2) and: 

(20) \p(h,A) -p(k,A)\ <Kd(tht2) 

for every A (E Ê and /i, /2 £ T̂. Suppose further that there is a constant 
0 < r < 1 such that 

d(ux(h), ux(h)) < rd(*i, /<>) 

for any x £ E and /i, £2 G ^ It follows then that p satisfies condition (3) if 
we take an = Mrn, where M = K X diameter of T, for every n Ç N*. 

Denote by S8 the Banach space of complex-valued functions defined on T 
satisfying the Lipschitz condition, the norm being given by 11/111 = 11 /11 + m (/) 
where | | / | | «= sup t € r | / (* ) | and 

We remark that the real and the imaginary part of every function / f (£8 
belongs to Wlmins where 5 = (an)neN; in particular they belong to 2Wi. Define 
the operator U on SS by 

(21) Uf(t) = fp(t,dx)f(ux(t)). 

Then (12; 13) U maps CL into CL, U is quasi-compact, the sequence 
(\\Un\\i)ntN is bounded and 1 is a characteristic value of U. 

It follows from Theorem 1 that if p satisfies condition (K)y then for every 
f G 6? the sequence (Unf)n(N converges uniformly to a constant function 
Uœf. But this result implies that the only characteristic value of U of modulus 
one is 1 and that this characteristic value is simple. Using the properties of 
U mentioned above we deduce that there are two constants M and v > 0 
satisfying the inequality 

(22) Htf"-iHli<(rqf^i 

for every n 6 iV*. 
The operator U can be defined by formula (21) also for / £ S. For every 

» G iV*, ||£/wll = 1. As Eg is dense in 6, it follows that £/°° can be extended 
uniquely to 6, and that 

(23) lim \\UJ - UJ\\ = 0 for every/ £ 6. 

This proposition contains some results proved in (9, §6). 
Let us make one more remark. Suppose, in addition, that: 
(a) E is a topological space and S contains the open sets; 
(j8) the mapping x —» ^(tf) is continuous for every t (z T; 
(y) for every open set F C ^ there is w(F) Ç iV* and x(F) Ç En(V) such 

that «r(F) (/) Ç F for every J Ç 7\ 
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The conditions (a)-(y) are satisfied in the case of chains of type (A) (3; 
12). If p satisfies condition (K): p(t, A) > \fx(A) for every (t, A) Ç T X S 
where X > 0 and n(A) > 0 for every open set A, then U is strongly positive 
with respect to the cone {f\f G fë£, / > 0}. We can then obtain2 (22), more 
directly, using a slight modification of Theorem 6.3, (a) and (c), 70-3, (11). 

9. We shall explain in this paragraph some of the notations used in the 
paper. 

For each set X, <$(X) is the set of parts of X. N = {0, 1, . . . ), iV* = {1, 2, 
. . .}, Z = { . . . , - 1,0, 1, . . .}. A part % C %(X) is a tribe if Ï 3 I , 
Î 3 I - i if Î 9 i and Î 3 VntNAn if X 3 An for every n Ç Ar. 

For every I Cl Z we denote by E1 the product 

n Et 

where Ej = E for j G / . By S7 C ^OE7) we denote the smallest tribe con­
taining the sets of the form 

n A, 
i*i 

where A, Ç © for j Ç / . 
For every real number a we write a+ = sup (a, 1). If a is a real number 

and C = (cjnctf*, then a £ = (acn)n€N*. 
r is the mapping of E^into Ez defined by the equality: r((xn)neZ) = (xn+i)f/eZ-
S is the Banach space of continuous complex-valued functions defined on 

T with the norm | | / | | = supt€T\ f(i)\. 

2The details were given recently in the Functional Analysis Seminar. 
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