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Abstract

A subgroup H of a group G is said to be pronormal in G if each of its conjugates Hg in G is already
conjugate to it in the subgroup 〈H, Hg〉. The aim of this paper is to classify those (locally) finite simple
groups which have only nilpotent or pronormal subgroups.
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1. Introduction

Let G be a group. A subgroup X of G is said to be pronormal in G if X is conjugate
to Xg in 〈X, Xg〉 for all g ∈ G. Pronormal subgroups were introduced by P. Hall in his
lectures in Cambridge with the aim of introducing a class of subgroups containing all
normal and maximal subgroups of a group; actually, it is clear that for finite groups, all
Sylow p-subgroups are pronormal and for soluble finite groups, all Hall π-subgroups
are pronormal as well. It is also very easy to see that any subnormal subgroup which
is pronormal must actually be normal. The first relevant results on pronormality
were obtained by Rose [24], who proved, among other things, that two pronormal
subgroups, one of which normalises the other, have a pronormal product. Later, Peng
[22] showed that a finite group having only pronormal subgroups is soluble, but the
consideration of the alternating group of degree 5 shows that finite simple groups may
have pronormal subgroups. Recently, Revin and Vdovin [23] proved that every Hall
π-subgroup of a finite simple group is pronormal; moreover, in [18], they investigated
the pronormality of subgroups of odd index in finite simple groups (see also [19]).
Based on this work, finite simple groups whose nonpronormal subgroups are abelian
have been classified in [3]. Actually, finite soluble groups whose nonabelian subgroups
are pronormal began to be studied in [2, 12] with the aim of expanding well-known
structural theorems concerning metahamiltonian groups (that is, groups whose proper
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subgroups are either abelian or normal) to larger classes of groups (see also [8, 10,
11] for other generalisations of this type) and these results were applied to obtain
the results in [3]. Here, we propose a different approach which does not rely on the
complex study of the structure of finite soluble groups with only abelian or pronormal
subgroups and makes it possible to characterise which finite simple groups have only
pronormal or nilpotent subgroups.

THEOREM 1.1. Let G be a nonabelian finite simple group. Then G has only pronormal
or nilpotent subgroups if and only if it is isomorphic to one of the following groups.

• PSL(2, q), where q satisfies one of the following properties:

(i) q = 2d and d is prime;
(ii) q = 3d and d is an odd prime;
(iii) q is prime and if q ≡8 ±1, then either q − 1 or q + 1 is a power of 2.

• J1.
• Sz(q), where q = 22n+1 where 2n + 1 is a prime number.

THEOREM 1.2. No infinite locally finite simple group has only nilpotent or pronormal
subgroups.

Finally, it should be noted that in Section 3 (by comparison with the main theorem
of [3]), our results actually classify (locally) finite simple groups whose subgroups are
either nilpotent of class ≤ c or pronormal.

2. Preliminaries

In our discussion, we will need the following easy facts on pronormality which are
essential to prove that given subgroups are pronormal.

LEMMA 2.1 [23, Lemma 5]. Let H be a subgroup of a group G. If H contains a
subgroup P which is pronormal in G, then H is pronormal in G if and only if H is
conjugate to Hg in 〈H, Hg〉 for all g ∈ NG(P).

PROOF. The necessity of the condition being obvious, we prove the sufficiency. Let
g ∈ G. Since P is pronormal in G, there exists an element x ∈ 〈P, Pg〉 ≤ 〈H, Hg〉 such
that Px = Pg. Thus, gx−1 belongs to NG(P) and, by hypothesis, there is an element
y ∈ 〈H, Hgx−1〉 ≤ 〈H, Hg〉 such that Hy = Hgx−1

. Therefore, Hyx = Hg and yx belongs to
〈H, Hg〉. The arbitrariness of g in G shows that H is pronormal in G. �

LEMMA 2.2. Let p be a prime and let A be a normal abelian p-subgroup of a group
G having only pronormal or nilpotent subgroups. Let B ≤ A and suppose there is
1 � x ∈ NG(B) \ CG(B) having order prime to p. Then, NG(〈x〉) ≤ NG(B).

PROOF. Let y ∈ NG(〈x〉). Since the subgroup 〈x〉B is nonnilpotent, it is pronormal in
G and hence 〈x〉B is conjugate to 〈x〉By in X = 〈x, B, By〉 through an element x1 ∈ X.
However, By ≤ A centralises B showing that B is normal in X. Thus, B = Bx1 = By and
the statement is proved. �
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[3] Locally finite simple groups 3

The following is a well-known result by John Rose, but since we will use it several
times, we state it here as a lemma.

LEMMA 2.3. Let p be a prime and let P be a p-subgroup of a finite group G. Then, P is
pronormal in G if and only if P is normal in the normaliser of any Sylow p-subgroup
containing it.

Since all subgroups of a cyclic Sylow p-subgroup S are normal in the normaliser
of S, the above lemma has the following immediate consequence.

COROLLARY 2.4. Let G be a finite group with a cyclic Sylow p-subgroup S. Then, all
subgroups of S are pronormal in G.

The following lemma is crucial in showing that many finite simple groups have
nonnilpotent, nonpronormal subgroups: in fact, if a group G has a subquotient
containing a nonnilpotent, nonpronormal subgroup, then G also contains such a
subgroup.

LEMMA 2.5. The following statements hold.

(i) The alternating group Alt(6) has a nonnilpotent, nonpronormal subgroup.
(ii) A dihedral group G = Dih(2nd) with (2, d) = 1 and n ≥ 1 has only nilpotent or

pronormal subgroups if and only if either d = 1 or n ≤ 2.
(iii) Let n > 3. The Weyl group Wn for type Dn contains a nonnilpotent, nonpronormal

subgroup.
(iv) The Weyl group W for type F4 contains a nonnilpotent, nonpronormal subgroup.
(v) If n ≥ 4, the Weyl group W for type Bn /Cn contains a nonnilpotent, nonpronor-

mal subgroup.

PROOF. (i) Let X = 〈(1, 2, 3), (1, 2)(4, 5)〉; in particular, X 	 Sym(3). Let g be the
permutation (1, 4)(2, 5, 3, 6). The subgroup

〈X, Xg〉 = 〈(1, 2, 3), (1, 2)(4, 5), (4, 5, 6), (4, 5)(1, 3)〉
= 〈(1, 2)(4, 5)〉 � (〈(1, 2, 3)〉 × 〈(4, 5, 6)〉)

contains 〈(1, 2, 3)〉 as a normal subgroup. Thus, X cannot be conjugate to Xg in 〈X, Xg〉;
in particular, X is not pronormal in G. Since it is not even nilpotent, the statement is
proved.

(ii) Of course, if d = 1, then G is a 2-group and so even nilpotent. However, if n ≤ 2,
then all nonnilpotent subgroups of G are products of a pronormal subgroup of order 2,
a normal 2′-subgroup and possibly also of a central subgroup of order 2, so they are
pronormal by Lemma 2.3.

Conversely, suppose d � 1 and n ≥ 3. Write G = 〈a〉 � 〈b〉, where a has order 2 and
b has order 2n−1d. In this case, it is easy to see that the nonnilpotent subgroup 〈a, b2n−1〉
is subnormal but not normal in G, so it cannot be pronormal.

(iii) It is well known that the group in question is of the form Sym(n) � Zn−1
2 , so the

case n ≥ 6 follows at once from proof (i). The other cases are straightforward.
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(iv) It is evident by an inspection of the Dynkin diagram for type F4 that W contains
a subgroup which is isomorphic with the Weyl group for type D4 (see, for instance,
[5, page 47]). Thus, the result follows from proof (iii).

(v) It is well known that the Weyl group for type B4 is isomorphic to the semi-direct
product Sym(4) � (〈a1〉 × 〈a2〉 × 〈a3〉 × 〈a4〉), where each ai has order 2 and Sym(4)
acts on the ai permuting the indexes in a natural way. Now, it is easy to check
that the subgroup X = 〈(1, 2, 3), a1a2〉 is isomorphic to Alt(4), so it is not nilpotent.
Conjugation by g = (1, 2) shows that X is not conjugate to Xg in 〈X, Xg〉. In fact, the
Sylow 2-subgroup S of X is normal in 〈X, Xg〉, but Sg � S.

Finally, the result follows from the observation that the Weyl group for type B4
embeds in that for type Bn when n ≥ 4, and that the Weyl group for type Cn coincides
with that for type Bn. �

3. Proof of the main theorems

To prove Theorem 1.1, we proceed along the following lines: first we show that
J1 is the only sporadic group to have only pronormal or nilpotent subgroups (see
Theorem 3.1); then we show that the only finite simple groups of untwisted Lie type
with only pronormal or nilpotent subgroups are to be found in those of type An (see
Theorems 3.2 and 3.3); finally, Theorem 3.4 shows that for finite simple groups of
twisted Lie type, we must look at Suzuki groups and then Theorem 3.5 shows that
the Suzuki groups we are looking for are precisely the minimal nonsimple ones.
Theorem 1.1 clearly follows from a combination of these theorems.

THEOREM 3.1. J1 is the only sporadic group whose subgroups are either pronormal
or nilpotent.

PROOF. It follows from [6] that, apart from J1, all sporadic groups contain a
subquotient isomorphic to Alt(6); thus by Lemma 2.5, no sporadic group, apart
from possibly J1, has only pronormal or nilpotent subgroups. Finally, it follows from
[3, Proposition 5] that all subgroups of J1 are either pronormal or abelian, so in
particular they are either pronormal or nilpotent. The proof is complete. �

We refer to [9] for a detailed list of all isomorphism classes of subgroups of
PSL(2, F) for a finite field F.

THEOREM 3.2. Let G be a projective special linear simple group over a finite field
(and let c ≥ 1). Then, G has only nilpotent (of class ≤ c) or pronormal subgroups
if and only if it is isomorphic with PSL(2, q), where q satisfies one of the following
properties:

(i) q = 2d and d is prime;
(ii) q = 3d and d is an odd prime;
(iii) q is prime and if q ≡8 ±1, then either q − 1 or q + 1 is a power 2m of 2 (and

m − 3 ≤ c).
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PROOF. Suppose G is isomorphic to PSL(n, F) for a finite field F of order q = pd for
a prime p, and has only pronormal or nilpotent subgroups. Since the alternating group
on n elements can always be embedded into PSL(n, F) through the consideration of
the permutation matrices, it follows from Lemma 2.5 that n < 6.

Assume now n ≥ 3. If p is odd, then the subgroup X = 〈a, b〉 of SL(2, F), where

a =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0

0 1 1

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0

0 1 −1

0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

is easily seen to be dihedral of order 2p, so nonnilpotent. If

g =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 −1 0

0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

then g ∈ CG(b) and H = 〈X, Xg〉 = 〈b〉 � Y , where Y = UT(3, p); in particular, Y is
nonabelian of order p3 and exponent p. Since ag � 〈a, Y ′〉 � H, it follows that X is
not conjugate to Xg in H. Since X embeds isomorphically in PSL(2, F), we have a
contradiction. Thus, p = 2. Since it is well known that PSL(3, 4) contains a subgroup
isomorphic to Alt(6), we are left with q = 2 by Lemma 2.5. Now, PSL(4, 2) 	 Alt(8)
is contained in PSL(5, 2) as a subgroup. Again by Lemma 2.5, the only possibility left
is PSL(3, 2), but this is isomorphic to PSL(2, 7) which has only pronormal or abelian
subgroups (see [3, Proposition 4]).

Suppose now n = 2, so q ≥ 4. Let X be the image of UT(2, q) in G; in particular, X
is an elementary abelian p-group of order q. It is well known that NG(X)/X is a cyclic
group of order (pd − 1)/ gcd(2, pd − 1) irreducibly acting on X. Since X = CG(X), it
follows from Lemma 2.2 that all elements of NG(X)/X must act irreducibly on X. This
immediately yields that NG(X)/X is odd when d > 1; in particular, q = 9 is impossible.
Moreover, if d = ab for some a, b > 1, then

pab − 1 = (pa − 1)(1 + pa + · · · + p(b−1)a)

and so pa − 1 = 1, which is a contradiction. Thus, d is prime when d > 1.
Suppose p > 3. In this case, NG(X)/X contains a nontrivial subgroup of order

(p − 1)/2 and so p = q. If q ≡8 ±1 and q � 7, then q > 13 and hence G contains
dihedral groups of order q − 1 and q + 1. By Lemma 2.5, either q − 1 or q + 1 is a
power of 2. Now, the result follows easily from the fact that a dihedral group of order
2m with m ≥ 4 has a subgroup of order 2m−2 with nilpotency class m − 3 which is not
pronormal.

Conversely, suppose G is isomorphic to one of the groups described in the
statement. It follows from [3, Proposition 4] that we may assume p > 3, p = q and
either q + 1 or q − 1 being equal to 2m for some m with 3 ≤ m (≤ c + 3, c ≥ 2). Let
X be a nonnilpotent (of class ≤ c) and nonpronormal subgroup of G; in particular,
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X is not a maximal subgroup of G. Let g ∈ G be such that X is not conjugate to Xg in
〈X, Xg〉, so X < 〈X, Xg〉 < G.

If X is isomorphic to Alt(4), then 〈X, Xg〉 is either Sym(4) or Alt(5), and both
these groups have only one conjugacy class of subgroups isomorphic to Alt(4).
Thus, X is pronormal in these cases and this is a contradiction. A similar argument
applies if 〈X, Xg〉 is contained in a maximal subgroup M isomorphic to Alt(5) and
X 	 Sym(3), Dih(10): just note that in these cases, X is maximal in M.

Suppose X is isomorphic to a subgroup of the normaliser of a Sylow p-subgroup
of G. Then, since it is nonabelian, it must contain the Sylow p-subgroup of G and so
it is pronormal by Lemma 2.1, which is a contradiction. (If X is contained in a Sylow
2-subgroup S, then it must be a normal subgroup of S = NG(S) and hence Lemma 2.3
gives a contradiction.)

The only case left is that in which X is contained in a maximal dihedral subgroup of
G and X has order 2r for some odd number r dividing either q − 1 or q + 1. Since the
Sylow d-subgroups of G are cyclic for any divisor d of r, it follows from Lemma 2.3
that the 2′-component of X is pronormal in G. Now, Lemma 2.1 shows that also in this
case, X is pronormal in G, which is the final contradiction. �

THEOREM 3.3. Every finite simple group G of untwisted Lie type � An has a
nonnilpotent, nonpronormal subgroup.

PROOF. By Lemma 2.5, it is enough to look at finite simple groups of types Bn, Cn, E6,
E7, E8, G2 with n ≤ 3.

Suppose G is of type Bn, n > 1. Since B2(2) is isomorphic to Sym(6), we may
assume by Lemma 2.5 that the characteristic of the ground field is odd. In this case,
the subgroup X of B2 generated by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 0 0
0 0 0 1 0
1 0 0 0 0
0 −1 0 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is isomorphic to SL(2, 3), so it is not nilpotent. Conjugation by

g :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

yields that X is not pronormal in W: indeed, O = O2(X) is normal in 〈X, Xg〉 but
Og � O.

Suppose now G is a finite simple group of type Cn (n ≥ 3). If the characteristic of
the ground field is even, then G is isomorphic to the corresponding group of type Bn.
Assume the characteristic of the ground field is odd. It is well known that Cn contains a

https://doi.org/10.1017/S0004972723000576 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723000576


[7] Locally finite simple groups 7

subgroup isomorphic to the general linear group of degree n over the same field. Thus,
the result in this case follows from Theorem 3.2.

For the following discussion concerning finite simple groups of types E6, E7 and
E8, we refer to [14, Section 2.12]. The Weyl group for type E6 has a subgroup which
is isomorphic to B2(3), so it has some nonnilpotent, nonpronormal subgroup; note
here that the Weyl group for type E6 embeds in the one for type E7. Finally, the Weyl
group for type E8 has a homomorphic image isomorphic to D4(2) and so Lemma 2.5
completes the discussion in these cases.

Finally, suppose G is of type G2. If the characteristic is even, then G contains a
subgroup isomorphic to Sym(3) × Sym(3) (see [7]) which is easily checked to contain
a nonnilpotent, nonpronormal subgroup. Suppose therefore the characteristic is odd.
In this case, G contains a subgroup isomorphic to SL3 over the same field (see for
instance [16]) and so Theorem 3.2 yields that G contains a nonnilpotent, nonpronormal
subgroup. �

THEOREM 3.4. All finite simple groups of twisted Lie type except possibly from type
2B2 have a nonnilpotent, nonpronormal subgroup.

PROOF. Suppose first that G is of type 2An. We can rule out this case precisely as in [3].
Here, we describe an alternative approach. If n = 3 and p = q = 5, then a look at [1,
Table 8.6] shows that G involves an alternating group of degree 6 and the conclusion
is reached by Lemma 2.5. Assume n = 3 and q � 5, and let B be a Borel subgroup
of G and X a Levi complement of B, so B = XS, where S is a Sylow p-subgroup of
G. In particular, X is cyclic and |X| = (q2 − 1)/d, where d = (q + 1, 3) (see [1, Table
8.5]). Put B = B/Z(S). Now it is not difficult to see (using also [25, Table 2]) that there
exist a subgroup H of S = S/Z(S) and elements x and y of X = XZ(S)/Z(S), such that x
normalises H, while 〈x, H〉 and 〈x, H〉y are not conjugate in the subgroup they generate.
Therefore, we may assume n > 3. Now, the discussion follows the notation in [4]. Let H
be the simple adjoint algebraic group over Fq with associated Dynkin diagram of type
An, λ = σq and μ = 2σq. Then Hλ = PGLn(q), Hμ = PGUn+1(q), Op′(Hλ) = Ln+1(q),
Op′(Hμ) = Un+1(q) = G,

X = Op′(Hμ ∩ Hλ) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

PSpn+1(q) if n is odd
Ωn+1(q) if n is even and q is odd
Spn(q) if n and q are even.

Since n > 3, X is either simple of type B or C (and we apply Theorem 3.3) or it is
Sp4(2) 	 Sym(6) (and we apply Lemma 2.5).

Assume now G 	 2G2(q) for q = 32n+1 ≥ 27. It follows from [16] that G has a
subgroup X of type Z3 � (V × D), where D is dihedral of order (1/2)(q + 1) and
the elements of order 3 normalise but do not centralise the four-group V 	 Z2 × Z2.
Since a Sylow 2-subgroup of G is elementary abelian of order 8, it follows that D is
nonnilpotent; but it can be easily seen that X contains a subgroup isomorphic to D
which is not even pronormal in X.
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If G is of type 2F4, then it contains a subgroup isomorphic to a finite simple
group of type B2 (see [21]) and Theorem 3.3 shows that G contains a nonnilpotent,
nonpronormal subgroup.

If G 	 3D4(q3), then it contains a subgroup X isomorphic to G2(q) (see [17]) and
so again Theorem 3.3 shows that G contains a nonnilpotent, nonpronormal subgroup
in the case where q > 2. If q = 2, then G′ 	 2A2(32) and we are done in any case.

The case 2E6 can be easily handled noticing that it contains as a subgroup a finite
simple group of type F4 (see [20, Table 1]).

Assume G is of type 2Dn for n ≥ 4: the discussion here follows again the notation
in [4]. Let H be the simple adjoint algebraic group over Fq with associated Dynkin
diagram of type Dn, λ = σq and μ = 2σq. Then, Op′(Hλ) = PΩ+2n(q), Op′(Hμ) =
PΩ−2n(q) = G and

X = Op′(Hμ ∩ Hλ) =

⎧
⎪⎪⎨
⎪⎪⎩

Ω2n−1(q) q odd,
Sp2n−2(q) q even.

Since n ≥ 4, X is a finite simple group of type Bn−1 or of type Cn−1, Theorem 3.3
completes the proof in this case. �

THEOREM 3.5. Let q = 22n+1 for some positive integer n. Then Sz(q) has only nilpotent
(of class ≤ 2) or pronormal subgroups if and only if 2n + 1 is a prime.

PROOF. It is well known that a subgroup of G is either isomorphic to Sz(s) with q a
power of s, or conjugate to a subgroup of one of the following groups.

(1) A solvable Frobenius group F of cardinality q2(q − 1); note that F = D � S, where
D is cyclic of order q − 1 and S is a Sylow 2-subgroup of G.

(2) Dih(2(q − 1)); this is actually the normaliser of the diagonal subgroup of order
q − 1.

(3) The normaliser N of a cyclic group A of cardinality q ± r + 1 with r2 = 2q; in this
case, N has order 4(q ± r + 1).

We also remark that the order of G is q2(q2 + 1)(q − 1) and that the numbers q − 1,
q + r + 1 and q − r + 1 are odd and pairwise relatively prime. Moreover, a Sylow
p-subgroup S of G is such that S′ = Ω1(S) ≤ Z(S), S/S′ is elementary abelian of order
q; a cyclic subgroup D ≤ NG(S) of order q − 1 acts on S′ \ {1} transitively. It is therefore
clear that if d ∈ D normalises some proper nontrivial subgroup L of S′, then 〈d〉L is
nonpronormal and not even nilpotent; since the former condition is equivalent to the
requirement that 2n + 1 is a prime, the necessity of the condition is proved.

Suppose now that 2n + 1 is a prime and let H be a nonnilpotent, nonpronormal
subgroup of G. It follows from Lemma 2.1 and Corollary 2.4 that H cannot be
contained in a subgroup of type (2) or (3). The only possibility left is that H is
contained in a subgroup F = D � S of type (1). In such circumstances, H ≥ S′. Since
H is not a maximal subgroup of G, we may also assume that H ∩ S = S′. Let g ∈ G be
such that H is not conjugate to Hg in J = 〈H, Hg〉. Since G > J > H, it is easy to see
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[9] Locally finite simple groups 9

that J ≤ S; moreover, since S′ = Ω1(S), it follows that g ∈ NG(S′) and S′ is normal in J.
Finally, since all subgroups of S of order dividing q − 1 are conjugate in S, it follows
that H is conjugate to Hg in J, which is a contradiction. �

PROOF OF THEOREM 1.2. Let G be an infinite locally finite simple group with only
nilpotent or pronormal subgroups. Using [15, Theorem 4.4], we may assume that G is
countably infinite. Let K be a Kegel cover of G; using Theorem 1.1, we may certainly
arrange this in such a way that the Kegel factors are either all of type An or all of
type 2B2.

Since every finite subgroup of G is isomorphic to a subgroup of some Kegel factor,
[13, Theorem 1] and Malcev’s representation theorem yield that G is linear over some
field. Now, it follows from [15, Proposition 4.6] that G is the union of an ascending
chain of finite simple groups and this is impossible by Theorem 1.1. �
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